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ABSTPCT

The object of this paper is to analyze the model of a queueing system in
which customers can ca]] in only to request service: if the server is free, the cus-
tomer caters service immediately. Otherwise, if the service system is occupied,
the customer joins a source of unsatisfied customers called the orbit. On comple-
tion of each service the recipient of service has an option of leaving the system
completely with probability l-p or returning to the orbit with probability p.
We consider two models characterized by the discipline governing the order of
requests for service from the orbit. Frst, all the customers from the orbit apply
at a fixed rate. Secondly, customers from the orbit are discouraged and reduce
their rate of demand as more customers join the orbit. The arrival at and the
mands from the orbit arc both assumed to be according to the Poisson process.
However, the service times for both primary customers and customers from the
orbit are assumed to have a general distribution. We calculate several characteris-
tic quantities of these queueing systems.
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1. Introduction

The main significant difference between retrial queues and the usual queueing systems is that
with retrial queues the server cannot be in continuous contact with the waiting customers, who
can only call in to test the state of the server. If the server is free, service commences
immediately. However, if the server is occupied, the customer must break contact and reinitiate
his request later. These unsatisfied customers produce a source of customers called the orbit.
Therefore, the server receives requests from arrivals from outside at a rate A, and from customers
in the orbit at a rate n, when the orbit size is n, both according to the Poisson process.
Previously, the case of a fixed n( ) has been studied, for example by Keilson and Kooharian
[6], Keilson et al. [5] and Falin [2], and refers to telephone call problems. Farahmand [3] and [4]
considered the case n /n which can be looked upon as discouraged repeated demands, that is,
when the customers reduce their rate of repeated demands as more customers join the orbit and,
obviously, the competition to find the server idle is higher.

The aim of this paper is to give an option to the completed customer to rejoin the orbit and
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therefore remain unsatisfied or to leave the system entirely. It is natural for telephone callers to
break contact when the line is engaged and reapply for connection later. Therefore, our structure
occurs in many communication networks as well as in computer representations and it is of theore-
tical interest. We assume that upon completion of service a customer with probability p rejoins
the orbit. In other words, only a proportion 1 p of customers leave the system on completion of
service. In sections 2 and 3 we consider the cases of fixed and discouraged repeated demands,
respectively. A similar problem in ordinary M/G/1 queues was studied by Boxma and Cohen [1]
in which it was assumed that there was a fixed number of permanent customers present who
rejoin the queue on their completion of service. This system with permanent customers in the re-
trial context was studied by Farahmand [4].

The service times x for both the primary customers and the customers from the orbit are
assumed to be independent and to have a common probability distribution function A(x). When
A(x) is absolutely continuous with probability density a(x) then

a(x) rl(x)exp{ o Xrl(y)dy},
where r/(x) is the conditional completion rate for service at time x.

In order to consider the changes that occur to the system during and after serving a customer,
we condition on the event that the server is busy. Therefore, let Wn(x t) be the joint probability
density that there are n customers in the orbit at epoch t and a customer is present in service who
has been there for time x. Then, the following equations govern the system:

W,(z + A, t + A) W.(z, t)(1 A)(1

and

+ Wn l(X, t)A n >_ 1

Wo(x + A, t + A) Wo(x t)(1 AA)(1

Therefore, we can show that G(u, x, t) ,= ounWn(x, t), the generating function of Wn(x t),
satisfies the following relation

OG
Ot

OG+ +

Therefore solving the above equation we obtain

G(u, x, t) G(u, 0, t x)exp {$ux Ax N(x)},
x

where N(x)-frl(y)dy. When the system
o

limt_ooG(u,x t) the above relation simplifies to

is assumed to be ergodic with G(u,x)-

G(u,x) G(u, O) exp{ x(1 u)- N(x)}. (1.1)

Since the above argument is independent of the discipline of repeated demands of customers from
the orbit, we can use equation (1.1) for both our queueing models.
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2. Fixed Rate of Repeated Demands

First we consider a case that allows each customer in the orbit to apply for service with a

constant rate . Let Pn(t) be the probability that at epoch t, the server is idle and n customers
are in the orbit. Since upon completion of service the customer with probability p chooses to
rejoin the orbit, the equations governing the system are

dpn(t) fdt ( + n)Pn(t) + (1 p) Wn(x t)(x)dx
0

+ p / Wn l(X, t)rl(x)dx n > 1 (2.1)
0

and

dv(t) fdt AP(t) + (1 p) Wo(x t)rl(x)dx (2.2)
0

Wn(O t) Pn(t) + (n + 1)Pn + n>0. (2.3)

Let II(u, t) ’ oo n
n =0t Pn(t) be the generating function of Pn(t).

ergodic, multiplying (2.1) and (2.2) by un and summing it up over n, we obtain

(A + (Ud-)IIo(u) (1 p + pu) / q(x)Go(u, x)dx
0

(1 p + pu) / (x)G(u, O)exp { Ax(1 u) N(x)}dx,
0

Assuming that the system is

(2.4)

where IIo(u -limt_,oII(u t). The value of G(u, 0) in (2.4) can be obtained from (2.3) as

ao (u, 0) +

which together with (2.4) gives

(1 p + pu)c(A Au)(A (d-)II(u) (A Ud-)II(u),
where c(s) f a(x)exp(- sx)dx. Therefore, we can obtain IIo(u in terms of IIo(X), the proba-

0
bility of an idle server at the steady state,

1- (1- p + pw)o(A A__Zw)}(1 p + pw)a(A- Aw)
dw.

In order to obtain IIc(1), and therefore a closed formula for IIc(u), let

qn(t) / Wn(x t)dx
0

be the probability that the server is busy and n customers are in the orbit at time t.
be the generating function of this probability in the steady state defined as

(2.6)

Let Q(u)
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Q(u)- unq,().
n--O

Then, since by integrating by parts, we can show

c(s) 1 / exp { sx- N(x)}dx,
o

from (2.5) we have,

Qoo() { --(- )}{ + }n()/(- ). (2.7)

Therefore, II(1) can be found from the normalized equation H(1)+ Q(1)- 1.
from (2.6) we obtain

(1)- 5(1-p-A:/’)
where - f xa(x) dx- -(d/ds)a(s)] s =0 is the expected service time.

0
(2.8) yield

aTn()(1) l_p_a.

Hence, it is easy to show

To this end,

(2.8)

Therefore (2.7) and

(2.9)

II(1) -1-p-AT (2.10)1-p

This shows that the condition for ergodicity is AT < 1-p which is indeed necessary to make
(2.9) meaningful as well. It is interesting to note that the probability of the server being busy,
Q(1) AT/(1 p), is independent of the rate of repeated demands of service by customers from
orbit. This independence can be justified by noting that, if the customers increase their rate of
demand from orbit, they are more likely to find the server free and, with probability 1- p, depart
from the system after being served. Therefore, on average, there will be a smaller orbit size and
the increase in repeated demands will be compensated by the decrease in the number of cus-
tomers.

2.1 The measure of effectiveness

The expected number of customers in the orbit at ergodicity is given by II(1)+ Q(1).
Now (2.8)and (2.10) give

II(1) A(p + AT)/(1 p).

This together with (2.7) gives

:p: +:( p)( + :) +_:(p +)Q’(1)
2(1-p)(1-p-AT)

By algebraic transformation we have

:2p?/( p) + 2(p + ?)/ + : +:
2(1-p-AT) (2.11)

This, for p 0, corresponds to the expected value of orbit size obtained in [4]. Note also that
when --oo, that is, when there is constant surveillance of the service by customers from orbit,
the system behavior reduces to that of ordinary queues with Poisson arrivals and a general service
time, in which a proportion p of customers choose to rejoin the queue on completion of service.
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The expected waiting time of a customer is obtained using a method similar to Keilson et
al. [5] or Little [7]. Let t be a long time interval in which a particular system sample is observed
and tn be the total length of sub-intervals of t in which n customers wait. Obviously, during tn a
total of ntn customers unit time is spent waiting and therefore, for this system sample, the ex-
pected time spent waiting by an arrived customer is

nt.lt I as t-c. (2.12)
n>0

The denominator of the middle term in (2.12) is the number of arrivals in the time interval of
length t, which is At. Hence, from (2.11) and (2.12) we find that

-7" A,2p’/(1- p) + 2(P + A)/A’5, + ’2 + 2
2(1-v-AT)

The average number of "look ins" per customer for each completed call F is calculated using
the above sample system. During the time interval In, an average of ntn "look ins" occur from
the orbit and Atn new customers apply for service. Hence, for sufficiently large t,

F E (At, + ntn)/At 1 + /A 1 +.
n>O

This together with (2.11) gives

P
1 + Ap/(1 p)- A((r2_ q- 2)/2.

1-p-AT

(2.13)

3. Discouraged Repeated Demands

Here the customers in the orbit seek service at subsequent epochs with a rate which is a de-
creasing function of the orbit size. We assume that (, ,/n when the orbit size is n. This is in-
deed the same model as that with the assumption that the customers in the orbit form a queue
such that only one (which is more natural if it is the first) can reapply for service with rate .
Also, our analysis covers the queueing model in which the server upon completion of service takes
a vacation, whose duration is exponentially distributed with parameter . A vacation may be
interrupted and terminated if an arrival occurs before its normal termination. In this, the service
of the arriving customer starts immediately. Otherwise, if the vacation terminates normally, the
server will serve the first customer, if any, in the orbit.

The equations corresponding to (2.1)-(2.3) which govern the above systems are

dpn(t)
dt (A + )Vn(t) + (1 p) / Wn(x t)rl(x)dx

0

+ p J Wn l(X, t)r](x)dx rt >_ 1

o
(3.1)

and

dvo(t) /dt AP(t) + (1 p) Wo(x,t)rl(x)dx
0

(3.2)

Wn(O t) AVn(t -}- Pn + l(t) (a.a)
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As in the case of a fixed rate of repeated demands in section 2, we can obtain the relevant generat-
ing functions at ergodicity. A little.algebra together with (3.1) and (3.2) yields

(A + ()II(u)- P0 (1 p + pu) / rl(z)G(u, z)dx.
0

Also from (3.3) we can easily show

(3.4)

a (u, 0) + epo/U. (3.5)

Since the value of G(u,x) in (3.4) relates to G(u,O) by (1.2), we can substitute (3.5) in (3.4)
to obtain

{(1 p + up)/u)a()- )u)- 1
IIoo(u) P0 A ( + (1 p + pu)(A + ,/u)c(A Au)" (3.6)

In order to obtain P0 with the same definitions already developed in section 2, as in (2.7), we can

show that

[ {1 -c(A- Au)}{(A + /u)IIo(u poilU}
Q (u) Goo(u,x)dx (3.7)J A-Au

0
Now we can use the normalized relation IIoo(1 + Qo(1)- 1 to evaluate P0" To this end, (3.6)
and (3.7) yield

Po(1 p AT
noo( ) + +

and

(3.8)

APT (3.9)Q(1) (A + )(p + A’)"
Therefore, from (3.8) and (3.9) we can easily evaluate- (A + )(p + AT)

Po = (1- p) (3.10)

To make (3.10) meaningful, and therefore to find the conditions for the existence of the ergodici-
ty, we require AT(1 + A/()<1 and (A/(+ 1)(p+ AT)< 1, which are also required in (3.8) and
(3.9). The first condition is that also required in [3] and is independent of p.

3.1 The measure of effectiveness

In order to obtain the expected number of customers in the orbit we need to evaluate IIoo(1
and Q(1). To this end, (3.6)and (3.7)yield

A + p + A(r2 2)/2(1 p)- ( + )(p + T)
and

Q(1) A22(p + A) + r2( p(-- Ap) + 2( + Ap + (p)
2(1- p){- (A + )(p + A +T)}

Now we are in a position to find the expected orbit size g IIo(1 + Q(1) as

g AAo2(A + ) + 2p + A{2 + (1+ p)(A_ + )}/(1- p).
2{- ( + )(; + AT)}

(3.11)

(3.12)
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For p 0 the value of g corresponds to that in [3].
The expected waiting time can be obtained as in section 2 to be g/, and therefore the

result is easily derived from (3.11).
However, in order to obtain the expected number of "look ins" we need to modify arguments

used in section 2. The corresponding formula in (2.12) for F for the discouraged case becomes

F E (;tn + tn)/;t- (to/t" (3.13)
n>O

The additional term in (3.12) compared with (2.13) appears to disable the effect of when the
orbit becomes idle. Hence here

r 1+ /A- to/At. (3.14)

Notice that to/t for sufficiently large t, is the probability of an empty orbit and hence is equal to

P0 + q0(c) P0 + Q(0). From (3.7) we obtain

and therefore we can show that

1 c(1)
Q(O)-PO(l_p)a(1)

lim t0 1 pc()
t-e P(1 p)c(A)

which together with (3.10)and (3.13)evaluates F.

4. Numerical Comparison of the Orbit Sizes

For arbitrary values of ,-- r2- 1 which satisfy the required ergodicity conditions, we

present the graphs of g against p for values of T 1/3 and T 1/6 for the two cases of fixed
and discouraged rate of repeated demands.
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Figure 1. Fixed rate of repeated demands.
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Figure 2. Discouraged repeated demands.

As is expected for the discouraged case, Figure 2, increases much faster than that in the case
of a fixed rate of repeated demands, Figure 1. However, this rate of increase turns out to be
surprisingly fast. Each curve in Figures 1 and 2 behaves asymptotically as a rectangular
hyperbola. At p 0, the results corresponds to obtained in [5] and [3].
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