
Journal of Applied Mathematics and Stochastic Analysis
9, Number 2, 1996, pp. 205-219

A FIXED-SIZE BATCH SERVICE QUEUE
WITH VACATIONS

HO WOO LEE
Sung Kyun Kwan University

Department of Industrial Engineering
Su Won, Korea 0- 76

SOON SEOK LEE
ETRI, Switching Method Section

Tae Jon, Korea 305-605

K.C. CHAE
KAIST

Department of Management Science
Tae Yeon, Korea 305-701

(Received September, 1995; Revised February, 1996)

ABSTRACT

The paper deals with batch service queues with vacations in which customers
arrive according to a Poisson process. Decomposition method is used to derive
the queue length distributions both for single and multiple vacation cases. The
authors look at other decomposition techniques and discuss some related open pro-
blems.
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1. Introduction

Batch service queues have numerous applications to traffic, transportation, production, and
manufacturing systems. The first study on batch service queues was due to Bailey [1]. He obtain-
ed the transform solution to the fixed-size batch service queue with Poisson arrivals. Miller [23]
studied the batch arrival batch service queues and Jaiswal [14] considered batch service queues in
which service size is random. Neuts [24] proposed the "general bulk service rule" in which service
initiates only when a certain number of customers in the queue is available. His general bulk ser-

vice rule was extended by Borthakur and Medhi [2]. Studies on waiting time in a batch service
queue were also rendered by Downton [8], Cohen [5], Medhi [22] and Powell [25]. Fakinos [11] de-
rived the relation between limiting queue size distributions at arrival and departure epochs.
Briere and Chaudhry [3], Grassmann and Chaudhry [13], and Kambo and Chaudhry [15] used
numerical approaches to obtain the performance measures. Numerical methods were found to be
effective especially for batch service queues, because the transform solution of the queue length
(number of customers in the system including those in service) in batch service systems contains
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some unknown values. For more extensive study on batch arrival/service queues, refer to Chaud-
hry and Templeton [4].

Vacation queues have been extensively studied by many researchers. Comprehensive surveys
can be found in Doshi [7] and Takagi [26]. Most of the studies on vacation queues have been con-
cerned with single-unit service systems such as M/G/1 or MX/G/1 queues, h well-known result
concerning vacation queues is the "decomposition property" (Fuhrmann and Cooper [12]) which
states that the probability generating function (PGF) of the queue length of a vacation system
can be factorized into the queue length of ordinary queue without vacation and "something else",
the "something else" depends on the system characteristics. Lee et al. [18] and Lee et al. [19]
analyzed the operating characteristics of batch arrival queues with N-policy and vacations, and
obtained the queue length and waiting time distributions.

For batch service queues with vacations, there have been a few related works. Dhas [6] consi-
dered Markovian batch service systems and obtained the queue length distributions by matrix-geo-
metric methods. Lee et al. [16] obtained various performance measures for M/GB/1 queue with
single vacation. Dshalalow and Yellen [10] considered a non-exhaustive batch service system with
multiple vacations in which the server starts a multiple vacation whenever the queue drops below
a level r and resumes service at the end of a vacation segment when the queue accumulates to at
least r. They called such a system (r,R)-quorum system, R >_ r) being the service capacity of
the server. They applied the theory of the first excess level (Dshalalow [9]).

Lee et al. [17] showed that for some batch service queues, mean queue length may even de-
crease in systems with server vacations. This has an implication that for some batch service
queues, customers do not have to complain about unavailability of the server. Instead, they
would rather force the server to take a vacation.

In this paper, we are going to concentrate on a very specific batch service queues called the
fixed-size batch service queues with vacations. We first analyze the fixed-size batch service queue
without vacations.

2. The M/GK/1/FS Queue

In this section we consider the fixed-size batch service queue without vacations. Consider a
batch service queueing system in which the server can take in a maximum of K customers into
his service. If less than K customers are in the queue just after a service completion, the server
waits in the system until the queue size reaches K (Figure 1). We will denote this queueing sys-
tem by M/GK/1/FS queue in which ’FS’ stands for ’fixed-size’. We are going to derive the de-
composition of the queue length distribution at an arbitrary time point. By queue length we
mean the number of customers in the system including those in service.

Figure 1. The M/GK/1/FS queue
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2.1 Queue length distribution at an arbitrary time epoch

The PGF of the steady-state queue length of M/GK/1/FS queueing system can be found in
Chaudhry and Templeton [4] and is given by

K-1
(zK- 1)S*(A- Az) Pn,ozn

p(z)
z

in which S*(. is the Laplace-Stieltjes transform (LST) of the service time distribution, and P
is the joint probability that the server is idle and there are n customers in the system, n- 1,2,
...,K- 1. Pn, o can be seen as the probability of state n before a busy period begins. Note that
P(z) contains K unknown values, Pn,0, n- 0,...,K-1. These unknowns occur in any type of
batch service queues (see Chaudhry and Templeton [4]) and can be found by applying the well-
known Rouche’s theorem.

Theorem 2.1: The PGF of the queue length distribution given by equation (2.1) decomposes
into

P(z) Pu(z). Pi(z),

where

and

pu(z (1 p)(zK- 1)S*(A- Az)
zg-s*(-z)

K-1
E 7rnZ

n

pl(z n=o
K-1

IIere rj is the probability that the idle process ever enters state j, j 0,1,..., K- 1.

Proof: From the definition of Pn, o we see that

(2.4)

K-1

EPn,o-l-p, (p-+), (2.5)
n----0

K-1
where p is the probability that the server is busy. Then Pn,o/. Pj, o is the probability that

3--0
the server is idle with n customers in the system under the condition that the server is idle.
Define Ij as

Ij-{ 1

0

if the idle process ever enters state j, j 0, 1, 2,..., K- 1,

O/W.

Then defining r. as the probability that the idle process ever enters state j, we see that .=
3 (K-1 K-1 3

Pr(Ij 1), and E E Ij} E j is the mean number of states the idle process enters until

t [,,SJ= j j=0
he server begins tooe busy. Since the arrival process is Poisson with rate A, the mean time for

K-1
the idle process to stay in a state is l/A, and thus j/A becomes the mean length of the idle

K-1 j=0(rnl)) --Pn,ol Pj,o" The statement follows from equations (2.1)period. Thus we have K-1

jl -o
j=0
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and (2.5).
Remark 2.1: Equation (2.2) shows that at an arbitrary point of time, the queue length of the

M/GK/1/FS queue is the sum of two random variables. The behavior of the system represented
by the PGF, Pv(z) is not clear at this point of our analysis and it will be left as an open
problem for future study. Pu(z) plays a very important role in the subsequent analysis and will
be called "the basic stochastic system (BSS)."

K-1
Remark 2.2: (Decomposition of the queue length of M/GK/1/FS queue) Since Pj,o is

K-1 3=0
the probability that the server is idle, Pn, o/., Pj,o is the probability that there are n customers

3----0
in the system under the condition that the server is idle. Thus Pi(z), given by equation (2.4),
can be interpreted as the PGF of the queue length given that the server is idle. Then we see that
the PGF of the queue length distribution of the M/GK/1/FS queue decomposes into:

1. the BSS represented by Pu(z), and
2. the queue length during the idle period represented by Pi(z).
It is well known that the queue length of an M/G/1 vacation queue decomposes into two

random variables one of which is the queue length of the ordinary M/G/1 queue (Fuhrmann and
Cooper [12]). We will see in the upcoming sections that the role of the ordinary M/G/1 queue is
played by the BSS in the decomposition of the fixed-size batch service queue.

Remark 2.3: In the M/GK/1/FS queue, let P+(z) be the PGF of the queue length
embedded at departure epochs. Then from Chaudhry and Templeton [4],

K-1
S*(- Az) E zK- zn)Pn+

nOP + (z)
zK S*(A Az)

In order for the system state to enter n during the idle period, it suffices to have n or less

customers nt a departure point. Thus we have n- p/i-. Then, after some manipu]ations,
we get 0

K- K-1
S*(- Az) F_,l(zK- zn)P.+ (z- 1)S*(A-

n o n o P(z) K(1 z)P + (z)
zK S*(A Az) zK S*(A Az) 1 zK

Therefore, we have the following relationship between the queue length at an arbitrary time point
and a departure point:

Z
K

P(z) (1 z)" P
+ (z). (2.6)

This agrees with the result of Fakinos [11]. Observe that (1- zK)/[K(1- z)] is the PGF of the
backward recurrence time of a renewal interval H in a discrete renewal process with
Pr(H K) 1. Equation (2.6) states that a departing customer is more likely to find the sys-
tem empty than an arriving customer.

3. A Fixed-Size Batch Service Queue with Vacations

In this section, we analyze the fixed-size batch service queues with server vacations. We
consider two types of server vacations: single and multiple. The systems are described as follows:

1. Single vacation queue (Figure 2): everytime a service is finished, if less than K customers
are in the queue, the server leaves for a vacation of random length V. When he returns from the
vacation, and finds K or more customers waiting, he begins to process K of them. Otherwise, he
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remains dormant in the system until the queue length reaches K.
M/GK/1/FS/SV in which ’SV’ stands for ’single vacation’.

This system will be denoted as

K

VAC :P:ERIOD
RETURN BUSY

VAC

IDLE PERIOD 1 BUSY PERIODT

Figure 2. The M/GK/1/FS/SV queue.

2. Multiple vacation queue (Figure 3): every time a service is finished, and there are less
than K customers in the queue, the server leaves for a vacation of random length V1. If there are

less than K customers in the queue upon his return from the vacation, he immediately leaves for
another vacation of random length V2, and so on until he finally finds K or more customers in
the queue. We assume that {Vj, j > 1} constitutes iid sequence with generic representation V.
This system will be denoted by M/GR/1/FS/MV where ’MV’ stands for ’multiple vacation’.

K

VAC BUSY VAC

IDLE PERIOD T BUSY PERIOD

A VACATION CYCLE

Figure 3. The M/GK/1/FS/MV queue.

We will use the following notations and probabilities:
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#
K
P

V
4),s(),s*(o)
(xl, V(xl, V*(O)

s()
v()

nn(,t)At

arrival rate
service rate
service size
traffic intensity A

servme hme random variable
vacation time random variable
pdf, DF, LST of S
pdf, DF, LST of V
remaining service time for the customer in service at time t
remaining vacation time for the server on vacation at time
if the server is in dormancy
if the server is busy in the system
if the server is on vacation
system size at time t
probability that n customers arrive during a vacation
Pr[g(t) n, x <_ S(t)

_
z + At, Y 1] (n >_ K)

P. lim Pr[N(t) n, Y 1]

t)A P [N(0 _< V(0 _< * + A,, r > 0)
Q. lim Pr[N(t) --., Y 21

Rn(t)- Pr[g(t) n,Y O] (O_<n_<g-1)

3.1 The M/GK/1/FS/SV queue

In this section, we analyze the M/GK/1/FS/SV queue. First we model the system by using
the residual service and vacation times as supplementary variables. Using the above notations,
we easily derive the following steady-state system of equations:

0 A/o + Qo(0), (3.1.1)

O-- -ARn+ARn_l+Qn(0), (n-l,2,...,K-1),

dPK(x) APK(X) + P2K(O)s(x) + As(X)RK 1 + QK(O)s(x),

dd-xPK + n(x) APK + n(x) + APK + n- 1(x)

+ P2K + n(O)s(x) + QK + n(0)s(x), (n >_ 1)

JsQo(z) AQo(z + PK(O)v(x),

dd-:Qm(x) AQm(x -4- AQm l(X) -- PK + m(O)v(x)’ (m 1,2,...,K 1),

dQn(x AQn(x + AQn_ l(x), (n >_ K).

Let us define the following Laplace transforms and generating functions"

P(O) / e Oxpn(x)dx (n >_ K),
0

Q*(O) / XQn(x)dx (n >_ O),
0

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)
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P*(z,O) E P(O)zn’ P(z, O) E Pn(O)zn’
n=K n=K

Q*(z, ) Q(O)z, Q(z, o) Q,(O)z’,
n=0 n=0

K-1

n--0

From equations (3.1.1) and (3.1.2), we get
K-1

(z/- z)Q(0)
R(z) n o

A(z- 1) (3.1.8)

After applying Laplace transforms and generating functions to equations (3.1.5), (3.1.6) and
(3.1.7), we have g- 1

[V*(A- Az)- V*(0)] E PK + n(O)zn
n 0 (3.1 9)o(_*.z, 0. 0- ,x + z

Using Laplace transforms and generating functions to equations (3.1.3) and (3.1.4), we get

z[S*(- z)- s*(o)]P*(z, O) [zK_ S*(A- Az)][0- A + Az]" Y(z),

where

(3.1.10)

K-1 K-1

Y(z) [V*(A Az)- 1]E ZnPK + n(0) + E (zK zn)Qn(0)"
n=0 n=0

Now we use P(z) R(z) + P*(z, O) -t- Q*(z, 0) to obtain the PGF of the queue length distribution
at an arbitrary point of time. From equations (3.1.8), (3.1.9), (3.1.10) and P(1)- 1,

P(z) (1 p)(zK- 1)S*(A- Az). Y(z) (3.1.11)
zK S*(A- Az) (z- 1)E(Y)

where E(Y) dY(z)
dz evaluated at z- 1.

We need to take a closer look at Y(z). First, Qn(O) can be expressed in terms of the number
of customers at a vacation initiation point and the number of customers that arrive during the
vacation as

Qn(0)- Evi’PK+n-i(O), (n-O, 1,2,...,K-1).
i=0

Then, Y(z) becomes

Y(z) E ZnPK + n(0 [V*(A-/kz)- 1] + (z 1) zmAm
n=0 m=0

(3.1.12)

(3.1.13)

m
where Am v -Pr (m or less customers arrive during a vacation).

i=0
the derivation of equation (3.1.13).

See Appendix 1-(a) for

Theorem 3.1.1"
rewritten as

The PGF of the queue length distribution given by equation (3.1.11) can be

P(z) (1 p)(zK- 1)S*(A- Az) (3.1.14)
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E(V)
K-1
E nzn

n--O
K-1

j=O

K-j-1

rn--O

+

PK+n(0)
where n K- 1

PK + j(O)
j=0

1
K-1 K-n-1

$ E nzn E Amzm +n
n--0 m=0

1
K-1 K-j-1

E(Y) + j Am
j-o m=O

Proof: From Y(z) given by (3.1.13), we get

E(Y) E PK+n(0 AE(V) + Am
n=0 m=0

The theorem follows from equations (3.1.11) and (3.1.13).
l{emark 3.1.1" Since there are n customers in the queue right after leaving for a vacation

with K + n customers in the system just before the service completion, it is easily seen that n
equals the probability that there are n customers in the queue just after leaving for a vacation.

To interpret the terms in the bracket in equation (3.1.14), we need the following theorems.

Theorem 3.1.2: Let Fn be the event that there are n (n-O, 1,2,...,K-1) customers in the
system just after the server leaves for a vacation, i.e., Pr(Fn)- n from remark 3.1.1. Then
under F Am(m- O, 1,2,...,K-n-1) is the probability that the system ever enters state n + mn
during the dormant period.

Proof: Define

if the server is dormant with n + m customers in the queue,

O/Wo

In order for the system to enter state n + m during the dormant period, it is necessary that m
m

or less customers arrive during the vacation. Thus we have Pr(Im 1) v Am. I-1
0

-1 1K-1 K-n-1
Theorem3.1.3:

nE- on E(V) +
m

Am E(V) + $n n
m

Am is the mean length

of the idle period acation + dormant period).
K-n-1

Proof: From theorem 3.1.2, it is easily seen that Im is the number of states that are
m--0

{K-I )K-n-Ientered under Fn before the server gets busy. Thus E Im -E Pr(Im -1)
K-n-1 =0 m --0

Am is the mean number of states that are entered under Fn. Since the arrival process is
m:0

K-n-1
Poisson, Am/A is the mean length of the dormant period under Fn. Thus

r--O
K-n-1

N(V) + . Am/A is the mean length of the idle period under 1-’n. Relaxing the condition on 1-"n
rn--O

completes the proof. [:]

lemark 3.1.2: Now we are ready to interpret the terms in the bracket of equation (3.1.14).
(Y)

1 K-1 K-n-1

n:0 m=0
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is the conditional probability that the server is idle due to vacations. On the other hand,

1K-1{K-n-I }n=0 m=02-- K-1 K-n-1
1E(V) +-2 E n E Am
n=0 m=0

is the conditional probability that the server is idle due to dormancy. Therefore, the first term in
the bracket is the sum of the number of customers left behind in the queue at the vacation initia-
tion point and the number of customers that arrive during the residual vacation. This event
occurs with probability ft1. The second term is nothing but the system process during the dor-
mant period which occurs with probability

Now we are ready to interpret the decomposition of the queue length distribution.

Pemark 3.1.3: (Decomposition of the queue length) The queue length of M/GK/1/FS/SV
queue can be decomposed into

1. the BSS,
2. the queue length at the vacation initiation point, and
3. the queue length during the idle period.

Remark 3.1.4: The decomposition of the queue length distribution is different frown that for
the single-unit service cases like M/G/1 queues with vacations. In those cases, the decomposition
contains the queue length of "the ordinary queueing system without vacations". But in our case,

the decomposition contains the BSS whose PGF is given by Pu(z)- (1- p)(zK- 1)s’*(,x- ,xz) The
zK S*(A- Az)

authors failed to identify the stochastic behavior of the BSS. This will be left as an open problem
for further study.

3.2 The M]GK]I]FS]MV queue

In this section we derive the decomposition of the M/GK/I/FS/MV queue.
the earlier notations, we define

In addition to

Qn, j(x,t)At Pr[N(t) n,x <_ V(t) <_ x + At, Nv(t j,Y 2], (j >_ 1),

where Nv(t is the current index of the vacation the server is on during a vacation cycle. For
example, if the server is on the 2nd vacation during a vacation cycle, we have Ny(t -2. Note
that Nv(t is reset every time a new vacation cycle begins. Then we have the following steady-
state system of equations:

JPK(x) APK(x) + P2K(O)s(x) + E QK, j(O)s(x),
3=1

(3.2.1)

JPK + n(x) APK + n(x) + APK + n- 1(x)

4- P2K + n(O)s(x) 4- QK + ,, j(O)s(x), (n >_ 1),
j--1

dd--x(O, l(X) )QO, I(X)4- PK(O)v(x),

d-dx-m, l(X)- -)Qm, l(X) 4- m_ 1,1(X) 4- PK+m(O)v(x),(m-- 1,2,...,K- 1),

d-Qn, 1(x) )Qn, 1(x) 4- ZQn 1, l(X) (rt If),

(3.2.2)

(3.2.3)

(3.2.4)

(.2.)
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dd-xQo, j(x) )Qo, j(x) -- Qo, j- l()v(x), (J >- 2),

--xQm, i(x Qm, j(x) + Q._ 1,j(x) + Q.,i (O)v(x),

(m-0,1,...,K-1), (j>_2),
dd-:Qn, j(x) )Qn, j(x) + "Qn 1, j(x), (rt

_
K), (j >_ 2).

Let us define the following Laplace transforms and generating functions:

Q, (0) f e OQ,.,, j(x)dx,
0

Q(z, o) Q:,
n’-O

Qj(z, o) Qn, :i(O)zn,
n’-O

P*(z,O)- E P

P(z, 0)- E Pn(O)zn.
n--g

From equations (3.2.3), (3.2.4), (3.2.5), we get
K-1

Ql(Z, O) V*(- )z)E ZnPK + n(0)’
n’--O

and K 1

[V*(A z)- Y*(O)]E PK + n(O)
n---.OQ(z,O) O- +,z

From equations (3.2.6), (3.2.7) and (3.2.8),
K-1

Qj(z,O) V*(A- Az)E znQn, J 1 (0),
n’--O

(j_>2),

(3.2.6)

(3.2.9)

(3.2.10)

(3.2.11)

[V*(A z) V*(O)]Qj a(z, O)
Q(z, o) 0 , + z (j >- 2).

From equations (3.2.1), (3.2.2), (3.2.9), we obtain

zK[s*(- ,z)- S*(O)][V*(- z)- 1]P*(z, O) [K_ s*(- )][0- + z]
where

K-1 x3

X(z) zt,i + (o) +
n=O 3=1

From equations (3.2.9) and (3.2.11), we have

K-1

zQ,(0)
n--0

X(z),

n

Qu, j(O)- Evi.Qn_i,j_l(o), (j>_l)
i=0

(3.2.12)

(3.2.13)

(3.2.14)
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where Qn,o(O)-PK+n(0) for n<K. Now let Cn-PK+n(0) + E Qn, j(O) Then, by mathe-
matical induction, we see that j-0

n-- l_lvo PK+n(0)+ ivn-i n--O, 1,2,...,It’-l. (a.2.1)
i=1

Let us define as

n

VOfln n 0,1,2,...,K- 1. (3.2.16)

Then, we get

Thus,

n

’*--1-1Vo JE=oPK+j(O)’r-J’ n--0,1,2,...,K-1. (3.2.17)

X(z)- 1- E z’PK n(0)" E Jzj (3.2.18)
n=0 j=0

See Appendix 1-(b) for the derivation of equation (3.2.18).
From P(z)- P*(z,O)+ Q(z,O) and P(1)- 1, we have the following theorem without

proof, j-- 1

Theorem 3.2.1:
satisfies the formula

The PGF of the queue length distribution in the M/GK/1/FS/MV system

PK+n(O)where qn g- 1
Pg + j(O)

j=0

P(z) (1 p)(zK- 1)S*(A- Az). 1 V*(A- Az)

K-1 {K-n-1 jzj}E
n=0 j=0

K-1 K-n-1

n=0 j=0

(3.2.19)

Remark 3.2.1: n is the probability that there are n customers in the queue right after
leaving for the first vacation. This is easy to see from the fact that there are n customers left be-
hind in the queue with K + n customers being before the server takes his vacation.

Remark 3.2.2: Equation (3.2.19) shows that the queue length of M/GK/1/FS/MV system
equals the sum of three random variables: the first is the BSS and the second is the number of
customers that arrive during the residual vacation time. The interpretation of the third term is
now in order. To identify the third term of equation (3.2.19), we need to define a "super vaca-
tion" and the "super vacation process (SVP)" (Figure 4). A "super vacation" is defined as the
period of time from the time point when the server leaves for a vacation until a change in the
system state is observed upon his return from the vacation. Thus a super vacation consists of one

or more vacations. In the M/GK/1/FS/MV queue, if there are n( < K) customers at the beginn-
ing of the idle period, there are (K- n) or less super vacations during that idle period. The SVP
is a sequence of period of times starting at the super vacation initiation points. Thus, a vacation
cycle consists of a SVP and a busy period. In Figure 4, the SVP is depicted in bold solid lines
and it consists of three super vacations G1, G2, and G3. Levy and Yechiali [21] derived the distri-
bution of the length of the idle period of M/G/1 queue with multiple vacations which is
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equivalent to the length of a super vacation in our system. But their derivation was wrong. See
Takagi [26], or Lee and Lee [20] for the corrected distribution.

Figure 4. The super vacation process of M/GK/1/FS/MV queue.

Theorem 3.2.2: Let IIn be the event that there are n customers in the queue at the idle period
initiation point (or just after leaving for the first vacation). Under IIn, j,
j-0,1,2,...,K-n-1, given by equation (3.2.16), is the probability for the SVP to ever enter
state (n -F j).

Proof: Under IIn, the SVP enters state n with probability 1.
define Ii, j as

Thus we have - 1. Now

if there are n + j customers just after leaving four ith sup.er va.cation,
_< j+l), (j >_ 0),

O/tO.

Conditioning on the queue length at the previous super vacation initiation point, we have

V_kvoPr(I --1), (i<j-k+2).Pr(Ii, j 1)- 1 -1,j-k-
k-1

Then,
j+l j+l

i, j Z 1, j 1 --vkPr(I --1)-- Pr(Ii k= l)" v0i=1 *=1 k=l

J j-k+2 v
2

Pr(Ii l, j : l 1- vo

k--1

j-k+l

1
Pr(Ii’ j 1).1 v0"

j+l j

)+ vkLetting Pr(Ii, j 1 j, we have j- j-k 1-vo
which satisfies equation (a.2.1).

i=1 J k=l
Then we see that/3j Pr(Ii, j 1) is the probability that the SVP ever enters state n + j. D

i=1
K-n-1

Theorem 3.2.3: Under IIn, j is the mean number of super vacations during an idle
period, j o

Proof: Since only the one super vacation sees state j during a SVP, we have
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lli, j {i=1

if Ij k + 1, j 0 for all k, k 0, 1, 2,..., j

O/W.

Thus,

E ) )Ii, j Pr Ii, j 1
i=1 \i:1

Pr(Ij-k + 1,j 1 for some k, k- 0, 1,...,j)

K-n-1 j+l
But
proof. J 0 1

J
E Pr(Ii, j 1)- .

Ii, j is the number of states the SVP enters. Taking expectation completes the

K-1 K-n-1
Pemark 3.2.3: From theorem 3.2.3, n /3j is the mean number of super vaca-

=0 j =o E(V)tions during an idle period. Since the mean length of a super vacation is E(V)/(1- Vo)
_

v-----"K-1 K-n-1 E(V)Dj
n /3j is the mean length of the idle period. 1-v0

is the mean length of the super
n=0 j=0

vacation that sees (n + j) customers. Thus, /3j n /3j is the portion of state
n=0 j=0

n j contributes to the idle period. Thus we see that the third term of equation (3.2.19) is the
PGF of the queue length observed by the returning server from a vacation.

Remark 3.2.4: (Interpretation of the decomposition) In summary, the queue length of
M/GK/1/FS/MV queue decomposes into

1. the BSS,
2. the queue size observed by the returning server ("A" in Figure 4), and
3. the queue size unobserved by the server on vacation, i.e., the number of customers that

arrive during the residual vacation ("B" in Figure 4).

4. Summaxy and Suggestions for Further Study

In this paper, we considered fixed-size batch service queue with single and multiple vacations.
We derived the decompositions of the queue length distributions and provided relevant interpreta-
tions. The decompositions contain "the basic stochastic system" whose stochastic behavior is not
clarified yet. Identifying the operational characteristics of the basic stochastic system could lead
to finding more of the decompositions of the fixed-size batch service queue.
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Appendix

(a) Derivation of equation (3.1.13)
K-1 K-1

Y(z) [V*(A Az)- 11E zneK + n(0) + E (zK zn)Qn(0)
n=0 n=0

K-1 K-1 n

[V*(A Az)- 11E ZnPK + n(0) + (z 1)E znE Oj(O)
n=0 n=0 j=0

K-1 K-1 n J
[V*(A Az)- 11E znPK + n(0) + (z 1)E znE E vi’eK + J-i(O)

n=O n=O j=O i=0

K-1 K=I K-n-1 J
[V*(A z) 11E ZnPK + n(0) + (z 1)E ZnPK + n(0) E zjE vi

n=0 n=0 3=0 i=0

K-1 K-1 K-n-1

[V*(A Az)- 1]E ZnPK + n(0) + (z 1)E ZnPK + n(0) E zJAJ
n=O n=O 3=0

= E ZnPK + n(0) [V*(A- Az)- 1] + (z 1)E zJAj
n=O 3=0

(b) Derivation of equation (3.2.18)
K-1 oo K-1

X(z)- E ZnPK+n(0)+ E E znOn, j(0)
n=0 j=l n=0

E zn PK + n(O) + E On, j(O)
n=O j=l

K-1
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