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ABSTRACT

A class of strongly damped semilinear equations is studied by using the
theory of analytic semigroups. Conditions (on the nonlinear forcing term) are

given under which the existence and uniqueness of local and global classical
solutions are ensured.
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1. Introduction

Let fl be a bounded domain in n with sufficiently smooth boundary Of] and let Lu-

aa(x)Dau be a strongly elliptic differential operator of order 2m in f. We consider the following
strongly damped wave equation

utt + (aL + b)u + (cL + d)u f(t, u, ut) in f (to, T),

to) x0 and ut(x to) x1 for x E ,
Dau O for (x,t) E OfX[to, T), cl _<m-l,

(1.1)

where a > 0. Duvaut and Lions [4], Glowinski, Lions and Tremolieres [5] have studied particular
cases of (1.1) in which the n-dimensional Laplacian, L -A, in the context of the theorem of
viscoelastic materials. For more information on these particular cases, we refer the reader to
Webb [8] and Ang and Dinh [1].

We treat (1.1) as a special case of the following abstract second order semilinear differential
equation in a Banach space X"

u"(t) + (aA + bI)u’(t) + (cA + dI)u(t)

f(t, u(t), u’(t)), t > to, (1.2)

u(to)- xo and u’(to)- x1.

For (1.1) we take A- L and assume that -A generates an analytic semigroup T(t)in X (cf.
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Theorem 7.3.5 in Pazy [6]).
Section 2.

The nonlinear map f is supposed to satisfy assumption (F), stated in

Sandefur [7] studied the second order semilinear differential equation

u"(t) + Au’(t) + Bu(t) f(t, u(t), u’(t)), (1.3)

u(0) , u,(0)

where E D(A1).
conditions.

in a Banach space X under the assumptions that the linear operators A and B can be decomposed
as -A-A1 +A2 and B-A2A1, where Ak generates a c0-semigroup Tk(t), k--1,2,; and f
satisfies a locally Lipschit condition. He established the local existence and uniqueness of a mild
solution to (1.a) which reads as follows. There exists a continuous function u on [0, c] for some
c > 0 such that u satisfies the integral equation

u(t) Tl(t) + / TI(t- v)T2(v)( Ale)dr
0

7-

+ J J Tl(t-v)T2(t-s)f(s,u(s))dsdr,
o o

Aviles and Sandefur [2] studied the wellposedness of (1.3) under similar

We notice that, for the existence and uniqueness of solutions to (1.2), it suffices to study the
problem

u"(t) + Au’(t) f(t, u(t), u’(t)),

u(tO) XO, (to) Xl,

where the terms bu’(t) and (cA + dI)u(t)are merged with f
(F).

so that f still satisfies assumption

Engler, Neubrander and Sandefur [3] proved the local existence and uniqueness of a mild
solution to (1.4) under the assumptions that -A generates an analytic semigroup T(t) in X and
f satisfies a condition similar to assumption (F), where a mild solution on [t0, tl) for some
t1 > to, to (1.4) is the first component of a solution (u(t), v(t)) of the integral equations

u(t) xo + (T(t to)- I)( A)- ix1

+ / (T(t s) I)(- A)- If(s, u(s), v(s))ds, to < t < t1

o

v(t)- T(t- to)x1 + / T(t- s)f(s, u(s), v(s))ds, to <_ t < t1.

o

(1.5)

We improve the result of [3] by showing that (1.4) has a unique classical solution locally, i.e.,
there exists a unique u_Cl([to, tl):X)VIC2((to, tl):X) and satisfies (1.4) on [t0, tl) for some
tI > t0. Further, we discuss the continuation of this solution, maximal interval of existence and
the global existence. We achieve these objectives by extending the ideas and techniques used in
the proofs of Theorems 6.3.1 and 6.3.3 in Pazy [6] concerning the semilinear equations of the first
order to problem (1.4). For the global existence, we require a modified version of Lemma 4.1,
stated and proved at the end of Section 4 originally stated in Pazy [6] as Lemma 5.6.7.
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2. Preliminaries and Assumptions

Let X be a Banach space and let -A.generate the analytic semigroup T(t) in X. We note
that if -A is the infinitesimal generator of an analytic semigroup then -(A + hi) is invertible
and generates a bounded analytic semigroup for a > 0 large enough. This allows us to reduce the
general case, in which -A is the infinitesimal generator of an analytic semigroup, to the case

where the semigroup is bounded and the generator is invertible. Hence, for convenience, without
loss of generality, we assume that T(t)is bounded, that is liT(t)II < M for t> 0 and
0 E p(- A), i.e., -A is invertible. Here p(- A) is the resolvent set of -A. It follows that, for
0 _< a < 1, As can be defined as a closed linear invertible operator with its domain D(A) being
dense in X. We denote by Xa the Banach space D(A) equipped with the norm II x II a
II Aax II which is equivalent to the graph norm of As. For 0 < a </, we have X C Xa and the
embedding is continuous.

We consider the problem

u"(t) + Au’(t) f(t, u(t), u’(t)), (2.1)

it(to)- Xo, u’(to) x1.

Regarding the function f we make the following

Assumption (F): Let U be an open set of + X1 Xa. A function f is said to satisfy the
assumption (F) if for every (t,x,) U there exist a neighborhood Y C U and constants L > 0,
0 < v < 1, such that

[]f(tl, Xl,l)-f(t2, x2,2)]] < L[]tl-t21O+ IIx1- 211 + 11 1- 211 ] (2.2)

for all (ti, xi,i) V.

By a local classical solution to (2.1) we mean a function u cl([to, tl): X) N C2((to, tl)" X)
satisfying (2.1) on [to, t1) for some t1 > to. By a local mild solution to (2.1) we mean the first
component of a solution (u, v) to the integral equations (1.5) on [to, tl) for some tI > to.

3. Local Existence

As we have already pointed out, without loss of generality, the semigroup, generated by -A,
can be assumed to be bounded and A invertible. Under these conditions imposed on A we prove
the following local existence and uniqueness theorem.

Theorem 3.1" Suppose that -A generates the analytic semigroup T(t) such that
[i T(t) I] <-M and 0 p(-A). If the map f satisfies assumption (F) then (2.1) has a unique
local classical solution.

Proof: Fix (to, Xo, Xl) in U and choose t] > o and 5 > 0 such that (2.2), with some fixed con-
stants L >_ 0 and 0 < t9 _< 1, holds on the set

(3.1)

Let B- max II f(t, xo, Xl)I1" Choose tI > to such that
o _< _< t 1
tI to < min{t to,(1 + M)- 1(L5 + B)- 1, [C- 1(1 c)(L5 + B)- 111 -) (3.2)
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where Ca is a positive constant depending on c and satisfying

II AaT(t) II <- Cat- o, for t > 0. (3.3)

Let Y C([to, t1]: X X). Then y E Y is of the form y (Yl, Y2), Yi C([to, tl]" X), 1, 2. Y,
endowed with the supremum norm,

II(Yl,Y2) IIy--SUp [IlYl(t) ll -t- IlY2(t) ll ],
o _< _< 1

is a Banach soace. We define a map F on Y by Fy- F(Yl, Y2)- (if1, ’2) with

ffl(t) Ax0 (T(t to)- I)x1 / (T(t s)- I):y(s)ds,
o

y’2(t) T(t- to)ZaXl + J T(t- )Ayu()a, (3.4)
o

where fu(t)- f(t,A-lya(t),A-y2(t)) for t [t0, ta].
For every y Y, Fy(to)- (Azo, AaXl), and the assumption (F) on f implies that F:Y-oY.

Let S be a nonempty closed and bounded set given by

S {y e Y: y (Yl, Y2), Yl(t0) Axo, Y2(t0) AaXl,

II yl(t) Axo II + II y(t)- AaXl II 5}.

Let y (Yl,Y2) be any element of S. Inside the integrals in (3.4) we add and subtract f(S, Xo, xl)
and use the fact that II T(t)II <- M and (3.3) to obtain

II ya(t) Axo II + II Y2(t) AZl II
1

_< + (1 + M)(L5 + B)(t1 to) -t-Ca(1 -a)-l(L5 + B)(t1 to)l -c _< 5.

Hence F:S-S. Now let (Yl, Y2) and (Zl, Z2) be any two elements of S. We use assumption (F)
to get

II if1(t) -’1(t) II + II 2(t) -2(t) II
1

<_ [L(1 + M)(tI -to)+ LC(1- )-l(tI -to)l-a] II (Yl’ Y2)- (Zl’ Z2)II Y

-< II (Yl’Y2)- (Zl’ Z2)II y.

Thus F is a contraction on S. Therefore, it has a unique fixed point in S. Let (ffl, 2) S
be that fixed point of F. Then,

l(t) Axo (T(t to) I)x1 / (T(t s) I)fy (s)ds, (3.5)
o
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y2(t) T(t to)Aaxl + / T(t s)Aafy (s)ds,
o

where f-(t)- f(t,A-lyl(t), A-a2(t)). We note that (u,v)- (A-II,A-a2) is the unique
solution of integral equations (1.5) on [t0, tl]. Assumption (F) and the continuity of Yl and Y2 on

[to, tl] imply that the map t-f-(t) is continuous and hence bounded on [to, tl]. Let
II fy (t)II - N for to

_
t _< t. We will now show that tf- (t) is locally HSlder continuous on

(to, tl]. For this we first show that 1 and 2 are locally HSlder continuous on (t0, tl]. From
Theorem 2.6.13 in Pazy [6], for every 0 < fl < 1- c and every 0 < h < 1, we have

II (T(h) I)Aa(t s)In II Aa + fT(t s)In C/H(t s)- ( + f). (3.6)

iow

II 2( + h) 2()II II (T(h) I)AaT(t t0)x1 ]] + J II (T(h) I)AaT(t s)fy (s)II ds

o

t+h

II AaT( + h s)fy (s) II ds 11 + 12 + 13.

We use (3.6) to get

I1

_
C(t to) ( + f)h

_
Mh,

12 <_ NhCj (t s)- ( + )ds <_ M2h/
0
t+h

13

_
NC/ (t + h- s)-ads

_
M3h.

Here M1 depends on t and increases to infinity as tto, while M2 and M3 can be chosen indepen-
dent of t. From the above estimates, it follows that there exists a positive constant C such that
for every to > to,

II 2(t) 2()II C It s for to < t _< t, s <_ t1.

Similar result holds for Yl (if we take a- 0 in the above considerations). The local HSlder contin-
uity of f_-. (t) on (to, t] follows from assumption (F) and the local HSlder continuity of 1 and Y2
on (to, tl.

Consider the initial value problem

-t(t) + Av(t) f (t) (3.7)

V(to) X1.

By Corollary 4.3.3 in Pazy [6], (3.7) has a unique solution v cl((t0, tl[: X) given by
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v(t) T(t t0)x1 - f T(t s)fy (s)ds.

For t > to, each term on the right-hand side belongs to D(A) and hence belongs to D(Aa).
Application of As to both the sides in (3.8) and the uniqueness of Y2 imply that Aav(t) Y2(t) or

v(t) A -c2(t). Let u(t) A- al(t). Then, we have u(t) xo + f v(s)ds which yields u(t)
o

cl([t0, tl):X) f3 C2((t0, tl)’X). Thus, u satisfies (2.1) on [t0, tl). This completes the proof of
Theorem 3.1.

Remark 3.1: Theorem 3.1 can be applied to assert that a unique local mold solution of the
general linear second order equation established by Engler, Neubrander and Sandefur [3] in
Example 3.1, is in fact a local classical solution. Using arguments of [3], this solution can be
proved to be global.

Itemark 3.2: Theorem 3.1 can also be used to prove the regularity of local mild solutions to
the strongly damped quasilinear wave equations and the strongly damped Klein-Gordon equation
of Examples 3.2 and 3.3 in [3], respectively.

4. Global Existence

In [3] it was proven that if f: [0, xz) X1 Xo.--X satisfies assumption (F) globally, then the
solution (u,v) to integral equations (1.5) can be continued to the maximal interval of existence
[0, T) and, if T < , then lim [11 u()I1 II v()II 3- /,

tT
We prove the following global existence result.

Theorem 4.1: Let 0 D(- A) and let -A be the infinitesimal generator of an analytic semi-
group T(t) such that II T(t)II <_ M fo t >_ O, Lt f: [0,) Xa X--,X satisfy assumption (F).
If there exists a nondecreasing function k:[t0, c)R+, such that

II f(t,, )11 < k(t)[1 + II x II1 -4- II II ] for t > o, (,) X X,

then for each (x0, Xl) X1 x Xa, (2.1) has a unique classical solution u which exists for all t > to.
Proof: Let [t0, T be the maximal interval of existence for the solution u to (2.1) guaranteed

by Theorem 3.1. It suffices to prove that [11 (t)I11/ II v(t)II ] _< c on [t0, T for some xed
constant C > 0 independent of t.

Now, since u(t)is a solution of (2.1) on [t0, T), it is also a mild solution to (2.1). Therefore,
from (3.5), we have

Au(t) Azo -(T(t to) I)xI (T(t s) I)f (s)ds,
o

T(t- to)Aaxi + / T(t- s)aa? (s)ds,Aau’(t)
o

where f (t)- f(t, u(t), u’(t)) for t [to, T). Our assumptions on f imply that

[1 + II u(t)II1-4- II ’(t)II 1
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--( C1 4- C2 i [1 + II ()Ill + [I u’()II ]d
o

+ C3 i ( s)-[1 + II u(s)111 + II u’()II ]d.
o

Now, we only need to apply the following lemma to get the required estimate.

Lemma 4.1: Lel (t,s) >_ 0 be continuous on 0 <_ s < t <_ T. If there are positive constants
A, B1, B2 and fl, such that

8

for 0 < s < t < T, then there exists a positive constant C such that (t,s) < C for 0 < s < t < T.

Proof of Lemma 4.1: We have

r

8 8 8 T

and the well-known identity

t r) l(r 7")"’- 1do" (t r)1 + lr(5) r(7)

(3.10)

(3.11)

get
Iterating (3.9) n- 1 times using (3.10) and (3.11) and majorating (t- s) and (t- r) by T, we

n- B2TO n- 1 B2T(, s)

_
/3 4- B1 /3 (g,

8

4- fr(.Z) (t
8

Choosing n sufficiently large so that n > 1 and replacing (t- r)n -1 by Tn -1 we get

(t, S) _< C1 4- c2 / (, s)do’,
8

where c1 and c2 are positive constants independent of s. The required result then follows from
the Gronwall’s inequality. This ends the proof of the lemma and of Theorem 4.1.

Remark 4.1: Theorem 4.1 gives the global existence and uniqueness of a classical solution to
the Klein-Gordon equation considered in Example 3.3 in [3] (cf. also Example 4.1 in [3]).
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