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ABSTRACT

In this paper, the central limit theorems for the density estimator and for the
integrated square error are proved for the case when the underlying sequence of
random variables is nonstationary. Applications to Markov processes and ARMA
processes are provided.
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1. Introduction

Let {Xi- (X!I),...,x!P)),i >_ 1} be a sequence of random variables with continuous d.f.’s (dis-
tribution functions) Fi(x), >_ 1, x E Rp.

Assume that the processes satisfies the absolute regularity condition

maxE{ sup P(AI(r(Xi, 1 <_ <_ j))- P(A) } fl(rn)0 as rn---. (1.1)
j

_
1 A E (r(Xi

_
j + m)

Here q(Xi, l_i_j) and a(Xi, i_j+m are the a-fields generated by (X1,...,Xj) and

(Xj + m, Xj + m + 1,’" ") respectively. Also recall that the sequence {Xi} satisfies the strong mixing
condition if

max[sup{ P(AB)- P(A)P(B) ;A (Xi, 1 < < j),B o’(Xi, > j + m)}]
j_l

()10 as m--

and it satisfies the p-mixing condition if

max[sup{IP(AIB)- P(A) ;B r(Xi, 1 < < j) A r(Xi, > j +
j_l

(m)10 s -.
Since a(m)_/(rn)

_
p(m), it follows that if {Xi) is absolutely regular, then it is also strong

mixing and if {Xi} is -mixing, it is also absolutely regular.

Suppose that the distribution function Fn has a density fn, and Fn converges to a distribu-
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tion function F which admits a density f, and let f be an estimator of f based on Xl,...,Xn
defined below in (2.2).

In this paper, we establish the central limit theorems for the estimator f and for the
integrated mean square error (I.M.S.E.) In defined by

In / {f(x)- f(x)}dx. (1.2)

An additional asymptotic property of the I.M.S.E. is also studied in (2.5).
Several authors have proved central limit theorems for f and In when {Xn, n >_ 1} is a se-

quence of independent and identically distributed random variables (see, e.g., Cshrgo and Rvfisz
[2], Rosenblatt [11] and Hall [8]). Later Takahata and Yoshihara [15] proved the central limit
theorem for In when {Xn, n >_ 1} is an absolutely regular strictly stationary sequence. See also
Tran [16, 17] and Roussas and Tran [13], and for a general theory, we refer to an excellent mono-

graph of Devroyes and Gyorfi [5]. We may also mention the results of Roussas [12] for stationary
Markov processes which are Doeblin recurrent and also the results of Doukhan and Ghinds [6] on

the estimation in a Markov chain.

In this paper using some of the ideas of Takahata and Yoshihara [15], we prove the central
limit theorem for f* and In when the sequence is not stationary.

In section 5, we give applications of our results to Markov processes and ARMA processes for
which the initial measure is not necessary to be the invariant measure. Under suitable conditions,
any initial measure converges to the invariant measure. We estimate the density of this invariant
measure by the estimator f, defined below in (2.2).

2. Asymptotically Unbiased Estimation of the Invariant Density

Let K(x) be a bounded, non-negative function on P such that

J K(xdx-1, J x(i)K(x)dx- O and / x(i)x(J)K(x)dx- 275ij, l <_ i,j <_ p, (2.1)

and lim K(x)- 0.

Here x- (x(),...,x(p)), dx- dx()...dx(p), Ix sup Ix(J)], 7 is a constant which does not
l_j<_p

depend on and j, and 5ij- 1 if i- j, and -0, otherwise.

We define the estimator f* of f by

f(x) (nhp) It"
h

of positive constants such that nT/2hp---cx:), 0 < 7 < 1where h- h(n) is a sequence
hP(log n)2---O as n---oc and h--,O.

(2.2)

and

Let Fi, j be the d.f. of (Xi, X/).
Theorem 2.1" Suppose the sequence {Xi} is absolutely regular with rates satisfying

/3(rn) O(pm) for some 0 < p < 1. (2.3)
Furthermore, assume that for any j- > 1, there exists a continuous d.f. Fj_ on [2p with mar-

ginals F such that
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I[ Fi, j- F-i [I O(Pio), l < < j < n, n >_ l for some O < Po <1

where II II denotes the norm of total variation. Then we have

Proof: We have
i E(f(x)- f(x))2dx-+0 as n---,cx:.

i E(f(x)- f(x))2dx-- I i -’ilK(x h )-f(x) Qn(d’l"’"dYn) dx

+2

(2.4)

(2.6)

* * X*where Qn is the d.f. of (Xl,..., Xn) and Qn is the d.f. of (Xl,...,X) where i, i>_ 1) is a strictly
stationary sequence of random variables which is absolutely regular with a rate satisfying (2.3),, ,
for which the d.f. function of X1 is F and the d.f. function of (XI,X) is F 1"

We can write
((12hp) --1 E It"

X-- Yi

i= 1
h (dFi(Yi))f(x)dx

n

l <_ist=j<_n

-y -yjI S/K(xh )K(x h ) (dFi’j(yi’yj)-dFj-il(yi’yj))dx

9-

<2

n

l <_i =l= j <_n

dF(Yi))dx

"I(I )1 E K(ui)f(Yi + hui)dui)(dFi(Yi) dF(Yi)
i=1

-yj/ S f K(xhYi)2K(X h )(dFi, j(y,,yj)-dFij_, (Y,Yj))dx,

+ (nhP)-’E K(x h (dFi(Yi) dF(Yi))dx"
i=1

From the decompositions
m m n

E-E/E
i=1 i=l i=rn+l

and

(2.7)
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l<_iTj<_n m( [j-i] <n 1< ]j-i <_m
l <_iTj<_n l <iTj<_n

where m -In1- -/2] (In] is the integer part of a), we have by using (2.4)
I1 _< O(n -/2) + O(n1 + ,,//2hp 1

and 11 converges to zero as n-oc by using (2.4).
Next

and

(nhP)cx:) when n--,cx we deduce that I converges to zero as n.As

From the condition of absolute regularity and Lemma 6.3, we can write

where C is some constant > 0.

hus (x-((hp)2/(2 + 5))- 1 coy K ,K h
lijn

(n lh 2p/(2 + 5)) ( j)2Cfl/( + 5)(j i)[E(i K
xX 12 + )]2/(2 + )

i=1 j=l

--(/(2+)(i)) -P[(xX)I2+)]2/(2+) 12"*
rom Lemma 6.8, the above expression converges (as n) as

2C(/(2+5)(i))i=1 f(x) K(z)dz

Thus

I <_ 4n- 1(hp)5/(2 + 5)I.
It follows that I22 converges to zero and from (2.8)-(2.10) that 12 converges to zero.

Finally, again from Lemma 6.8, we deduce that I3--0 as n---,.

Thus I1 + 12 + I3---0 as n---<xz and Theorem 2.1 is proved.

2The proofs of Lemmas 6.1-6.9 are discussed in the Appendix.

(2.9)

(2.10)
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Theorem 2.2:
every continuity point x of f, we have

E(f(x))---f(x) as

E(f(x)- f(x))2---O as n--<x3.

Proof: Since the proof of (2.12) is similar to that of (2.5), we only prove (2.11).
We have

E(f:(x)- f(x))- (nhP)-I E K(x hYi)fi(Yi)dYi- f(x)
i=1

Suppose the sequence {Xi} satisfies the conditions of Theorem 2.1. Then, at

(2.11)

(2.12)

}
n : -Yi)f(yi)dy f(x).--(nhp) lea K(Xh_ "i)(fi(Yi)dy f(Yi)dYi)"4-(nhP)-I E K(X h

i=1 i=1

The first term converges to zero from condition (2.4) and the second term converges to zero from
Lemma 6.8.

3. Asymptotic Normality of the Estimator/,(x)

Denote
rl2(X) f(x) } K2(z)dz. (3.1)

Theorem 3.1: Suppose the seqlence {Xi} satisfies the conditions of Theorem 2.1, then at
every continuity point x of f (nhP)2 * *E(fn(X)) o es w e n[In(x)- c nverg in la to th ormal distribu-
tion with mean 0 and variance rl2(X).

Proof: First we prove that
1

E[(nhP)[f(x)- E(f(x)]]2 converges to 12(x). (3.2)
We have 1

* f* X
2E[(nhP)2[fn(x)- E( n( ))]]

Li=I

z /12Yi)-- }K(Xh ):(zi)dzi O,(dyl,...,dy,)

fi(yi)dyi

j ( x-y/ / ):i(.i,d.i )+(nhP) 1 E K( h )- K(
<#j<

h

X (I1[(X--hY’) }1’(X-h’J)fj(.j(d.j)Fi, j(dyi, dyj)

It follows from (2.4) that

Jl--+f(x) f/’2(z)dz as
J

(3.3)
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Now, define Ai, j by

)-/K(X-hZi)fi(zi)dzi][lt(x--hYJ) JK(X-hZJ)fj(zj)dzj]
x Fi, j(dyi, dyj).

Letting k kn -(log n)2], where [a] denotes the integer part of a, we have

J2 <- (nhP) l( Ai, j +
l<_ij<_n l<_ij<_n
i-j<_k j-i>k

n

<_ h pkM2h2p + h p [/3(i + 1)]/(2 + )(M2 + )2/(2 + )
i=k+l

where M-sup IIt’(x) and M2+6-sup max ElK h
2 + 6- As hP(logn)20 as

n>l l</<nxER, w deduCe h0 s n. From (.3), w deduCe so that h- [Z( + )]/( + )0
n. Consequently,

J0 as n. (3.4)
Fro (.) nd (.4) e ve (.).

Now let co be a sufficient large number such that

Z() o(- )
we --[CoOg ]. Frth, t e e -In- ] d -[n/ + ].

a’ 1 q} of pairs of integers inductively as follows:sequence {(a, ,
ao a-a_+m,a-a+-l, (i l, 2, q).

Using Lemma 6.1 (in Appendix), and Lemma 4 of Takahata and Yoshihara [15], we have

( 1 j ) ;IE 1
a

E exp {it 1/2hP/2 Aj} exp {it 1/2hp/2 Aj} + Cq(m)
n n j=

Define a

t2 Aj1-2nApE
j=l

) 31 2En3 2h3P/ Aj + o(n- 2 +-)
j=l

/ ()21 ( ()3/2 )/t2 q E Aj + 0 q h- 3p/2 tl 3 + o(n- 2 + ,).exp 2 nhp
j 1

Thus by (3.2)

The results follows.
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4. Asymptotic Normality of the Integrated Square Error In

We assume that
(i) f x(i)x(J)x(k)lK(x)dx <_ M < oo for each i,j and k (1 _< i,j,k <_ p),
(ii) the density functions/;(x, y) of F(x, y) exist for each j,
(iii) second partial derivatives of f(x) and f(x, y) exist, are uniformly bounded and

satisfy the Lipschitz condition of order one. Furthermore, all the second order par-
tial derivatives of f(x) and of f(x,y) belong to the ball in LI(gP), and in
LI(p P) respectively.

Denote

-+-2,E1( j j {Af(x)Af(y)}dF(dx, dy)-[ J {Af(x)}f(x)dx]2),
(4.1)

P 02where A-
i)1 02x

and let

is Laplacian,

1

nTh 2

d(n) nhp/2

n(P+S)/2(P+ 4)

(Note that in (4.2) is the same as in (2.1)).
Then our main result is the following:

Theorem 4.1"
exist, and

if nhp + 4---oo
if nhp + 4--+0

if nhp + 4-+. (0 < , < oo).

Suppose that the conditions of Theorem 2.1 hold.

d(n){In- E(In)}=>’
2ra2Z
1

22r3 Z
1

(rT.2O.,4/(p + 4) j_ 20.32, p/(p + 4))

(4.2)

(4.3)

Then r2 > 0 and if3 > 0

if nhp + 4-+CX3

if nhP + 4-+O

if nhp + 4-+ (0 < < cx).

(4.4)

in distribution where Z has the standard normal distribution.

Proof: For brevity, we use the following notations

"i,J(x’y) /(K(Uh h h-x)_ E(h.(U-Xi))} {K(U-y)_ E(K(u --hXJ))}du, l< i,j<_n

Hi, j(Xi, Xj) Hi, j(Xi, Xj)- E(Hi, j(Xi, Xj)

,,:- j {,,.(x .(,,.(x l<j<n.

First, we decompose In -E(In) as follows:

in E(in 2(n2h2p)-1E Ii, j(Xi’Xj)
l<i<j<n

(4.6)
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+ 2(nhP) l:l_ llf’j - (t2h2p) I / {K( --hXJ)- E (K(x hXJll} dx

11 + 12 + 13. (4.7)
The main part of the proof of the theorem is broken into proofs of the following four

propositions. The first proposition uses Dvoretzsky’s theorem [7] and Proposition 3.1 of Takahata
and Yoshihara [15].

Let c1 be a sufficiently large number such that

-s)
where rn mn [c1 log n].

1

Further, let r r, In4] and k kn [n/(r + m)]. Define a sequence {(ai, bi) 1,..., i} of
pairs of integers inductively as follows:

bo O, a b 1 + rn, b a -- r- 1 (i 1, 2,..., k).

Let 5a (Xi, 1 <_ <_ %,-m), ( 1,2,...,k).

and

Put bc ac m

Tc,- Tna- E E Hi, j(Xi’Xj)’ c- 1,...,k (4.7’)
i=ac 3=1

k

Un- E (Tnc-E(Tnc))’ Cn- E Ii, j(Xi’Xj)"
c=l l <i<j<n

Proposition 4.1: If the conditions of Theorem 4.1 are satisfied, then (nhap/2) -1Sn converges
in law to the normal distribution with mean 0 and variance r23 defined in (4.2).

and

Proofi Let sn Var Un. If we prove
k

sg 1 E E{Ta 5a}-0 in probability as n--<x, (4.8)
a=l

k

(s)-1 [E{T2 }_ (E{T })2]1 in probability as n---oo, (4.9)
c=l

k

(s4)-1 E E(Tc)40 as nc, (4.10)
a=l

then, it will follow from Dvoretzsky’s theorem [7] that s 1g
n converges in law to a N(0,1)

random variable.

The proofs of (4.8) and (4.9) are given in Lemma 6.4 and that of (4.10)in Lemma 6.7 in the
Appendix.

Proposition 4.1 will now follow if we show that

and
282n(t2h3p)-1 r(1 + o(1))

s 2E(Sn Un)20 in probability as

(4.11)

(4.12)

(4.11) and (4.12) are proved in Lemmas 6.4 and 6.6, respectively (see Appendix).
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1 Proposition 4.2: If conditions of Theorem 4.1 are satisfied and if nhp + 4--<x as n---<x, then
nh 212 converges in law to the normal distribution with mean 0 and variance 2r2r22 defined in

(4.1).
Proof: We first prove that

E(nh-4I) converges to 2r2er as n--oo. (4.13)
We have 2

E(nh-4l) 4(nh2p+4)-lE E KJ (4.14)
j=l

First, we prove that

where
nlirn n-ll E ((h2p+4)-IE(KiKj)-Cj_i)[ -0

l<i<j<n
(4.15)

Since

We can write

E(f:(x- f(x))- (hP)- 1E K(XX,,")(dFi(.
i=1

Put

n/q_ (7zhp)-1 E /.(x h u)dF(u) f(x)
i=1

O(n- "r) + h2rAf(x) + O(h3) (from conditions (2.4) and (i)-(iii)), we obtains

E(KiKj)- / ]I ]" {K(X -yi)- E(K(x X,))} {h2rAf(x)+o(ha))+O(n- )}dx
K

h
E K {h27Af(z) + O(h3) + O(n )}dz dFi, j(yi, yj).

C- f [ff{h’(xY)-E(K(XX,))} {h2rAf(x),dx

which implies that
n

1 (h2p + 4)-1 E E(KiKj)- E (n
l<_i<j<_n i=1

m

<_ rt-1 (h2p + 4) -1
l<j-i<m i=1

n

-’}- rt --1 h2p + 4) --1 E(I’iKj) E (n i)C
m<3--i<_n i=m+l
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rt
-1 (h2p -t- 4)-1 E

l<j-i<m

K
h

E K
h h2vAf(z)dz Fi, j(dyi’dYJ)- E (n-i)Cil

i-----1

q- m[O(h) - O((rt’h2) 1) q_ O(h2) q_ O((n,Th)- 1) q_ O(rt-
n

+ rt
1 (h2p + 4)-1 E E(KiI{’J) E (rt

m < j--i <: n i=m+ l

From condition (2.4), we deduce

Also

In + ,l
n -+- Ln, say.

In--toO(n-I).

a. .[O(h) + O((h) )].

From condition (2.3), we have

L o().

For c > 0, let m be fixed such that
Ln < /3.

We can find no sufficiently large such that for any n >_ no

Jn < /3 and In < /3.

From (4.16)and (4.17)we deduce that

Jiml y; E(a’K)-C;_ 1 0.
l_<i<j_<n

From Remark 2 in Takahata and Yoshihara [15], we deduce

lidn (C Cj_ )1 0
l<i<j<n

(4.18) and (4.19)entail (4.5).
Following the arguments similar to deriving (4.18) and (4.9), we obtain

lidnl(nh2p + 4)-1 E(Ki)2- Co 0
i=1

where 2

Finally we have

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

An -t- Bn + Cn, say.
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From (4.15) and (4.20), An--*O as n-c and from Lemma 6.3 in the Appendix and condition

(2.3) we easily deduce that Bn--*O and Cn---*O as

This proves (4.13).
Now using Lemma 6.9 (in Appendix) and Lemma 4 of Takahata and Yoshihara [15]

E Kj < C E(K 1/3
_
cna/2ha(P + 2)

j=l j=l

where C is some constant > 0.

Hence, using Lemma 6.1 (in Appendix) we have

( 5 )( 1 ) 1E exp{it. 1/2hp + 2 Kj} E exp{it 1/2hp + 2 Kj} + Ck(m)
rt j=l c=l n J=ac

1 Kj + 3/2 +2)/22nh2(p + 2)E
j l n h3(p

exp{ t2 k
2 nh2(p+=)E It"d +O(k(-)a/2 [tl 3) +o(n

j=l

Thus by (4.13)

The result follows.

n+m hh2(P + 2)
E Kj 2r2r.

j=l

Proposition 4.3: If nhp + 4._+,, (0 < , < 00) as n---+oo, then n(p + s)/2(p + 4)12
rt(p + 8)/2(p + 4)r 2h 2Peon are asymptotically uncorrelated as

Proof: By Lemma 6.1, Schwarz’s inequality and (6.3), we have
n

E(nhPI2S)I 5
i=1 l<i<k<n

E(KiHj, k(Xj, Xk))l

and

max(li-jl, [j-kl, } E(Kd, (Xd, X))
max([i-j[, [j-k[, [k-i[)>m

<_ C[mnsup II Ki [I 2max II Ij, k(Xj, Xk)112 + rt3(m)]
l<i<n

<_ C[nm2hp + 2hp + o(n 5)]
1

since sup I[ Ki II 2 < ChP + 2 where II Ki [12 (E(h’)) and C is a constant > 0.
l<i<n

FroWn (-4.21), we deduce

(4.21)

E(n(p + 8)/2(p + 4)i2n(P + 8)/2(p + 4)n 2h 2psn)
41+

< Cn P + 4n- 2h- 2pn- lh- Pnhp + 2hPm2

Ch2m2

(nhp+4)P/p+4.
From nhp + 4---A as n--c and m- O(log n), we deduce that

(4.22)
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h2m2
--+ 0 aS //--+(X)

(nhp+4)P/(P +4)

which proves Proposition 4.3.

Proposition 4.4: If the conditions of Theorem 4.1 are satisfied, then

Proof: Let

Var (I3) O(n- 3h- 2p).

From Lemma 2 in Hall [8], it follows that

sup E((Mi)J O(hJP).
l<iKn

By Lemma 4 of Takahata and Yoshihara [15], we have

n4h4pVar(Ia)- E {Mj- E(Mj)} _< Cnsup
j=l

2II Mj E(Mj) II 3

<_ Cnsup
l<_j<n

and Proposition 4.4 is proved.

II Mj II where C is a constant > 0

(4.23)

5. Applications

5.1

Consider a sequence {Xi, k 1} of RP-valued random variables which is a Markov process
with transition probability P(x; A) where A E %, % is the Borel afield of Np and x E Np.

Recall that the Markov process is geometrically ergodic if it is ergodic and if there exists
0 < p < 1 such that

II pn(x; )- #(" )11 o(pn) for all a.s. x e np (5.1)

where # is the invariant measure and pn the n-step transition probability.

We say that the process {Xi}i > 1 has u for initial probability measure if the law of
pro.bability of X1 is defined by u and-for any > 1, the law of probability Pi of X is defined by
uP’ 1.

For any probability measure u and any transition probability Q we denote by Q(R) u the
probability measure defined on N2p by

f
u(A B) /Q(x;A)u(dx) for any A x B % %.

B
The Markov process is called strongly aperiodic if for any x NP, the transition probability
P(x;-) is equivalent to the Lebesgue measure.

The Markov process is called Harris recurrent if there exists a afinite measure u on P with
u(NP) > 0 such that u(A) > 0 implies (P(x; X A i.o.) 1 for all x E Rp.

Theorem 5.1: Let {Xi}i > 1 be a Markov process which is strongly aperiodic, Harris
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recurrent, and geometrically ergodic. Suppose that
(j) the invariant measure it has a density f which admits bounded second partial deri-

vatives which are integrable, and furthermore

x(J) f(x)dx < ,

(JJ)

Ox(j)f(x)dx < oe, 1 <_ j <_ p.

the transition probability P(;) has a transition density p(x;y) which admits bounded
third partial derivatives. Moreover, the first and second derivatives are bounded
and integrable with respect to y for each x; they also satisfy

ly(J) lp(x;y)dy) < oc

0 py(J)
oy(j

(x;y)dy) < oo

sup f[ y(J) p(n)(x; y)dy <_ A x(J) l <_ j <_ p, x C P
hEN*

where A is some constant > 0 and p(n) is the transition density of pn. Then, for
any initial measure u, the conclusions of Theorems 2.1, 2.2, 3.1 and 4.1 hold for the
nonparametric estimator f defined in (2.2).

Proof: From Theorems 2.1, 2.2 and 3.1, we have only to prove (2.3) and (2.4).
First we prove (2.3). From Davydov [4] and the condition of strong aperiodicty, we have

(rn) sunP ] Pu(dx)II pm(x; )- Pm + n(" )11

f
<- sunP JPn(dx) [[ pm(x; ")- it(’)ll + [[ Pm + n(’)-

As the process is geometrically ergodic, we can find 0 < p < 1 such that

II pm(x; ")- it(’)ll O(Pm) for all a.s. x C np.

From Theorem 2.1 of Nummelin and Touminen [10], we deduce

(a.a)
which is the same as (2.3).

Now, we prove (2.4). We have from (5.2)

II pm (R) Pn- pm(R) it II 2 sup
AxBEx

Pro(x; A)P,(dx) / Pro(x; A)it(dx)
B B

_< 2 sup pm(x; A) /Pn(dx)- it(dx)
A x B e Zjx J

B

_< 2 II Pn- it II
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that is

II pm (R) Pn- pm (R) # II O(Pn) (5.4)

Thus the conclusions of Theorems 2.1, 2.3 and 3.1 hold.

To prove Theorem 4.1, we have only to verify the conditions (i)-(iii) of Section 4, but they
are easy consequences of conditions (i) and (ii) of Theorem 5.1.

Example 5.2: We consider an ARMA process

Xi aXi- 1 + bei + ei- 1, E N

where X0 admits a strictly positive density, {ei, E N} is a sequence of independent and identically
distribution (i.i.d.) RP-valued random variables with strictly positive density such that E(ei)- O,
and a and b are real numbers such that al < 1.

If the density function g of e0 has three bounded first partial derivatives such that the first
and second derivatives are integrable and satisfy

f / 0 < 1 < j <[y(J) lg(y)dy < oc and )g(y)dy P

and if moreover, the density of the invariant measure satisfies condition (j) in Theorem 5.1, then
the conditions of Theorem 5.1 are satisfied for the process defined in (5.5), because we have here a

particular case of Markov process satisfying our conditions. The law of the process on which
observations are taken is defined by the initial measure (i.e., the measure which defines the law of

X0) and the transitional measures (defined from the formula (5.5)). From the fact that regardless
of which is the initial measure, the density function of the measure of Xn converges to the density
function of the invariant measure, it is clear that if the process defined by (5.5) satisfies the above
conditions of derivability, we can estimate the density f of the invariant measure by the
estimator f defined in (2.2) for any initial measure of X0 which admits a strictly positive
density. Moreover, we can also apply the central limit theorem to f and In to study the
confidence regions based on these statistics. For example, if the initial measure is Gaussian, then
X0 admits strictly positive density.

5.2 Applications to o-mixing Markov processes

Theorem 5.2: Let {Xi)i > be a Markov process which is aperiodic and Doeblin recurrent.
Suppose that conditions (j) a-d (jj) of Theorem 5.1 are satisfied. T hen, for any initial measure,
the conclusions of Theorems 2 1, 2.2, 3.1 and 4.1 hold for the nonparametric estimator f*n"

Proofi From Theorem 4.1 of Davydov [4] the process {Xi) is geometrically -mixing which
implies geometrically absolute regularity. The proof is now similar to Theorem 5.1.

Example 5.2: We consider the process

Xi f(Xi- 1) -}- (i- 1, e ]* (5.6)

where Xo admits some strictly positive density and {ei, N} is a sequence of i.i.d. NP-valued ran-

dom variables with strictly positive density such that E(ei)- 0 and f is a bounded continuous
function.

If the density function g of % and the function f admit the three bounded first partial deriva-
tives and if the density of the invariant measure has bounded second derivatives which are integra-
ble and the first derivatives are also integrable, then we are in the same situation as Theorem 5.2.
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We can also under these conditions, estimate the density f by f for any initial measure which
admits a strictly positive density.

6. Appendix

The Lemmas (6.1 to 6.3) are well known results and their proofs are not given.

Lemma 6.1: Let Y1,...,Yn be random P vectors satisfying an absolutely regular condition
with mixing rate fl(m).

Let h(Xl,...,xk) be a bounded Borel measurable function, i.e., h(Xl,...,xk) _< 61, then

E(h(Yil"’" Yi#))- / J h(Xl’" Xk)dr(1)(Xl"" "’ xj)dr(2)(xj -t- 1," Xn) < 2Cl(ij + 1-ij)

where F(1) and F(2) are respectively d.f.’s of (Yil "’"Yi)j and (Yij + 1"" "’Y/k for I < 2 <
k

This Lemma is an extension of Lemma 2.1 of Yoshihara [18] and is proved in Harel and Puri
[9].

Lemma 6.2: (Takahata and Yoshihara [14]). Let YI,...,Yn be a random vector as in
Lemma 6.1. Let h(y,z) be a Borel measurable function such that h(y,z)_ C1 for all y and z.
Let Z1 be a a(Xi; 1 <_

_
k)-measurable random variable, and Z2 be a r(Xi;i >_ k + rn)-measurable

H(y)-

EIE{h(Z1,Z2) Ir(Xi;1 <_ <_ k)} H(Z1) _< 2C1(m).

Lemma 6.3: (Davydov [3]). Let Y1,...,Yn be NP-valued random vectors satisfying a strong
mixing condition with rate c(m). If II Yi II s exists for all and s > 2 and E(Yi) 0, >_ 1, then

1 11
EiYiYj <_C2c s t(j_i) llyillsllyjllt, i<_j,s>2, t>2 (6.1)

where C2 is a constant > O, and of course, if the sequence {Yi}i > 1 is absolutely regular with
1 1 1

l
1 1 1

rate fl(m), the inequality (6.1) holds when we replace c s t(j_ 1) by s t(j_ i).

In what follows, we always assume that the conditions of Theorem 4.1 are satisfied and C
denotes a universal constant.

Let {Xi}i > 1 be independent random vectors each having the same d.f. as that of Xi.

Put

where Hi, j is defined in (4.5), and
aci m

Ya, i(x) E Hi, j(x, Xj), a 1,..., k.
j=l

Let Qc be the distribution of (Xa Xb ).
From Hall [8] and Lemma 6.1, the following are easily obtained"

EHi, j(Xi, Xj) O, E(Hi,j(Xi, Xj) Xi} 0 a.s. (6.2)
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EHi,j(Xi, Xj) O(h2kp + 1)max
l<_i:j<_n

max sup Hi, j(x, y O(hp)
<_i,j<_n x,y

max E(H,j(Xi, Xj) < Ch2p
l<i,j<n

(6.3)

(6.4)

(6.5)

E(Hi, j(Xi, Xj)) _< ChP(li- J I) for all and j. (6.6)

G() :)]:E(a!)(,)) o ([ ,, , O(h)

1

E(G!)k(Xj, X))I <_ C-(Ik_ jl)hTp/2.

(6.7)

(6.8)

The proofs of Lemmas 6.4-6.7 are in general similar to the proofs of Lemmas 5-8 in Takahata
and Yoshihara [15]. For reasons of brevity and to avoid repetitious arguments, we give brief
outlines of the proofs.

Lemma 6.4: As noc
2 1__2h3p2
s" 2 a (6.9)

where means that the ration of the two sides --1 as n---oo.

Proof: We have

2 E Tc E
c=l

where Ta is defined in (4.7’). By (6.5) we note that

o -ff
\c=l c=l i=ac j=l

Now consider

E E(Ta)2 + 2

By Lemma 6.1,

E(Hi, j(Xi, Xj))I <_ Cn2(m) o(n-6).

E E(TcTc’) 111 + 112"

(6.10)

which implies
E(Tc,Tc,) <_

By Lemma 6.1, we have

111- E(T2)- E Yc,i(Xi)

I12--o(n-1). (6.11)

E Yc,i(xi) dQc(Xa,...,Xbc) +Cr2nZ/(m)
ac c

b

E E(Y2,i(xi))dFi(xi) + 2

ao ao
_

<: j bc
/E(Yc i(xi)(Yc j(xj))dqc(x%,..., Xbc) + o(n 5)
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J +J + o(n- ).
By (6.8) we have

Jl,a- E E(H,j(xi’Xj))dFi(xi)
i=ac j=l

E E E(H2",i(i’ j)) + O(hTp/2)"
i:a 3--1

From Lemma 3 of Hall [8], we obtain

Thus

+ .)d d + O(h/)

b ao m

i--ao 3--1

On the other hand, by Lemma 6.1, (6.2), (6.5) and (6.7) we get

J2 <_ o(n r h3p).
Thus

k k bc ac m

1 (+ :.) " D,. + O(’/:) + o(.
c-’l c--1 i=ao j--1

and from condition (2.4) and Lemma 6.8, we can obtain

Ill- --h3pr(1 + o(1)).

Now (6.9) follows from (6.11)and (6.12)and the proof is complete.

Lemma 6.5:
k

’31 E E{Ta Va]--0 in probability as n--oo.

k

s 2E E{T2 va] -(E{Ta V}2--I in probability as n--oo.

Proof." By Lemma 6.2 and (6.2), we obtain

(6.12)

(6.13)

(6.14)



250 MICHEL HAREL and MADAN L. PURI

aC m

{IE(Hi, j(Xi, Xj))I +
3:1

(6.13) follows.

To prove (6.14), it suffices to show that
k

121 S 2E E IEIT2
c=1

-(ETa)2]O as

and
k

112 s- 2E [EIE{Tc V}l -(ETa)21-0 as n-oc.
c=l

(6.15) follows since by Lemmas 6.1 and 6.2, we obtain after some computations that

I21 -- C n3rfl(m)- o(r-ls2n).

(6.15)

(6.16)

On the other hand, by Lemma 1 (after some computations) we get

E[E{Hi, j(Xi, Xj)]ff}E{He, p(X,Xp)[})l <_ C/3(m)

which implies
k

E E(E(Ta Vc))2 <_ Cn3rfl(m)+ o(n- 182n)
oz --1

(6.17)

(6.16) follows from (6.10)and (6.17).
Lemma 6.6:

2E(S Un)2----0 as n--cx.8n r (6.18)

Proof: Since
k ba ac- 1

=1 ac j a- m + l
{Hi, j(Xi, Xj)- E(Hi, j(Xi, Xj))}.

The proof follows by showing that

k bc ac 1

c=1 ao J ao- m + l

and

E(H,y(X,Xy)) <_ cn3/4(logn)2h3p/2 (6.19)

E (o 1 bee as

E E Hi, j(Xi’Xj)) <- 2k2c[rnr -k- r2rn2flm)q- rrt4] o( 2 (6.20)
i=ac j=aa-m+l

Lemma 6.7:
k

E E(Tc)4- (srn) as n---oo. (6.21)
c=l
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Proof: Since from (4.7’), T4I <_ Crt4r4, it follows from Lemma 6.1 that

E Ys, i(xi dq + Cn4r4(m)
i--as

b

as as _< i,i’ _< b
s

as _< i, _< bs

+ E / E(Y2,il(Xil)Ys, i2(xi2)Ys, i3(xi3))dQs
as <_ il,i2, 3 <_ bs"

4

+ E(I-I +
as <_ il,i2,i3, 4 <_ bs d 1

Is, 1 + Is, 2 + Is, 3 + Is, 4 + Is, 5 + o(n-1).

Using Lemmas 6.1 and 6.4, HSlder’s inequality and Schwartz’s inequality, we get after some com-
putations

k

E Is, j- (S4n) 1 <_ j <_ p
s=l

which implies (6.21).
Lemma 6.8: (Cacoullos [1]). Suppose M(y) is a Borel scalar function on NP such that

sup M(y)[ < c (6.22)
yelp

M(y) dy < (6.23)

lim ylPM(y)- O. (6.24)

Let g(y) be another scalar function on P such that

Ig(y) ldy< c.

and define

(6.25)
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Then at every point x of continuity of g

nlirngn(X) g(x)7 M(y)dy. (6.26)

Proofi Choose 6 > 0 and split the region of integration in two regions Y[ _< 5 and yl > 5.
Then we have

f
max g(x- y) g(x) / M(z) dz
lyl_<, J

g(x-y)I lyl p

lyl p hp

Ig(x-y)- g(x) S M(z) dz

+5- sup I..I"IM(..)I i Ig(y) idy+ la(x)l S IM(z)dz
I.I > lh > lh

11 + 12 + 13.

From the continuity of g at x and (6.23), 11 tends to 0 if we let first n--+oc and then 6--,0. From
(6.24) and (6.25), 12 tends to 0 and from (6.23), 13 tends to 0 as n--+oc. The proof follows.

Lemma 6.9" We have

E(K) O(h6(p +2)), j>_l (6.27)

where Kj is defined in (4.6).
Proof: Define

SBj K
h {E(f(x))- f(x)}dx.

Then, we have for any k >_ 1

< Ch2k K h fj ...dx
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< chk(p + 2) where C is some constant > 0.

The desired results follow immediately on noting that

E(K) E(B) 6E(B)E(Bj) + 15E(B)E2(Bj) 20E(B})E3(Bj)

+ 15E(B)E4(Bj)- 5E6(Bj).
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