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ABSTRACT

After establishing a comparison result by means of a new method, we obtain
the existence of maximal and minimal solutions for nonlinear, second order inte-
gro-differential equations of mixed type in Banach spaces.
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1. Introduction

In paper [1], we discussed establishing the existence of the extreme solutions of initial value
problems for first order, integro-differential equations of Volterra type in Banach spaces by means
of a comparison result. Now, in this paper, we consider the two-point boundary value problem
(BVP) for nonlinear, second order integro-differential equation of mixed type in real Banach space
E:

u" f(t,u, Tu, Su),t E J; au(O)-bu’(O) Uo, CU(1) +du’(1 ’al, (1)

where J [0, 1], f E C(J x E x E x E, E),

1

(Tu)(t)- / k(t,s)u(s)ds, (Su)(t)- / kl(t,s)u(s)ds
o o

] C(D, R q_ ), ]1 ( C(J x J, R q_ ), D {(t, s) ( x J: t

_
8}, q_ denotes the set of all non-

negative real numbers, anda_>0, b_>0, c>_0, d_>0withp-ac+ad+bc>0, Uo, UIE. Since
f contains Su, the method for obtaining a comparison result in paper [1] cannot be applied in this
case. In this paper, we use a completely new method to establish a comparison result, and then
we obtain the existence of minimal and maximal solutions for BVP (1) by using lower and upper
solutions and a measure of noncompactness. As an application, an example of an infinite system
for scalar integro-differential equations of mixed type is given.
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2. Comparison Result

Let E be a real Banach space and P be a cone in E which defines a partial ordering in E by
x _< y if and only if y-x E P. P is said to be normal if there exists a positive constant c such
that _< x _< y implies II x II -< c II Y II, where 0 denotes the zero element of E, and P is said to be
regular if every nondecreasing and bounded in order sequence in E has a limit, i.e., xI _< x2 _<...
_< xn _<... _< y implies II xn- x II 40 as n--,oc for some x E E. The regularity of P implies the
normality of P. For details on cone theory, see [2]. In connection with (1), we consider the linear
BVP"

-u"-- -Mu-NTu-NlSU-t-g(t), t=_J; au(O)-bu’(O)-uo, cu(1)-t-du’(1)-ul, (3)

where M, N, N1 are nonnegative constants and g C(J, E). Let

k* max(k(t,s):(t,s) D}, k max(kl(t,s):(t,s J x J}, (4)

and

Lemma 1: If

p(4ac)- 1, if ac # 0;

q p- l(bc + bd), if a 0;

p- l(ad + bd), if c 0.

M + Nk* + Nlk < q-1,

then the linear B VP (3) has exactly one solution u C2(j,E) given by

where

1 1

u(t)- v(t) + f Q(t,s)v(s)ds + / H(t,s)g(s)ds, t J,
0 0

v(t) p- l[(c(1 t) -t- d)u0 + (at -t- b)Ul], (8)

H(t, s) G(t, s) + F(t, s), (9)

and

G(t, s) { p l(at + b)(c(1 s) + d), t _< s;

p- l(as + b)(c(1 t) + d), t > s,

F(t, s) f Q(t, r)G(r, s)dr,
0

Q(t,s)- k)(t,s),
n--1

1 1

kn)(t’s) / f k2(t, rl)k2(rl,r2)’"k2(rn_ l,S)drl’"drn_ 1

o o

(10)

(11)

(12)

(13)
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1 1

k2(t,s MG(t,s)- N / G(t,r)k(r,s)dr N1 / G(t,r)l(r,s)dr. (14)
s 0

All functions G(t,s), k2(t,s), kn)(t,s), Q(t,s), F(t,s), H(t,s) are continuous on J J and the
series on the right-hand side of (12) converges uniformly on J x J.

Proof: It is well known that u C2(j,E) is a solution of the linear BVP (3) if and only if
u C(J, E) is a solution of the following integral equation

1

u(t) v(t) + J G(t,s)[g(s)- Mu(s)- N(Tu)(s)- Nl(SU)(s)]ds (15)
0

where G(t,s)is given by (10), i.e.,
1

u(t)- w(t)+ / k2(t,s)u(s)ds (16)
0

where k2(t,s is given by (14) and
1

w(t) v(t) + / G(t,s)g(s)ds. (17)
o

It is easy to see that

0 <_ p-lbd <_ G(t,s) <_ p-l(at -F b)(c(1- t)+ d) < q, t,s e J, (18)

where q is defined by (5), and so, by virtue of (14) and (6), we have

2(t,s) q(M + Nk* + Nlk) k < 1, t,s e J. (19)

It follows from (19) and (13) that

[k*n t,s J (n-1,2,3,...), (20)

and consequently, the series in the right-hand side of (12) converges uniformly on J x J to Q(t,s)
and Q(t,s) is continuous on J x J. Let

1

(Au)(t) w(t) + / k2(t s)u(s)ds.
0

Then A is an operator from C(J,E)into C(J,E). By (19), we have

Since k < 1, A is a contractive mapping, A has a unique fixed point u in C(J,E) given by

(21)

where

uo(t w(t),Un(t (AUn_l)(t), t e J (n 1,2,3,...). (22)

It is easy to see that (21) and (22) give
1

n=l 0
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1

u(t)- w(t) + ] Q(t,s)w(s)ds, t J.
0

Substituting (17) into (23), we get (7) and the proof is complete.

Lemma 2: (Comparison result) Let inequality (6) be satisfied and

q(M -t- Nk* + Nlk)(1 q2(M / Nk* + Nlk*)21 -1

< min{p-lq-ibd, b(Tb) -1 d(+ d) -1}
Suppose ha u

_
C2(J,E) salisfies

(23)

(24)

-u"> -Ms-NTu-N1Su t E J; as(O)-bu’(O) > O, cu(1)A-du’(1) > O. (25)

Then u(t) > 0 for t e J.

Proof: Let g(t) u" / Mu / NTu / glSu and uo as(O) bu’(0), U1 ca(l) + du’(1).
Then g C(J, E),

9(t) >_ O, t J, (26)

and

U0 _> O, U1 >_ O. (27)

By Lemma 1,a holds. From (14)we see that k2ts)<_O for t,sJ, and so, (13)implies that
kf2n)(t,s) <_ 0 n is odd and k2n)(t,s) > 0 when n" even. Consequently, by (12) and (20),

Q(t,s) >_ E k2m- 1)(t,s) -> k(1 -(k)2) 1, t, 8 e J. (28)
m--1

It follows from (9), (11), (18), (28) and (24) that

H(t,s) >_ p-lbd-qk(1- (k)2) -1
_

0, t, 8 J. (29)

On the other hand, by virtue of (8), (28), (27) and (24), we have

>p

1

v(t)+ / Q(t,s)v(s)ds
0

1

l(du0 -k- bUl)- k(1 -(k)2) lp- 1 f ((c(1 s) + d)uo + (as - b)ul)dS
0

p-l(dlto +bltl)-p-lk(1-(k)2)-l((--d)to +(--b)tl)_ O, t J. (30)

Hence, from (7), (29), (26), and (30), we see that u(t) >_ 0 for t G J, and the lemma is proved. [-!

We also need the following known lemma (see [3], Corollary 3.1(b)):
Lemma 3: Let H be a countable set of strongly measurable functions: x: J--,E such that there

exists a z G L(J,R + satisfying II x(t) ll _<z(t) for a.e. t J and all x E U. Then c(H(t)) G
L(J, R + and
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where H(t)- {x(t)’x C H}(t C J) and a denotes the Kuratowski measure of noncompactness in
E.

Corollary 1" If H C C(J,E) is countable and bounded, then a(H(t))E L(J,R+) and (31)
holds.

Remark 1: The following conclusion is well known: if H C C(J,E) is equicontinuous, then
(H(t)) e c(g, R + and

3. Main Theorems

Let us list some conditions for convenience.

(H1) There exist Co, wo C2(j,E) such that Vo(t < Wo(t for t J and

-vg <_ f(t, vo, Tvo, SVo) t C J; avo(O)-bv’o(O <_ Uo, CVo(1)+dv’o(1) <_ u1,

-w’ > f(t, wo, Two, SWo),t e J; awo(O)-bw’o(O) > Uo, CWo(1) +dw’o(1) > t1.

There exist nonnegative constants M,N and N1 such that

f(t,u,v,w)- f(t,,,) > -M(u-)-N(v-)-Nl(W-

(H3)

whenever rE J, vo(t < < U < wo(t), (Tvo)(t) <-fi < v < (Two)(t and (SVo)(t) <
_< _<

There exist nonnegative constants el,e2 and c3 such that

o(f(J, U1,U2,U3) <_ ClC(U1) -4- c2c(U2) + c3c(U3)

for any bounded U C E (i- 1,2,3).
In the following, we define the conical segment Iv0, w0]- {u e C(J,E)" vo(t < u(t) <_ wo(t

for t J}.
Theorem 1: Let cone P be normal and let conditions (H1) (H2) and (H3) be satisfied.

Assume that inequalities (6) and (24) hold and

2q(cl + c2k* + c3k -4- M + Nk* + Nik) < 1. (32)

Then there exist monotone sequences {vn} {wn} C_ C2(j,E) which converge uniformly on J to
the minimal and maximal solutions , u* e C2(j,E) of B VP (1) in [v0, w0], respectively. That is,
if u C2(J,E) is any solution, of BVP (1) satisfying u [v0,w0], then

Vo(t

_
vl(t _... _ vn(t

_ _
(t)

_
u(t)

_
u*(t)

_
<_wn(t <_... <_wl(t)_<wo(t), t C J. (33)
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Proof: For any h E [vo, w0], consider the linear BVP (3) with

g(t) f(t,h(t), (Th)(t), (Sh)(t)) + Mh(t) + N(Th)(t) + Nl(Sh)(t). (34)

By Lemma 1, BVP (3) has a unique solution u C2(j,E) which is given by (7). Let u- Ah.
Then operator A’[vo, Wo]C(J,E and we shall show that (a) vo <_ Avo, Awo < wo and (b) A is
nondecreasing on [Vo, w0]. To prove (a), we set vI -Avo and w- v1 -v0. By (3) and (34), we
have

ffl’ MY1 NTvl NISVl + f(t, vo, Tvo, SVo) + Mvo + NTvo + N1SVo

= -Mw-NTw-N1Sw+ f(t, vo, Tvo, SVo) t J;

avl(0 bVl(O) uO, CVl(1 h- dye(l) Ul,

and so, from (H1) we get

--w" >_ -Mw-NTw-N1Sw t e J; aw(O)-bw’(O) >_O, cw(1)+dw’(1) >_O.

Consequently, Lemma 2 implies that w(t) >_ 0 for t J, i.e., Avo >_ vo. Similarly, we can show
Awo<_wo. To prove (b), let @-u2-ul, where u1-Ahl, u2-Ah2, hl,h2[vo,wo] hl_<h2.
In the same way, we have, by (H2)

o" Mffo NTo N1Sffo h- f(t, h2,Th2,Sh2) f(t, hl,Thl,Shl) -t- M(h2 hi)

+ N(Th2 Thl) + NI(Sh2 Shl) >_ M@ NT@ N1S@ t J;

a(O)- b’(O) O, c(1) + d’(1) O,

and hence, Lemma 2 implies that @(t) >_ 0 for t J, i.e., Ah2 >_ Ahl, and (b) is proved.

Let vn Avn_ 1 and wn Awn_ 1 (n 1,2,3,...). By (a) and (b)just proved, we have

Vo(t <_ vl(t _< _< Vn(t <_ <_ Wn(t <_ <_ wl(t _< Wo(t), t J, (35)

and consequently, the normality of P implies that V- {vn:n- 0, 1,2,...} is a bounded set in
C(J,E). Hence, by (H3) there is a positive constant co such that

II f(t, v.(), (Tvn)(t), (Svn)(t)) + Mvn(t + N(Tvn)(t + Nl(SVn)(t II <_ Co,

J (n 0,1, 2, .). (36)

By the definition of vn and (7), (34), we have
1

Vn(t)-v(t)+ j a(t,s)v(s)ds
0

1

-F j H(t,s)[f(s, vn_l(S),(rvn_l)(S),(SVn_l)(S))-+- MVn_l(S)
0

+ N(Tvn_ 1)(s) + NI(SVn_ 1)(s)]ds, t J (n 1,2,3,...). (37)
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It follows from (36) and (37) that V is equicontinuous on J, and so, the function re(t)- a(V(t))
is continuous on J, where U(t)- {vn(t)" n- O, 1,2,...} C E. Applying Corollary 1 and Remark
1 to (37) and employing (H3) we get

1

re(t) <_ 2 / H(t, s) a(f(s, Y(s), (TY)(s), (SV)(s)))ds
o

1

+ / IH(t,s) l(M(Y(s))+ N(((TV)(s))+ Nl((SY)(s)))ds
o

1

<_ J H(t,s) [(2c + M)a(V(s)) + (2c2 + N)a((TV)(s))
o

+ (2c3 -+- N1)a((SV)(s))]ds t e J. (38)

On the other hand, by (9), (11), (12), (18) and (20), we have

[H(t,s)[ <_ q/qk(1-k) -1 q(1-k) -1, t,s e J. (39)

Moreover, by Remark 1,

l{ oJ }/a((TV)(t)) a k(t, s)vn(s)ds: n O, 1, 2,...

1

<_ J . ({(t,s)v.(s):n O, 1,2,...})ds<_*/ .(V(s))ds <_ * / m(s)ds, t .,
o o o

and similarly,
1

a((SV)(t)) < k / m(s)ds, t e J.
o

It follows from (38)-(41) that

and so,

1

re(t) <_ q(1 k)- 1((2Cl + M) + k*(2c2 + N) + k(2c3 + N1)) / m(s)ds, t J,
o

1 1

/ m(t)dt

_
q(1 k)- 1(2Cl -- 2c2k* -- 2c3] -- M + Nk* + Nlk;)/ m(s)ds,

o o

(40)

(41)

1
which implies by virtue of (32) that f m(t)dt- 0, and consequently, re(t)= 0 for t e J. Thus,

0
by the Ascoli-Arzela theorem (see [4], Theorem 1.1.15), V is relatively compact in C(J,E), and
so, there exists a subsequence of {v,} which converges uniformly on J to some E C(J,E).
Since, by (35), {vn} is nondecreasing and P is normal, we see that {%} itself converges uniformly
onJto. Now, we have

f(t, vn 1, (Tvn 1)(t), (Svn 1)(t)) + Mvn 1(t) + N(Tvn 1)(t) + NI(SVn 1)(t)

-,f(t,(t),(T)(t),(S)(t))+ M(t)+ N(T)(t)+ N(S)(t), t e J, (42)

and, by (36),
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II f(t, Vn l(t), (Tvn 1)(t), (Svn 1)(t))+ Mvn l(t) + N(Tvn 1)(t) + NI(SVn 1)(t)

f(t,(t),(T )(t), (S)(t)) M(t)- N(T )(t)- NI(S )(t)II <_ 2Co,

t 6- J (n- 1,2,3,...). (43)

Observing (42) and (43) and taking limits as n-,oo in (37), we get
1

(t) v(t) + / a(t, s)v(s)ds
0

1

+ / H(t,s)[f(s,(s),(T )(s), (S)(s))+ M(s)+ N(T )(s) + NI(S )(s)]ds, t 6- J,
0

which implies by virtue of Lemma 1 that g 6- C2(J, E) and g satisfies

-"-f(t,,T,S),t6_J; a(0)-b’(0)-Uo, c(1)+d’(1)

i.e., is a solution of BVP (1). In the same way, we can show that {wn} converges uniformly on
J to some u* and u* is a solution of BVP (1) in C2(j,E).

Finally, let u 6- C2(j,E) be any solution of BVP (1) satisfying Vo(t <_ u(t) <_ wo(t for t 6- g.
Assume that vk_ i(t) _< u(t) <_ Wk_ l(t) for t 6- J, and set -u-vk. Then, on account of the
definition of vk and (H2) we have

--" M NT N1S- + M(U- Vk_ l) -[- NT(u- Vk_ l) + N1S(U- Vk_ l)

+ f(t, u, Tu, Su) f(t, vk 1, TVk_ 1,SVk_ 1) -- M NT- NIS tEJ;

aV(O)-bV’(O)-O, c-(1)+dV(1)-O,

which implies by virtue of Lemma 2 that V (t) >_ 0 for t 6- J, i.e., vk(t <_ u(t) for t 6- J. Similarly,
we can show u(t) <_ wk(t for t 6- J. Consequently, by induction, Vn(t <_ u(t) <_ Wn(t for t 6- J
(n 0, 1, 2,...), and by taking limits, we get (t) _< u(t) <_ u*(t) for t 6- J. Hence, (33) holds and
the theorem is proved. El

Theorem 2: Let cone P be regular and conditions (H1) and (H2) be satisfied. Assume that
inequalities (6) and (24) holds. Then the conclusions of Theorem 1 hold.

Proof: The proof is almost the same as that of Theorem 1. The only difference is that
instead of using condition (H3) and inequality (32), the conclusion re(t) a(V(t)) 0 (t 6- J) is
obtained directly by (35) and the regularity of P. E!

Remark 2: The condition that P is regular will be satisfied if E is weakly complete (reflexive,
in particular) and P is normal (see [2], Theorem 1.2.1 and Theorem 1.2.2, and [5], Theorem 2.2).

4. An Example

Consider the BVP of an infinite system for scalar, second order integro-differential equations
of mixed type:
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,, t (1 run sin r(t + un))3 +un 360r3n 30n(n + + 1 -4- 1

60(+ 1) e-tSun(s)ds + 30(2n + 3) cs27r(t- s)u2n(s)ds
0

1

1 / (t s)un(s)ds)5 0 < t < 1;-60(n+1) cos27r
0

u,(0) u(0), u(1) 0 (n 1,2,3,...).

(44)

Evidently, un(t -0 (n- 1,2,3,...)is not a solution of BVP (44).
Conclusion: BVP (44) has minimal and maximal continuous, twice differentiable solutions

satisfying 0 < un < 2 for 0 < t < 1 (n 1,2,3,...).
Proof: Let E {u (ui,..., Un,...):suplun < c} with norm [[ u I] sup un and

P-{u-(ul,...,un,...)E: an>O, n-1,2,3,...}. Then P is anormal cone in E and BVP
(44) can be regarded as a BVP of the form (1) in E. In this situation, a b d 1, c 0, u0 =
tl--(0,...,0,...), k(t,s)-e -ts, kl(t,s)-cos27r(t-s), u-(ul,...,un,...), v-(vl,...,Vn,...),
w (wl,... wn,...) and f (fl,"’, fn," "), in which

fn(t, u, v, w) t sinTr(t + Un))336dr3n(1 run
t

30n(n + 3)2 + 1 1

1 2 t2 1 5 (45)60(n + 1)vn + 30(2n + 3)w2n -60(n + 11wn"
It is clear that f C(J E E E,E), where J [0, 1]. Let vo(t (0,..., 0,...) and wo(t
(2,...,2,...). Then v0, wo C2(j,E), vo(t < wo(t for t E J, and we have

v (t) (o,..., o,...),

vo(O v;(O) v;(1) w;(O) w;(1) (0,...,0,...), wo(O (2,...,2,...),

fn(t, Vo, TVo, SVo) 36:Tr3n(1 sin 7rt)3 > O,

fn(t, wo, Two, SWo) t36{Jr3n.(1 27r sin 7r(t + 2))3 +

1 -tSds t2

la(n + 1) + 30(2n + 3)
0

t 2,(2 + 4t)
30n(n + 3)

60(n+ 1)

<((1 27r)3 4-0) 1 1 <0
3607r3

+ + 60(n + 1) 60(n + 1)
Consequently, v0 and w0 satisfy condition (H1). On the other hand, for u- (Ul,...,Un,...),
(l,’",gn,’"), v (Vl,...,vn,...), (gl,’",n,’"), w (Wl,...,Wn,...) and (l"’"@n’
...) satisfying t J, Vo(t < < U < Wo(t), (Tvo)(t) < < v <_ (Two)(t and (SVo)(t) < v <
w < (SWo)(t), i.e., 0 _< n -< u. _< 2,
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1

O_-n_Vn <2j e-tSd8 _2 and 0

_
+n _wn <2/ cos2r(t-s)ds-1 for t E J

o o

(n- 1,2,3,...), we have, by (45),

tfn(t, u, v, w) fn(t, fi, V, >_ .360r3n[(1 run sin r(t + Un))3

).(1 rn sin r(t / n))3] 60(nl/ 1)(v2 V2) 60(nl/ 1)(wn (46)

Since

ss(1 rs -sin r(t + s))3 3r(1 rs -sin r(t + s))2(1 + cos r(t + 8))

>_ -24r3,for0_<t_<l, 0_<s_<2,

s(-S
2)- -2s>_ -4, forO_<s_<2

and

s(-S
5)- -5s4>_ -5, for O _< s <_ l,

it follows from (46) that

f(t,u,v,w)-f(t,,V,) >_ 1-n(u-)- 15(n1+ 1)(v-)- 12(n1+ 1)(w-)- 1-(un n)- 3-(vn-n)- 2-(wn n), (n- 1,2,3,...).

This means that condition (H2)is satisfied for M- 12g, N- and N1 -2-" We now check

condition (U3). Let t(m) E g and sequences {u(m)), {v(m)}, {w(m)) be bounded in E- . Let

u(m) -(um),...,u(nm),...), v(m) -(vm),...,v(nm),...), w(m) -(wm),...,w(nm),...), and z(m)

(zm),..., z(nm), .) f(t(m), u(m), v(m), w(m)), i.e., z(nm) fn(t(m), u(m), v(m), w(m))(n, m 1,2, 3,
...). Then, there exists a positive constant r such that

lu(nm) <_r, Iv(nm) <_r, Iw(m) <_r (n,m-1,2,3,...),

and, by (45),

1 r(1 / r) r2( 1 / r3) rIz(m) < Or3(2 / rr)3 / )2
/ / (n, m 1, 2, 3 ...). (47)

36 30n(n + 3 60(n / 1) 30(2n + 3)’
Consequently, (zm)) is bounded, so, by the diagonal method, we can choose a subsequence (mi)
of {m} such that

zmi)zn as i (n 1,2,3,...). (48)

From (47), we have

Zn -< 3601r3n(2 + rr)3 + r(1 + r) r2( 1 + 1"3) r

30n(n + 3)2
+ 60(n + 1) + 30(2n + 3)’ (49)
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and therefore, z (Zl,...,zn,...) E oo E.
choose a positive integer no such that

For any e > 0, by virtue of (47) and (49), we can

-(’i) <e, ]Znl <e,n>no (i 1,2,3,...).zn (5o)

On the other hand, (48) implies that there is a positive integer o such that

z(nmi)-znl <e, i>io (n-l,2,...,no). (51)

It follows from (50)and (51)that

_(-)II z II sup Zn zn < 2e, > o.

This means that 1[ z(mi)- z II- 0 and hence, condition (H3) is satisfied for cI -c2

C3=0.
It is clear that p 1, q- 2, k* k 1, and so, it is easy to calculate

M + Nk* + Nlk 20 < 1/2- q-I,

q(M + Nk* + Nlk)(1- q2(M + Nk* 4- Nlk;)2) -1 331___ <10201
min{p- iq-lbd, b(+ b)-1 d(+, d) -1 }

and

2q(cl + c2k* + c3 1 + M + Nk* + Nlk) 17
-g6 < i.

Hence, inequalities (6), (24) and (32) are satisfied, and our conclusion follows from Theorem 1.
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