ON AN INFINITE-DIMENSIONAL DIFFERENTIAL EQUATION IN VECTOR DISTRIBUTION WITH DISCONTINUOUS REGULAR FUNCTIONS IN A RIGHT HAND SIDE

MICHAEL V. BASIN Institute of Control Science, Moscow, Russia 36-1-135, Matveevskaya ul., Moscow 119517 Russia E-mail: basin@matv.msk.ru

(Received April, 1995; Revised September, 1995)

ABSTRACT

An infinite-dimensional differential equation in vector distribution in a Hilbert space is studied in case of an unbounded operator and discontinuous regular functions in a right-hand side. A unique solution (*vibrosolution*) is defined for such an equation, and the necessary and sufficient existence conditions for a vibrosolution are proved. An equivalent equation with a measure, which enables us to directly compute jumps of a vibrosolution at discontinuity points of a distribution function, is also obtained. The application of the obtained results to control theory is discussed in the conclusion.

Key words: Infinite-Dimensional Equation, Discontinuous Right-hand Side, Distribution.

AMS (MOS) subject classifications: 34K35.

1. Introduction

This paper studies an infinite-dimensional differential equation in vector distribution, whose right-hand side also contains discontinuous regular (not generalized) functions. It should be noted that a solution to a differential equation in distribution cannot be defined as a conventional solution (using the Lebesgue-Stieltjes integral) owing to multiplication of the distribution by a discontinuous regular function. Thus, the basic problems are to introduce an appropriate solution (*vibrosolution*), obtain the existence and uniqueness conditions for a vibrosolution, and design an equivalent equation with a measure, which enables us to directly compute jumps of a vibro-solution at discontinuity points of a distribution function.

Infinite-dimensional equations in vector distribution appear, for example, when solving the ellipsoidal guaranteed estimation problem [14] over discontinuous observations [2], or considering infinite-dimensional (solid state) impulsive Lagrangian systems [4]. The definition of a unique vibrosolution to a differential equation is first introduced in the background paper [9] and is shown again in Section 3. Finite-dimensional differential equations in scalar distribution with discontinuous regular functions in right-hand sides are studied in [1]. Finite-dimensional equations in vector distribution are then considered in [3]. This paper generalizes the results ob-

MICHAEL V. BASIN

tained in [1, 3] to the case of infinite-dimensional differential equations in vector distribution. The substantiation of existence and uniqueness conditions is based [7, 8] on the representation of a solution to a differential equation in a Hilbert space as a Fourier sum of solutions to finite-dimensional differential equations.

The paper is organized as follows. The problem statement is given in Section 1. In Section 2 a solution to an infinite-dimensional equation in vector distribution is introduced as a *vibrosolution*, that is defined as a unique limit. Sections 3 and 4 present the necessary and sufficient existence conditions for a vibrosolution, respectively. By definition, existence of a vibrosolution yields its uniqueness. In Section 5 an equivalent equation with a measure is designed. The application of the obtained results to control theory is discussed in the conclusion.

2. Problem Statement

Let us consider an infinite-dimensional differential equation in vector distribution with an unbounded operator in a right-hand side

$$\dot{x}(t) = Ax(t) + f(x, u, t) + \beta(x, u, t)b(x, u, t)\dot{u}(t), \quad x(t_0) = x_0,$$
(1)

where $x(t) \in H$; A is a generator of a strongly continuous semigroup such that (-A) is a strongly positive operator and has a compact inverse operator A^{-1} ; $f(x, u, t) \in H$, $b(x, u, t) \in L(\mathbb{R}^m \to H)$ are bounded continuous functions defined in the space $H \times \mathbb{R}^m \times \mathbb{R}$, $L(\mathcal{A} \to \mathfrak{B})$ is a space of linear continuous operators from a space \mathcal{A} to a space \mathfrak{B} ; $\beta(x, u, t) \in \mathbb{R}$ is a scalar piecewise continuous in x, u, t function such that its continuity domain is locally connected; $u(t) = (u_1(t), \ldots, u_m(t)) \in \mathbb{R}^m$ is a vector bounded variation function which is non-decreasing in the following sense: $u(t_2) \geq u(t_1)$ as $t_2 \geq t_1$, if $u_i(t_2) \geq u_i(t_1)$ for $i = 1, \ldots, m$.

Let $S_t(\cdot): H \to H$ be a strongly continuous semigroup generated by an operator A, and $D(A) \subset H$ be a definition domain. The following conditions imposed on an initial value and a right-hand side of the equation (1): 1) $S_t(x_0) \in D(A)$, 2) $S_{t-s}(f(x,u,s) + \beta(x,u,s)b(x,u,s))$ $\dot{w}(s)) \in D(A)$, $s \leq t$, are assumed to hold for any absolutely continuous non-decreasing function $w(s) \in \mathbb{R}^m$.

3. Definition of a Solution

Let us note that a solution to the equation (1) cannot be defined as a conventional solution owing to multiplication of distribution $\dot{u}(t)$ by a discontinuous in t function b(x(t), u(t), t).

If $u(t) \in \mathbb{R}^m$ is an absolutely continuous function, then an absolutely continuous solution to the equation (1) is defined in the sense of Filippov [6]. Following [6], a function $\kappa(x, u, t)$ is said to be piecewise continuous in a finite domain $G \subset H \times \mathbb{R}^{m+1}$ if

- 1) a domain G consists of a finite number of continuity domains G_i , i = 1, ..., m, with boundaries Γ_i ,
- 2) a function $\kappa(x, u, t)$ has finite one-side limiting values along boundaries Γ_i ,
- 3) the set consisting of all boundaries Γ_i has zero measure.

A function $\kappa(x, u, t)$ is said to be piecewise continuous in $H \times R^{m+1}$ if it is piecewise continuous in each finite domain $G \subset H \times R^{m+1}$.

If $u(t) \in \mathbb{R}^m$ is an absolutely continuous function, then a solution to the equation (1) is

defined [6] as an absolutely continuous solution to the differential inclusion $\dot{x}(t) \in Ax(t) + F(x,t)$, where F(x,t) is a minimum convex closed set containing all limiting values $f(x^*, u(t), t) +$ $\beta(x^*, u(t), t)b(x^*, u(t), t)\dot{u}(t)$ as $x^* \rightarrow x$, t = const, while points $(x^*, u(t), t)$ are not included in a discontinuity set of the function $f(x, u(t), t) + \beta(x, u(t), t)b(x, u(t), t)\dot{u}(t)$.

The existence and uniqueness conditions for an absolutely continuous solution to the equation (1) are given in the next lemma that is a direct corollary to theorem 1 [11].

Lemma: Let the above conditions hold, and the functions f(x, u, t), $\beta(x, u, t)b(x, u, t)$ satisfy the one-sided Lipschitz condition in x

$$(x - y, f(x, u, t) - f(y, u, t)) \le m_1(t, u)(x - y, x - y),$$
$$((\beta(x, u, t)b(x, u, t) - \beta(y, u, t)b(y, u, t))^*(x - y)) \le m_2(t, u)(x - y, x - y),$$

where functions $m_1(t,u) \in R$, $m_2(t,u) \in R^m$ are integrable in t,u; $B^*: H \to R^m$ is an operator adjoint to an operator $B: \mathbb{R}^m \to H$.

Then there exists a unique absolutely continuous solution to the equation (1) corresponding to an absolutely continuous function $u(t) \in \mathbb{R}^m$.

In case of an arbitrary non-decrease function $u(t) \in \mathbb{R}^m$, a solution to the equation (1) is defined as a vibrosolution [9]. A vibrosolution is expected to be a function discontinuous at discontinuity points of the function u(t).

Definition 1: The convergence in the Hilbert space H

$$* - \lim x^k(t) = x(t), \ t \ge t_0$$

is said to be the *-weak convergence if the following conditions hold

- $\lim \|x_{t}^{k}(t_{0}) x(t_{0})\| = 0, \ t \ge t_{0},$ 1)
- 2)
- $\lim_{k \to \infty} ||x^{k}(t) x(t)|| = 0, \ t \ge t_{0}, \ \text{in all continuity points of the function } x(t),$ $\sup_{k} Var_{\infty}[t_{0}, T]x^{k}(t) < \infty \text{ for any } T \ge t_{0}, \ \text{where a variation of a function } x(t) \in H \text{ is}$ 3)defined by

$$Var_{\infty}[a,b]x(t) = \|x(t)\| + \sup_{\tau} \sum_{i=1}^{N} \|x(t_i) - x(t_{i-1})\|, \qquad (2)$$

and supremum is over all possible partitions $\tau = (a = t_0, t_1, \dots, t_N = b), \|\cdot\|$ is the norm in the space H.

Definition 2: The left-continuous function x(t) is said to be a vibrosolution to the equation (1) if the *-weak convergence of an arbitrary sequence of absolutely continuous non-decreasing functions $u^k(t) \in \mathbb{R}^m$ to a non-decreasing function $u(t) \in \mathbb{R}^m$

$$* - \lim u^k(t) = u(t)$$

implies the analogous convergence

$$* - \lim x^k(t) = x(t)$$

of corresponding solutions $x^{k}(t)$ to the equation

$$\dot{x}^k(t) = Ax^k(t) + f(x^k, u^k, t) + \beta(x^k, u^k, t)b(x^k, u^k, t)\dot{u}^k(t), \ \ x^k(t_0) = x_0,$$

and the unique limit x(t) occurs regardless of a choice of an approximating sequence $\{u^k(t)\}, k = 1, 2, ...$

4. Existence of a Solution. Necessary Conditions

As in case of a finite-dimensional differential equation in distribution [1, 3], existence of a vibrosolution to an equation (1) is closely related to the solvability of a certain associated system in differentials.

Theorem 1: Let the lemma conditions hold.

If a unique vibrosolution to the equation (1) exists, then a system of differential equations in differentials in the space H

$$\frac{d\xi}{du} = \beta(\xi, u, s)b(\xi, u, s), \quad \xi(\omega) = z, \tag{3}$$

is solvable inside a cone of positive directions $K = \{u \in \mathbb{R}^m : u_i \ge \omega_i, i = 1, ..., m\}$ with arbitrary initial values $\omega \in \mathbb{R}^m$, $\omega \ge u(t_0), z \in H$, and $s \ge t_0$.

Proof: Consider a vibrosolution x(t) to an equation (1) with an initial value x(s) = z and a function $u(t) = \omega + (v - \omega)\chi(t - s)$, where $\chi(t - s)$ is a Heaviside function, $\omega, v \in \mathbb{R}^m$, $v \ge \omega$, and $s \ge t_0$. By virtue of the theorem conditions this vibrosolution exists. Let us prove that under the theorem conditions the Kurzweil equality [10]

$$x(s+) = y(1) \tag{4}$$

holds as $x(s +) = \lim x(t), t \rightarrow s +$, where a limit is regarded in the norm of the space *H*, and $y(\tau)$ is a solution to the equation

$$\frac{dy}{d\tau} = \beta(y,\omega + (v-\omega)\tau, s)b(y,\omega + (v-\omega)\tau, s)(v-\omega), \quad y(0) = z, \quad 0 \le \tau \le 1.$$
(5)

By virtue of the given lemma and the theorem conditions, an absolutely continuous solution to the equation (5) $y(\tau)$ exists and is unique, if $v \ge \omega$.

Following the proof of theorem 1 [12], it is readily verified that under the theorem conditions, the functions $y^k(\tau) = x^k(s + \tau/k)$, $0 \le \tau \le 1$, k = 1, 2, ..., where $x^k(t)$ are vibrosolutions to equations (1) with initial values $x^k(s) = z$ and absolutely continuous functions $u^k(t) = \omega$, if $t \le s$, $u^k(t) = \omega + k(v - \omega)(t - s)$, if $s \le t \le s + 1/k$, and $u^k(t) = v$, if $t \ge s + 1/k$, in right-hand sides, are solutions to the equations

$$\frac{dy^k}{d\tau} = [Ay^k(\tau) + f(y^k, \omega + (v - \omega)\tau, s + \tau/k)]/k$$
$$+ \beta(y^k, \omega + (v - \omega)\tau, s + \tau/k)b(y^k, \omega + (v - \omega)\tau, s + \tau/k)(v - \omega), \quad y^k(0) = z,$$

and the following equality holds

$$x^{k}(s+1/k) = y^{k}(1). (6)$$

By virtue of the theorem on continuous dependence of a solution to a differential inclusion on a right-hand side in a Banach space [11], a sequence of absolutely continuous functions $y^k(\tau)$ converges to an absolutely continuous solution to the equation (5) pointwise in the norm of the space H:

$$\lim ||y^{k}(\tau) - y(\tau)|| = 0, \ k \to \infty, \ \tau \in [0, 1].$$

Thus, $\lim y^k(1) = y(1)$, $k \to \infty$, and by virtue of (6)

$$\lim_{t \to s+} \lim_{k \to \infty} x^k(t) = y(1).$$

Taking into account the equality

$$\lim_{t \to s+} \lim_{k \to \infty} x^k(t) = x(s+)$$

where x(t) is a vibrosolution to the equation (1), the Kurzweil equality (4) is proved.

Define the function $\xi(z, \omega, v, s)$ by

$$\xi(z,\omega,v,s) = y(1) = z + \int_0^1 \beta(y(\tau),\omega + (v-\omega)\tau,s)b(y(\tau),\omega + (v-\omega)\tau,s)(v-\omega)d\tau,$$
(7)

where $y(\tau)$ is a solution to the equation (5). Since a solution $y(\tau)$ exists and is unique under the theorem conditions, if $v \ge \omega$, the function $\xi(z, \omega, v, s) \in H$ is uniquely defined inside a cone $K = \{u \in \mathbb{R}^m : u_i \ge \omega_i, i = 1, ..., m\}$. It only remains to prove that

$$\frac{d\xi(z,\omega,v,s)}{dv} = \beta(\xi(z,\omega,v,s),v,s)b(\xi(z,\omega,v,s),v,s).$$

However, the proof of this correlation is quite consistent with the last part of the proof of theorem 1 [12] and can be omitted here. Thus, the function $\xi(z, \omega, v, s)$ defined by (7) is a unique solution to the system of equations in differentials (3) inside a cone K as $s \ge t_0$. Theorem 1 is proved.

5. Existence of a Solution. Sufficient Conditions

Let us prove that under additional conditions imposed on a function $\beta(x, u, t)b(x, u, t)$ the necessary existence conditions for a vibrosolution to an equation (1) coincide with the sufficient ones.

Theorem 2: Let 1) the lemma conditions hold, and, moreover,

2) $\{\partial b(x, u, t)/\partial x\} \in L(H \to L(R^m \to H)), \{\partial b(x, u, t)/\partial t\} \in L(R^m \to H)$ be bounded continuous defined in the space $H \times R^m \times R$,

3) functions $\partial \beta(x, u, t) / \partial x, \partial \beta(x, u, t) / \partial t$ be piecewise continuous in x, u, t and their continuity domains be locally connected.

If a system of differential equations in differentials (3) is solvable inside a cone of positive directions $K = \{u \in \mathbb{R}^m : u_i \geq \omega_i, i = 1, ..., m\}$ with arbitrary initial values $\omega \in \mathbb{R}^m, \ \omega \geq u(t_0), z \in H$, and $s \geq t_0$, then a unique vibrosolution to the equation (1) exists.

Proof: Let $[u^k(t)], k = 1, 2, ...,$ be a sequence of absolutely continuous non-decreasing functions $u^k(t) \in \mathbb{R}^m$, which tends to a distribution function u(t) in the sense of the *-weak convergence. Consider the equation (1) with absolutely continuous non-decreasing functions $u^k(t)$ in a right-hand side, that is

$$\dot{x}^{k}(t) = Ax^{k}(t) + f(x^{k}, u^{k}, t) + \beta(x^{k}, u^{k}, t)b(x^{k}, u^{k}, t)\dot{u}^{k}(t), \quad x^{k}(t_{0}) = x_{0}.$$
(8)

It should be noted that the theorem conditions (1)-(3), the lemma of Section 2, and the theorem 1 [11] yield existence and uniqueness of an absolutely continuous solution to the equation (8). As follows from [7, 8], this solution can be represented as a Fourier sum in the space H on the com-

plete orthonormal basis $\{c_i\}_{i=0}^{\infty}$ generated by eigenfunctions of the operator A

$$x^{k}(t) = \sum_{i=0}^{\infty} x_{i}^{k}(t)c_{i}.$$
(9)

Scalar functions $x_i^k(t)$ satisfy the equations

$$dx_{i}^{k}(t) = \lambda_{i}x_{i}^{k}(t)dt + f_{i}(x_{i}^{k}, u^{k}, t) + \beta(x_{i}^{k}, u^{k}, t)b_{i}(x_{i}^{k}, u^{k}, t)du^{k}(t), \quad x_{i}^{k}(0) = x_{i0},$$
(10)

 $\{\lambda_i\}_{i=0}^{\infty}$ is a countable set [7] of eigenvalues of the operator A, and $f_i(x, u, t) \in R$, $b_i(x, u, t) \in \mathbb{R}^m$, $x_{i0} \in \mathbb{R}$, $i = 0, 1, 2, \ldots$, are Fourier coefficients for a function f(x, u, t), an operator b(x, u, t), and an initial value x_0 on the basis $\{c_i\}_{i=0}^{\infty}$, respectively:

$$f(x,u,t) = \sum_{i=0}^{\infty} f_i(x,u,t)c_i, \quad b(x,u,t) = \sum_{i=0}^{\infty} b_i(x,u,t)c_i, \quad x_0 = \sum_{i=0}^{\infty} x_{i0}c_i.$$
(11)

The convergence of the Fourier series (11) is regarded in the norms of the corresponding Hilbert spaces.

Consider an infinite (i = 0, 1, 2, ...) number of finite-dimensional equations (10) which contain an arbitrary non-decreasing function $u(t) \in \mathbb{R}^m$ in right-hand sides

$$dx_{i}(t) = \lambda_{i}x_{i}(t)dt + f_{i}(x_{i}, u, t) + \beta(x_{i}, u, t)b_{i}(x_{i}, u, t)du(t), \quad x_{i}(0) = x_{i0},$$
(12)

whose solutions are thus regarded as vibrosolutions. Since $x_i(t) \in R$ are scalar functions, existence and uniqueness of solutions to the equations (12) are assured of the existence and uniqueness theorem for a vibrosolution [3] by virtue of the inequalities $Re(\lambda_i) < 0$ [7], the theorem conditions (1)-(3), and the solvability of the system of equations in differentials (3) inside a cone K. Then, taking into account the vibrosolution definition given in Section 2, we obtain the pointwise convergence of absolutely continuous solutions $x_i^k(t)$ to the equations (10) to vibrosolutions $x_i(t)$ to the equations (12)

$$\lim |x_i^k(t) - x_i(t)| = 0, \quad k \to \infty, \quad t \ge t_0, \quad i = 0, 1, 2, \dots,$$

in all continuity points of the function u(t) as

$$*-\lim u^k(t) = u(t), \quad t \to \infty,$$

where $u^{k}(t) \in \mathbb{R}^{m}$ are absolutely continuous non-decreasing functions. Thus,

$$\lim \|\sum_{i=0}^{N} x_{i}^{k}(t)c_{i} - \sum_{i=0}^{N} x_{i}(t)c_{i}\| = 0, \ k \to \infty, \ N < \infty,$$

in all continuity points of the function u(t).

Consider the Fourier sum generated by the functions $x_i(t)$ on the basis $\{c_i\}_{i=0}^{\infty}$

$$\sum_{i=0}^{\infty} x_i(t)c_i.$$
(13)

Let us prove that the series (13) converges in the norm of the space H. Indeed, the following inequalities [5] hold

$$\begin{split} \|\sum_{i = N}^{\infty} x_{i}(t)c_{i} \| \\ &= \|\sum_{i = N}^{\infty} \{x_{i0} \exp(\lambda_{i}(t)) + \int_{t_{0}}^{t} \exp(\lambda_{i}(t-s))[f_{i}(x_{i},u,s)ds + \beta(x_{i},u,s)b_{i}(x_{i},u,s)du(s)]\}c_{i} \| \end{split}$$

$$\begin{split} &\leq \sum_{i\,=\,N}^{\infty} \parallel x_{i0} \mathrm{exp}(\operatorname{Re}(\lambda_i(t))) \parallel + \sum_{i\,=\,N}^{\infty} \parallel \int_{t_0}^t \mathrm{exp}(\operatorname{Re}(\lambda_i(t-s))) f_i(x_i,u,s) ds \parallel \\ &+ \sum_{i\,=\,N}^{\infty} \parallel \int_{t_0}^t \mathrm{exp}(\operatorname{Re}(\lambda_i(t-s))) \beta(x_i,u,s) b_i(x_i,u,s) du(s) \parallel < \infty, \end{split}$$

since functions $f_i(x, u, t)$ and $\beta(x, u, t)b_i(x, u, t)$ are bounded and satisfy the one-sided Lipschitz condition, $\lim Re(\lambda_i) = -\infty$ as $i \to \infty$ [7], $t-s \ge 0$, the Fourier series (11) converge, and the latter integral is with a bounded variation function u(t). Thus, the Fourier series (13) converges, i.e., there exists an *H*-valued function $x(t) \in H$ such that

$$\lim ||x(t) - \sum_{i=0}^{N} x_i(t)c_i|| = 0, \quad N \to \infty.$$

Let us finally prove that the function $x(t) \in H$ obtained as a Fourier sum (13) is a vibrosolution to the equation (1). For any $\epsilon > 0$ there exist a number N_1 such that the inequality

$$||x(t) - \sum_{i=0}^{N_1} x_i(t)c_i|| < \epsilon/3,$$

holds by virtue of the convergence of a Fourier series (13), and for any $\epsilon > 0$ there exists a number N_2 such that the inequality

$$|| x^{k}(t) - \sum_{i=0}^{N_{2}} x_{i}^{k}(t) c_{i} || < \epsilon/3,$$

holds by virtue of convergence of a Fourier series (9), Moreover, for any $\epsilon > 0$ there exist a number $N = \max(N_1, N_2)$ and a number K such that for any $k \ge K$ the inequality

$$\|\sum_{i=0}^{N} x_{i}(t)c_{i} - \sum_{i=0}^{N} x_{i}^{k}(t)c_{i}\| < \epsilon/3,$$

holds in all continuity points of the function u(t), since $x_i(t)$ is a vibrosolution to the equation (12) and $\{x_i^k(t)\}, k = 1, 2, ...,$ is a sequence of approximating solutions to the equations (10). Thus, for any $\epsilon > 0$ there exist a number N and number K such that for any $k \ge K$ we obtain

$$\|x(t) - x^{k}(t)\| \leq \|x(t) - \sum_{i=0}^{N} x_{i}(t)c_{i}\| + \|\sum_{i=0}^{N} x_{i}(t)c_{i}\| + \|x^{k}(t) - \sum_{i=0}^{N} x_{i}^{k}(t)c_{i}\| < \epsilon,$$
(14)

in all continuity points of the function u(t). The inequalities (14) yield the convergence in the norm of the space H

$$\lim \|x^k(t) - x(t)\| = 0, \quad k \to \infty,$$

in all continuity points of the function u(t). Moreover,

$$x^k(t_0) = x(t_0) = x_0$$

by virtue of coincidence of initial values of the equations (1) and (8), and the inequality

$$\sup Var_{\infty}[t_0,t]x^k(T) < \infty \text{ for any } T \ge t_0$$

holds by virtue of the uniform boundedness of variations of absolutely continuous functions $x_i^k(t)$, $\sup Var[t_0, T]x_i^k(t) < \infty$ for all i = 0, 1, 2, ... and any $T \ge t_0$, and the convergence of the Fourier series (9). Thus, the *-weak convergence in the space H

$$* - \lim x^{k}(t) = x(t), \quad k \to \infty, \quad t \ge t_{0},$$

is proved. Since $x^k(t)$, k = 1, 2, ..., are absolutely continuous solutions to the equations (8) that are equations (1) with absolutely continuous non-decreasing functions $u^k(t) \in \mathbb{R}^m$ in right-hand sides, the vibrosolution definition implies that the function $x(t) \in H$ is a vibrosolution to the equation (1). Theorem 2 is proved.

Remark: The vibrosolution definition as well as the necessary and sufficient existence conditions can also be stated for nonmonotonic functions $u(t) \in \mathbb{R}^m$, assuming that the one-sided Lipschitz condition holds for a function $\beta(x, u, t)b(x, u, t)sign(\dot{u}(t))$ and approximating functions $\beta(x^k, u^k, t)b(x^k, u^k, t)\dot{u}^k(t)$ for any k = 1, 2, ...

6. Equivalent Equation with a Measure

It should be noted that only vibrosolutions, which correspond to absolutely continuous functions $u^k(t) \in \mathbb{R}^m$, are absolutely continuous solutions to a differential equation in distribution (1). Therefore, it is not clear how to compute jumps of a vibrosolution to a differential equation in distribution at discontinuity points of an arbitrary non-decreasing function $u(t) \in \mathbb{R}^m$. Thus, it is helpful to design an equivalent equation with a measure whose conventional (in the sense of the definition of a solution to an ordinary differential equation with a discontinuous right-hand side that is given in Section 2) solution coincides with a vibrosolution to an equation (1), and which enables us to directly compute jumps of a solution at discontinuity points of an arbitrary non-decreasing function $u(t) \in \mathbb{R}^m$.

Theorem 3: Let the theorem 2 conditions hold. Then an equation (1) and an equivalent equation with a measure

$$dy(t) = Ay(t)dt + f(y, u, t)dt + \beta(y, u, t)b(u, u, t)du^{c}(t)$$

+
$$\sum_{t_{i}} G(y(t_{i} -), u(t_{i} -), \Delta u(t_{i}), t_{i})d\chi(t - t_{i}), \quad y(t_{0}) = x_{0}.$$
(15)

have the same unique solution regarded for in equation (1) as a vibrosolution.

Here $G(z, v, u, s) = \xi(z, v, v + u, s) - z$, where $\xi(z, v, u, s)$ is a solution to a system of equations in differentials (3); $u^{c}(t)$ is a continuous component of a non-decreasing function u(t), $\Delta u(t_{i}) = u(t_{i} +) - u(t_{i} -)$ is a jump of a function u(t) at t_{i} , t_{i} are discontinuity points of a function u(t), $\chi(t - t_{i})$ is a Heaviside function.

Proof: A function of jumps $G(z, \omega, u, s)$ is bounded in the norm of the space H as a solution to the system (3) with a right-hand side $\beta(\xi, u, s)b(\xi, u, s)$ satisfying the one-sided Lipschitz condition. Then, by virtue of the lemma of Section 2 and the theorem 1 [11], a solution to the equation with a measure (15) exists and is unique as a bounded variation function with an absolutely continuous component in continuity intervals of the function u(t) and the jumps determined by the function $G(y(t_i -), u(t_i -), \Delta u(t_i), t_i)$ at discontinuity points of the function u(t). As follows from [7, 8], this solution can be represented as a Fourier sum in the space H on the complete orthonormal basis $\{c_i\}_{i=0}^{\infty}$ generated by eigenfunctions of the operator A:

$$\sum_{i=0}^{\infty} y_i(t)c_i.$$
⁽¹⁶⁾

Scalar functions $y_i(t)$ satisfy the equation

$$y_{i}(t) = \lambda_{i}y_{i}(t)dt + f_{i}(y_{i}, u, t) + \beta(y_{i}, u, t)b_{i}(y_{i}, u, t)du^{c}(t)$$

$$+ \sum_{t_{i}} G_{i}(y_{i}(t_{i} -), u(t_{i} -), \Delta u(t_{i}), t_{i})d\chi(t - t_{i}), \quad y_{i}(t_{0}) = x_{i0},$$

$$(17)$$

where scalar functions $G_i(z_i, \omega, u, s)$ are defined as follows

$$G_i(z_i, \omega, u, s) = \xi_i(z_i, \omega, \omega + u, s) - z_i,$$

and functions $\xi_i(z_i, \omega, u, s), \ u \ge \omega, \ s \ge t_0$, are solutions to the equations in differentials

$$\frac{d\xi_i}{du} = \beta(\xi_i, u, s)b_i(\xi_i, u, s), \ \xi_i(\omega) = z_i, \ i = 0, 1, 2, \dots$$

inside cones of positive directions $K = \{u \in R^m : u_j \ge \omega_j, j = 1, ..., m\}$ with arbitrary initial values $\omega \in R^m$, $z_i \in R$, and $s \ge t_0$.

Consider an equation (1) with an arbitrary non-decreasing function $u(t) \in \mathbb{R}^m$ in a right-hand side. Existence and uniqueness of a vibrosolution to such an equation have already been proved in the theorem 2. That vibrosolution can also be represented as a Fourier sum (13) on the basis $\{c_i\}_{i=0}^{\infty}$:

$$x(t) = \sum_{i=0}^{\infty} x_i(t)c_i,$$

where scalar functions $x_i(t)$ satisfy the equations (12)

$$dx_{i}(t) = \lambda_{i}x_{i}(t)dt + f_{i}(x_{i}, u, t) + \beta(x_{i}, u, t)b_{i}(x_{i}, u, t)du(t), \quad x_{i}(0) = x_{i0}.$$

The equations (12) and (17) are finite-dimensional equations whose right-hand sides contain vector distribution and piecewise continuous regular functions satisfying the one-sided Lipschitz condition. Thus, by the virtue of theorem 2 [3], unique solutions $x_i(t)$ and $y_i(t)$ to the equations (12) and (17) coincide as vibrosolutions for any i = 0, 1, 2, ... The vibrosolution definition given in Section 2 implies that for any i = 0, 1, 2..., the equalities

$$|x_{i}(t) - y_{i}(t)| = 0, \quad t \ge t_{0}, \tag{18}$$

hold in all continuity points of the function u(t).

Let us finally prove that solutions to the equations (1) and (15) are indistinguishable as vibrosolutions. Let

$$||x(t) - y(t)|| \neq 0, t \ge t_0,$$

for at least one continuity point of the function $u(t) \in \mathbb{R}^m$. Expand the mentioned solutions into Fourier series on the basis $\{c_i\}_{i=0}^{\infty}$:

$$x(t) - y(t) = \sum_{i=0}^{\infty} (x_i(t) - y_i(t))c_i, \quad t \ge t_0.$$

By virtue of the equalities (18) and the uniqueness of the expansion into a Fourier series on the given basis, the equalities

$$||x(t) - y(t)|| \le \sum_{i=0}^{\infty} |x_i(t) - y_i(t)| = 0, \ t \ge t_0.$$

also hold in all continuity points of the function u(t). Thus, the vibrosolution definition given in

Section 2 implies that the functions $x(t) \in H$ and $y(t) \in H$ are indistinguishable as vibrosolutions to the equations (1) and (15). In other words, the equations (1) and (15) have the same unique vibrosolution. Theorem 3 is proved.

7. Conclusion

The vibrosolution definition assumes uniqueness of a vibrosolution to an equation (1). This enables us to apply the obtained sufficient existence conditions for a vibrosolution to filtering equations for an infinite-dimensional process over discontinuous observations, for example [13], in case of simultaneous impulses in all observation channels (a scalar function u(t)). However, the results of this paper also enable us to consider a case of non-simultaneous impulses in observation channels (a vector function u(t)).

References

- Basin, M.V. and Orlov, Yu.V., Guaranteed estimation of a state of linear dynamic systems over discrete-continuous observations, Automation and Remote Control 53:3 (1992), 349-357.
- [2] Basin, M.V., On ellipsoidal estimation of an infinite-dimensional process under uncertainty conditions, Preprints of the 10th IFAC Symposium on System Identification, Copenhagen 1 (1994), 209-214.
- [3] Basin, M.V., On a unique solution to a differential equation in vector distribution (Abstract), Journal of Applied Math. and Stoch. Analysis 8:2 (1995), 589-590.
- [4] Bressan, A. and Rampazzo, F., On differential systems with quadratic impulses and their applications to Lagrangian mechanics, *SIAM J. on Control and Optim.* **31**:5 (1993), 1205-1220.
- [5] Curtain, R.F. and Pritchard, A.J., Infinite dimensional linear systems theory, Lect. Notes in Control and Info Sci. 8 (1978), Springer-Verlag, New York.
- [6] Filippov, A.F., Differential Equations with Discontinuous Right-Hand Sides, Kluwer, New York 1988.
- [7] Henry, D., Geometric theory of semilinear parabolic equations, *Lect. Notes in Math.* 840 (1981), Springer-Verlag Berlin.
- [8] Krasnosel'skii, M.A., Zabreiko, P.P., Pustylnik, E.I. and Sobolevskii, P.E., Integral Operators in Spaces of Summarized Functions (in Russian), Nauka, Moscow 1966.
- [9] Krasnosel'skii, M.A. and Pokrovskii, A.V., Systems with Hysteresis, Springer-Verlag, New York 1989.
- [10] Kurzweil, J., Generalized ordinary differential equations, Czechosl. Math. J. 8:3 (1958), 360-388.
- [11] Levakov, A.A., Certain properties of solutions to differential equations in a Banach space (in Russian), Vestnik of the Byelorussian State Univ. Ser. 1: Physics, Mathematics, Mechanics 2 (1981), 54-56.
- [12] Orlov, Yu.V., Vibrocorrect differential equations with a measure, *Math. Notes* **38**:1 (1985), 110-119.
- [13] Orlov, Yu.V. and Basin, M.V., On filtering of the Hilbert space-valued stochastic process over discrete-continuous observations, *Lecture Notes in Control and Info Sci.* 185, Springer-Verlag (1993), 336-346.
- [14] Ovseevich, A.I., Trushchenkov, V.L. and Chernousko, F.L., Equations of continuous guaranteed state estimation for dynamical systems, *Izvestiya of the USSR Acad. of Sci.* Eng. Cybernetics 4 (1984), 94-101.