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ABSTRACT

This paper investigates the oscillatory properties of solutions of nonlinear
inhomogeneous hyperbolic equations with distributed deviating arguments subject
to two different boundary conditions. Several oscillation criteria are establishing
employing Green’s Theorem and certain differential inequalities. An example is
also given.
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1. Introduction

The oscillation theory of hyperbolic partial differential equations with delays has become an

important area of investigation in the past few years, see [1]-[4] and references therein. Recently,
some interesting oscillation conditions have been obtained in [1] for homogeneous hyperbolic
equations with distributed deviating arguments. In this paper, we shall consider the following
nonlinear inhomogeneous hyperbolic equation with distributed deviating arguments:

b

a (E)

=a(t)Au+f(x,t), (x,t) EG,

where G- f/x R+, f is a bounded domain in Rn with piecewise smooth boundary 0, R+
[0, + oo), u u(x, t), A is the Laplacian in Rn, p G C[-I x R + x J, R + ], J [a, b], F C[R, R],
aC[R+,R+], AC2[R+,R], " is a constant, f C[FtxR+,R], gEC[R+ xJ, R], er
[J,R], and the integral in (E) is a Stieltjes integral. Throughout this paper we assume that

g(t,) is nondecreasing in t and respectively, with g(t,)< t for any and lim inf g(t,)-
t-- + cx E J

+ C, and that r() is nondecreasing in . We shall consider two kinds of boundary conditions:
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and

ON - 7(x, t)u #(x, t), (x, t) E Oft R +, (B)

, (..,). (:.,) aa x R +. (B2)

where N is the unit outnormal vector to Of, 3" E C[8ft x R +, R + ], #, C[8ft x R +, R].
A solution u(x,t) of equation (E) satisfying certain boundary conditions is said to be

oscillatory if, for any positive number a there exists a point (xo, to) ftx [a, + c) such that
u(0, to) 0.

The objective of this paper is to study the oscillatory properties of solutions of equation (E)
subject to boundary conditions (B1) and (B2). In Section 2, we shall establish several oscillation
criteria for boundary value problems (E)-(B1) and (E)-(B2), employing Green’s Theorem and
certain differential inequalities. We shall then develop, in Section 3, some results on differential
inequalities which, in addition to their independent value, enable us to obtain (in Section 4)
further oscillation criteria regarding boundary value problems (E)-(B1) and (E)-(B2). An
example is also given.

2. Oscillation Criteria

Let us begin with listing the following notations and assumptions.

U(t) ft / u(x, t)dx where / (1)

P(t,)-min_p(x,t,),

# (t) l_l #(x, t)dS,

1 / f(x t)dxf (t)- lal (4)

Rl(t) fi (t) + f (t),

and

F(u) is convex in R+ and F(- u) F(u) > O, u R +, (6)

where dS is the surface integral element on Oft.

Theorem 1" Assume that condition (6) holds. If the differential inequalities with distributed
deviating arguments

b

-2[U(t) + (t)U(t T)]t- P(t,)g(V[g(t,)])dff()_ Re(t (I1)
a
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b

a

have no eventually positive solutions, then all solutions of problem (E)-(B1) are oscillatory in G.

Proof: Let u(x,t) be a nonoscillatory solution of problem (E)-(B1). We may assume that
u(x,t)>O for (x,t) Ex[a,+cx), where a is a positive number. Since lim
rain {g(t, )} + c it follows that there exists a to > a such that

t +
j

u(x,t-r) > 0 and u[x,g(t,)] > 0, t > t0, E J.

Integrating both sides of equation (E) with respect to x over domain f we obtain

b

a(t) J Au(x, t)dx + ./f(x, t)dx, t >_ t0.

It is easy to see that
b b

(9)

Using Green’s Theorem, we have

Au(x, t)dx -ffdS (10)

In view of condition (6), it follows from Jensen’s inequality that

F(u[x,g(t,)])dx >_ O IF [al (11)

Combining (8)-(11) we have

d2[ffo"(x’t)dx-(t)/’("t-’)dxl-a(t)/#(x’t)d’ft oft

b
(12)

Thus we can see that the function defined by (1) is a positive solution of inequality (I1); but this
contradicts the condition of the theorem.

If u(x, t) < 0 for (x, t) @ x [c, + oo), then set

*(. t) (.. t). (. t) e o [. +

Using F(- u) F(u), for u R +, it is easy to check that u*(x, t) is a positive solution of the
problem"
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b

u+A(t)u(x,t-)]+ p(x,t,)F(u[x,g(t,)])dr()-a(t)Au-f(x,t), (x,t) EG
a

0N + 7,x,0u t)u #(x, t), (x, t) e 0a [0, + oo);

and it satisfies

b

<_ a(t) / It(X, t)dS / f(x, t)dx,
of

Thus it follows that the function

lf ,
is a positive solution of inequality (I2) for > to which also contradicts the assumption of the
theorem. This completes the proof of Theorem 1.

The following fact and notations shall be used later in the proof of Theorem 2. Consider the
Dirichlet problem

Au +,u 0 in ft,

 loa-0,

where ,- constant. It is well-known [3] that the smallest eigenvalue "0 and the corresponding
eigenfunction O(x) are positive. We define

(13)

1 (14)v(t) r (P(x)dx

where u(x, t) is a solution of the problem (E)-(B2).
Theorem 2: Assume that condition (6) holds. If the differential inequalities with distributed

deviating arguments
b

-[V(t) + ,(t)V(t r)] + Aoa(t)V(t) + P(t, )F(V[g(t, )])dr({) <_ R2(t), (I3)
a

b
d2 V(t) + (t)V(t -)] + ,oa(t)V(t) + / P(t )F(V[(g(t, )])dcr() < R2(t
dt2

a

(I4)
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have no eventually positive solutions, then all solutions of problem (E)-(B2) are oscillatory in G.

Proof: Let u(x,t) be a solution of problem (E)-(B2) having no zeros in the domain
fx[c, +cx) for some a>0. If u(x,t)>O for (x,t) eax[a, +oc), then there exists a 0>c
such that

u(x,t-r) > 0 and u[x,g(t,)] > O, t > to, G J.

Multiplying both sides of (E) by the eigenfunction (I)(z) and integrating with respect to x over the
domain f, we get - (,)()d + (t) (,t-

b

Ft a

(15)

a(t) j + j >_ to,

From Green’s Theorem, it follows that

/(x, t)(P(x)dS-Ao /u(x, t)(P(x)dx, t>to. (16)

Using Jensen’s inequality, we obtain

J" S (1F(u[x, g(t, )])(x)dx >_ a(x)dx, r f (x)dx

Combining 15)-(17), we get

b

(17)

Thus we see that the function defined by (14) is a positive solution of the inequality (I3) which
contradicts the condition of the theorem.

If u(x, t) < 0 for (x, t) E 2 x [ct, + oc), then the function u* -u is a positive solution or the
problem
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b

u + A(t)u(x,t- -r)] + p(x,t,)F(u[x,g(t,)])dr() a(t)Au- f(x,t), (x,t) G
a

e Oax[o,

and it satisfies

In other words, the function,

* . (P(x)dxl /u*(x,t)ap(x)dxv (t)

is a positive solution of inequality (I4) for t >_ 0. This provides a contradiction. Thus the proof
of Theorem 2 is complete.

3. Delay Differential Inequalities

From the discussion in Section 2, it follows that the problem of establishing oscillation
criteria for (E) can be reduced to the investigation of the properties of the solutions of delay in-
homogeneous differential inequalities of the form

b

)+ A(t)y(t- 7)] + P(t, )F(y[g(t )])do’() < R(t) t > to, (I5)
a

where A E C[[t0, + oc), R], P E C[[t0, + oc) x J, R + ], F C[R, R], R C[[t0, + co), R].
Theorem3: Let A(t) >_ O for >_ o > O and F(y) > O for y R +. If

liminf/ (1-)R(s)ds- (18)

for every sufficiently large tl, then the inhomogeneous differential inequality (I5) has no eventual-
ly positive solutions.

Proof." Suppose that y(t) is an eventually positive solution of (I5).
> to such that

Then there exists a

y(t) > O, y(t- "r) > 0 and y[g(t,)] > O, >_ tl, J.
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Hence we obtain
b

-[y(t) + $(t)y(t- 7)] _< R(t)- P(t,)F(y[g(t,)])&r()
a

_<R(t), t>_t1.

Integrating the above inequality twice over It1, t], > tl, we get

y(t) + A(t)y(t- 7) <_ cI + c2(t- 1)+ i i R(s)dsd,
I 1

where cl and c2 are constants. Note that

Dividing both sides of the last inequality above by t(t > tl) we have

tY(t ,(t)y(- 7)] _< -y + c2 1 + (1 -)R(s)ds.
Using (18), we get

lim inf[y(t) + (t)y(t 7)] c. (19)
t--, +

On the other hand, since A(t) >_ O, y(t) > 0 and y(t- 7) > 0 for t >_ tl, we have

liminf[y(t) + A(t)y(t- 7)] > 0
t +c

which contradicts (19). This completes the proof.

When f(x,t)- O, #(x,t)-0 and (x,t)- O, the problem of establishing oscillation criteria
for (E) can be reduced to the investigation of the properties of the solutions of delay
homogeneous differential inequalities of the forms

and

b

a

b

[y(t) + A(t)y(t- 7)]+ P(t,)F(y[g(t,)])dcr(() >_ O,
a

t>_to.

(16)

(I7)

Along with (I6), (I7) we consider the delay differential equation
b

[y(t) + 1(t)y(t- 7)]+ P(t,)F(y[g(t,)])dcr() O,
a

(20)

where , E C[[t0 + cx), R], P E C[[to, + ) x J, R], F C[R, R].
Lemma 1" [5] Assume that

(I) e + + ];
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(II) 0 < "1 ,(t)

_
"2, t to, where 1, and 2 are constants;

(III) y(t) + A(t)y(t- 7.) >_ kl, t >_ to, to, ]1 > O.
Then there exists a closed and measurable set E C [to + cx) and a constant k > 0 such that

(t) >_ , t E

and

Theorem 4:
that

meas(EC[t,t+27])7", tt0.

Assume that 0 < )1 - )(t) 2, t

_
to, that F(- y) F(y) > O, y E R +, and

F(y) is a monotone increasing function in R +. (21)

If for any closed and measurable set E C [to + c) for which meas(E N [t,t + 27"]) >_ 7", t

_
to, the

following condition holds
b

E a

then
()
()
(iii)

the inequality (I6) has no eventually positive solutions;
the inequality (I7) has no eventually negative solutions;
all solutions of the equation (20) are oscillatory.

Proof: Let y(t) be an eventually positive solution of inequality (I6).
t1

_
to such that

Then there exists a

y(t) > O, y(t- 7") > 0 and y[g(t, )] > 0, _> tl, E J.

Setting

z(t) y(t) + A(t)y(t- 7"), t >_ tl,

we obtain from (16) that
b

z"(t) <_ / (-, )([(t, )])() _< o,
a

t

_
tl, (23)

and thus the function z’(t) is monotone decreasing in the interval [tl, -t-o). Suppose that there
exists a 2 >_ 1 such that

z’(t2)- < 0;

then we have

z’(t) <_ z’(t)- or _> t.

Integrating both sides of the inequality (24) from 2 to t(t > t2) we obtain

(24)

z(t) <_ z(t) + (t
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Hence limsupz(t)_< 0 which contradicts the assumption that y(t) is an eventually positive

solution. Thus we have

which implies
Z’(t) 2 O, k tl (25)

Z(t)_> k1 > 0 for t >_ 1.

From Lemma 1 it follows that there exists a closed and measurable set E C [t1, q-oo) and a

constant k > 0 such that

via(t, )] >_ , t e, a

and

By (21) we have

meas (E It, + 2r]) _> r, t >_ t1.

r(v[v(t, e)]) >_ r() > 0, e E, a.

Integrating both sides of inequality (23), we get

b b

F(k) ./" j .P(s, )d()ds <_ j /P(s,)F(y[g(s,)])d()ds
ECl[tl,t] a tl a

_< z’(tl)- z’(t) <_ z’(tl).

Taking t--- + oc, we have
b

/ J’P(s,)dr()ds< +cx,

which contradicts (22). This proves assertion (i). Assertion (ii)follows from the fact that, if y(t)
is an eventually negative solution of (I7), then -y(t) is an eventually positive solution of (I6).
The proof of assertion (iii) is obvious.

4. Further Oscillation Criteria

In this section, we shall establish some further oscillation criteria for problems (E)-(B1) and
(E)-(B2) using the results obtained in the last two sections.

Theorem 5: Assume that condition (6) holds and A(t) >_ 0 for >_ to > O. If

and

lira inf 1 7 R1 (26)
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+ oo

for every sufficiently large tI >_ to, then all solutions of problem (E)-(B1) are oscillatory in G.

Proof: Note that due to condition (26) we can see that the differential inequality (I1) has no

eventually positive solutions by Theorem 3. Since from (27) it follows that

lim inf 1 Rl(s)]ds liT sup 1 - /l(S
t--+ + oo t + oo

1 1

differential inequality (I2) has no eventually positive solutions by Theorem 3 either. Hence all
solutions of problem (E)-(B1) are oscillatory in G by Theorem 1. The proof is complete.

The following result can be proved similarly with the use of Theorem 3 and Theorem 2.

Theorem 6: Assume that condition (6) holds and that (t) >_ 0 for t >_ to > O. If

and

liT in]" 1 R2(s)ds
1

limsu, i (l-)R2(s)ds
1

for every sufficiently large t > to, then all solutions of problem (E)-(B2) are oscillatory in G.

A consequence of Theorem 1 and Theorem 4 in the case of f(x, t)-0 and #(x, t)-0 is the
following result.

Theorem 7: Assume that conditions (6) and (21) hold, and that 0 < )1 <- )(t)

_
2, t

_
t0.

If, for any closed and measurable set E C [to + oo) for which meas(E [t,t + 2]) , t to, it
is true lhal

b

E a

then all solutions of (E) satisfying the boundary condition

Ou (BI*)ON t-7(x,t)u-O, (x,t) eOOxR+
are oscillatory in G.

The following result is a consequence of Theorem 2 and Theorem 4 when f(x,t)=_ 0 and
0.

Theorem 8: If all assumptions of Theorem 7 hold, then all solutions of equation (E) satis-
fying the boundary condition

u-0, (x,t)OfxR+ (B2*)

are oscillatory in G.

Remark: Using Theorems 1-6 in [1], we can establish some oscillation for boundary value
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problems (E)-(BI*) and (E)-(B2*) when f(x, t) 0 and the details are omitted.

To conclude this paper, we consider an example.

Example: Consider the neutral hyperbolic equation

0

utt + utt(x t 7r) + 2 i e tu(x, t + )d uxx + etcos x[sin t + 2(1 e r)cos t (1 + e r)e 2t],
--71"

with boundary condition of the type (B1)

(28)

-ux(O,t)-0, ux(,t)-- -etsint, >_ O. (29)

Here n--i, - (0,), ,(t)- 1, p(x,t,)-2e -t F(u)-u, g(t,)-t+ a(t) 1

f(x, t) e cos x[sin t + 2(1 e )cos t (1 + e )e 2t], f it(X t)ds etsin t. It is easy to see
that 0

/l(t) I11/,(..,),. + nllii(" t)dx-(1-e-r)etcst-(1-I-e-r)e-t

i (i-)ll(S)ds- j (i- )I(l- e-")e’coss-(l +e-’)e-’Jds
1 1

rr e , 1 C1(1 -e )--sin t (1 +e )et + + C2,

where C1 and C2 are constants which depends on tI only. The hypotheses of Theorem 5 are

satisfied and hence every solution of problem (28) and (29)is oscillatory in (0,)x (0, + oe). In
fact, the function u(x, t) etsin t cosx is such a solution.
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