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ABSTRACT

This paper models some situations occurring in the financial market. The
asset prices evolve according to a stochastic integral equation driven by a Gauss-
ian martingale. A portfolio process is constrained in such a way that the wealth
process covers some obligation. A solution to a linear stochastic integral equation
is obtained in a class of cadlag stochastic processes.
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1. Introduction

In the present paper we model investments of an economic agent whose decisions cannot
affect market prices (a "small investor").

Karatzas and Shreve in [7] considered a market model in which prices evolve according to a

stochastic differential equation, driven by Brownian motion. Aase [1] and M. Picqu and M.
Pontier [9] studied a more general model in which the evolution of asset prices is a combination of
a continuous process based on Brownian motion (a semimartingale) and a Poisson point process.

The security price model that we use is a linear stochastic equation driven by a Gaussian
martingale. This is a natural generalization, because the market is not continuous and the
Brownian motion cannot model jump processes. Moreover, the instants of jumps of a Gaussian
martingale are nonrandom.

The techniques we use include the martingale representation theorem and the Girsanov’s type
theorem. We also find a solution to a linear stochastic integral equation.

2. The Model

We consider a model of a security market where an economic agent is allowed to trade contin-
uously up to some fixed planning horizon 0 <_ T < oc. We shall denote by X the wealth of this
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agent at time t. Let the process M- (Mt, Ft, O <_ <_ T) be a Gaussian martingale on a fixed
probability space (f, F, P) and the filtration F {Ft, 0 <_ t <_ T} be the augmentation under P of
a natural filtration FtM=r(Ms,0<_s<_t), O<_t<c. Fo contains the null sets of P and F is
right continuous. (M)t EM2t, t E + [0, c) is the square characteristic of U.

Let us suppose that the agent invests in two assets (or "securities").
bond, has a finite variation on [0, T], and its price model is

One of the assets, called

f
Po(t) / Po(s- )r(s- )d(M)s P0(0)- P0, 0 _< t <_ T.

(0,t]
The other one, called stock, is "risky". Its price is modeled by the linear stochastic equation

f f
P(t) / P(s- )A(s- )d(M)s + / P(s- )(r(s- )dMs,

(0,t] (0,t]

P(0)- p.

Here the interest rate process r(t) > 0, 0 <_ t < oc of the bond, the appreciation rate process A(t)
of the stock, and volatility process r(t) > 0, 0 _< t < c will all be nonrandom, F-predictable pro-
cesses such that

f r2(s-)d(M)s<oo, f A2(s-)d(M)s <oo,
(o, oo) (o, oo) (1)

er(s- )d(M)s < cxa, P-a.s.

(0,)

In addition, A(t- )A(M)t + r(t- )AM > 1, t e (0, T], to ensure a limited liability of the stock.

Let re(t) denote the number of stocks held at time t. Then the amount invested in the stocks
is

II(,) m(t)P(t).

The process (H(t),Ft) 0 <_t<_ T describes the investment policy and will be called a portfolio
process. It is assumed to be measurable, Ft-predictable and

H2(s_)d(M)s
(o,T]

< c, P-a.s. (2)

for every finite number T > 0.
stock short.

Note that H(t) can be negative, which amounts to selling the

On the other hand, C(t), 0 <_ t _< T is a non-negative consumption process, assumed to be
nondecreasing and Ft-predictable such that

/C(s- )d</)s < oo, (3)P-a.s.

(o,T]

for every finite number T > 0.

The quantity
no(*) x,-

is invested in the bond at any particular time and may also become negative.
interpreted as borrowing at the interest rate r(t).

This is to be
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We assume now that the investor starts with some initial wealth x >_ 0, and the wealth at time t
satisfies the linear stochastic equation

X / II(s- )(s- )dMs + / II(s- )[A(s- )- r(s- )]d(M)s
(0,t] (0,t]

+ / [Xs_r(s-)-c(s-)]d(M)s O<t<_T;

(0,t]
x(0)-

(4)

Conditions (1), (2), and (3) ensure that the stochastic equation (4) has a unique solution in
the class of cadlag adapted processes (see Section 5 and Theorem 3).

3. Characterization of the Portfolio Process

If A(t) r(t) for every t e [0, c), the drift

II(s- )[A(s- )- r(s-
(0,t]

vanishes from the right-hand side of (4). When A(t) r(t) we introduce a new probability
measure P which removes this drift.

Let us denote by Ct the solution of the equation

where

Ct-1- ] Cs-O(s-)dMs, O<_t <_T,

(0,t]

O(t) A(t)- r(t)

From our assumptions on A, r, and r, it follows that O(t) is bounded, measurable and
adapted to {Ft- }. Then the exponential supermartingale

is actually a martingale, where
a(t-) for0<t<T.AMt Mt- Mt- A(t- r(t-

Here M and (MClt are the continuous parts of the processes M and (M}t respectively, for t E

+.
We define the new probability measure P"

P (A) E(TIA) A FT on (, F).
The probability measures P and P are mutually absolutely continuous on FT.

The process

t Mt+ / O(s-)d(M)s O<_t<_T, (6)
(0,t]

is a P-Gaussian martingale [8], and

((M)t,P) ((M)t,P), 0 <_ t _< T.



274 LEDA D. MINKOVA

With respect to a new probability measure, equation (4) can be rewritten as

X II(s )r(s )dMs + [Xs r(s C(s )]d(M)s, 0 < t _< T,
(o,t] (o,t] (7)

x(0)-
and the solution (see Section 5) for 0 _< t _< T, leads to

X C(s-) d(M) x /
(s )A(M)s(I)(t--- -t- O(s- )[1 + r(s-)&(M)s (s )[1 + r

(o,t] (o,t]
where

is a unique strong solution of the homogeneous equation corresponding to (7)"

(P(t) 1 + / ((s- )r(s- )d(M)s.
(o,t]

Theorem 1:
such that

(8)

BT C(s-) d()s < x. (11)E (I)(T) + (I)(s-)[1 + r(s- )A(M)s
(0, T]

Then there exists a portfolio process II such that the pair (H,C) is admissible for the initial en-
dowment x and the terminal wealth XT is at least BT.

Proof: It is obvious that we can assume equality to hold in (11).
Let us define the nonnegative process

Br C(s-) d(/l>s F,,- E + +
(O,T]

#0 x,
(12)

If we suppose that 1 + r(s-)A(M}s < 0 for some s e S, then A(M)s < 1 But this is
(s-)"

impossible if r(s) is nonnegative. Consequently, 1 + r(s- )A(M)s > 0 for every s e +.
Let us notice also that

inf I(I)(t)l >0.
t[+

The right-hand side of (8) is a P-local martingale. If (H, ) is an admissible pair (i.e., X >_
0, 0 _< t _< T a.s.), the left-hand side is nonnegative, consequently it is a nonnegative supermartin-
gale under P. From the supermartingale property we obtain that

IXT / C(s-) d(/17/>sl<x, (10)E (I)(T) + ((s-)[1 + r(s- )A(M)s
(0,T]

where E denotes the expectation operator under measure P.

This condition is also sufficient for the admissibility in the sense of the following theorem.

Suppose that x >_ 0 and BT is a nonnegative FT-measurable random variable,
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which is a P-martingale and has "cadlag" paths.

Define the process #t, 0 _< t _< T by

#t- fit + / -ld(s-, }s, (13)
(o,t]

where Ct is the density (5). It is well known that the process #t is a P-martingale [5], #o- o,
and (it) ().

Now by the martingale representation theorem [8], if (M, #) is a Gaussian process, there exists
an Ft-predictable measurable process h(s), such that

/ h2(s-)d(M)s < P-a.s.

(O,T]
for every finite T > 0 and

#t--#o+ ] h(s-)dMs, O <_t <_ T.
(o,t]

The process (13) can be represented as

f
#t tt- ! O(s- )h(s- )d(M}s O <_ t <_ T.

(o,t]
From equalities (6), (14), and (15)it follows that

f
t #t + I O(s- )h(s- )d(M)s

(o,t]

#o + / h(s )[dffIs O(s )d(M>s + / O(s )h(s )d(M>s
(o,t] (o,t]

o + / h(- )d/.
(o,t]

Now

II(t-)-h(t-)((t-)[l+r(t-)A(M)t 0<t<T
(t-)

(14)

(15)

(16)

(17)

is a well-defined portfolio process.

From (12), (16), and (17), we get

t E
(T) + (s- )[1 2i;- )A{M}s s

(0, T]

x + h(s-)dMs.

(o,t]
By using (18) and (8), we obtain

x,c,

/ c(-) d<>fit (I)(t---- + (I)(s-)[1 + r(s- )A<M>s
(o,t]

(18)

(19)
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where XtI1’ c,x is a solution of equation (7) for the pair (II, C) and the initial capital x >_ 0.

Now, from (18) and (19), it follows that

(t,T]
Consequently, Xt c,x is nonnegative and (II, C) is an admissible strategy.

(20)

4. Valuation of Contingent Claim

Definition: A contingent claim is a nonnegative FT-measurable random variable B that satis-
fies

0<E <x.

The hedging price of this contingent claim is defined by

vd---efinf{x > 0, =l (II, C) admissible, such that X’c, > B P-a.s. }.
Theorem 2: The value of the contingent claim is attained and

Proof: Let us suppose that XF’c’’>_ B a.s. for some value of x > 0 and a suitable pair
(II, C). Then from (10)it follows that

T) -< -<
Consequently, z- E _< U.

Let us define the nonnegative random process

where ffh- E F is a P-Gaussian martingale, such that ff0- E
Analogously to the proof of the Theorem 1, we can apply the generalized Girsanov’s theorem

and the martingale representation theorem.

By comparing the processes

and x’’x we obtain that
O(t)

Xo(t) /(I) (t) =z+ h(s-)dMs

(o,t]

Xo(t)- xn, ’,z, o < t < T.

Consequently, z >_ U.

(21)

Remark 1: Let us note that (21) yields

Xo()- x’’z- , .s.,

i.e., the contingent claim is attained with the initial capital U, portfolio II, and zero consumption.
This fact could be used as a starting point for solving appropriate optimal problems.
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Pmark 2: If (M}t t, we have (M,P)and (M,P) (standard) Wiener processes, and
empty. Then Theorem 1 and Theorem 2 reduce to the results of Karatzas and Shreve [7] and
Cvitani and Karatzas [2].

Corollary: Let C(t)= 0 and let the agent invest in one stock asset. Then, the following
representations hold: [P(T)X ((t). E (P(T) Ft 0 <_ t <_ T; (i)

x .xp (- )dM- (-)d() + ( )d(M ) (ii)
(0,t] (0,t] (o,t]

[1 + (- )() +(- )a], 0 t T.

Proof: Representation (i) follows from (20) when C(t) O.
P(T)By Ito’s rule it can be proved that (i.T) is a P-Gaussian martingale and is a unique solution

of the following stochastic equation:

P(T) [ P(s- r(s- dIs T > O.
(I)(T) p +

j (I)(s-) [1 + r(s- )A{M)s
(0,T]

X
Consequently, from representation (i) it follows that o--’ 0

_
t

_
T is a P-Gaussian martin-

gale and it yields representation (ii). []

5. A Linear Stochastic Integral Equation

In this section we will obtain a solution of the stochastic equation

X --X0 -- / [S(s)Xs_ + a(s)]dMs + / [A(s)Xs_ + a(s)]db(s), (22)
(0,t] (0,t]

0 _< t < c, which is a more general than we anticipate.

Let M (Mr, Ft) Mo 0, F r(Ms, s <_ t), t e N + [0, (x), be a cadlag Gaussian martin-
gale, b- b(t), t E N +-nonrandom, right-continuous function with finite variation on each finite
interval. Suppose the function b(t) be a real-valued deterministic function, absolutely continuous
with respect to (M)t- EM2t and

b(t) / 7sd(M)s, teN+,
(0,t]

where 7--(/t, Ft_), Ft_- r(Ms, O < s < t) is a F-predictable function, Xo-(Xo, Fo) be a

Gaussian random variable, independent of M. A(t), r(t), a(t), and S(t)are nonrandom F-predict-
able functions, such that

I a2(s)d<M)s < c, f A2(s)db(s)<
(o,) (o,o)

S2(s)db(s)and P-a.s.

(0,) (0,)
We will find a solution of equation (22) in the class of cadlag adapted processes (i.e., pro-
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cesses with right-continuous paths and finite left limits) and it provides a fairly explicit representa-
tion. According to [4], such a solution exists and it is unique in the sense of P-indistinguishabi-
lity.

Recall [6] that the random process M and the deterministic nondecreasing function {M) have
their jumps at the same nonrandom moments of time which form a countable set 5 C N+ \{0}.
Let us notice now that the function b(t) and the process X have their jumps at the same mo-

ments.

Let us suppose that the function b- b(t), t E N+ has no more than a countable subset of
jumps {0 _< so < S1 <... < Sic <... < OO}

_
S with
1 + S(sic)AM

sic, k>_1.Ab(sic) A(sic)
It is obvious that

AXsIc [A(sic)Xs_ + a(sic)]Ab(sic) + [S(sic)Xs + cr(sic)]AMsic

X a(sic)[- s-D, 1 + S(sic)AMs ]+s

Consequently, a(sk)
Xsic r(sk)AMsic A(sic)[1 + S(sk)AMsic]. (23)

We will find a solution of equation (22) on the interval [sic, sic + 1), ] 0, with an initial con-

dition Xs independent of increments M Msic, sic <_ t < slc + 1, k >_ O, according to (23) and the
conditionsimposed on X0.

The homogeneous equation corresponding to (22) is

(t, sic)--1+ / (s-,sic)A(s)db(s) + / (s-,ic)S(s)dMs,
(sk, t] (sk, t]

@(sic, sic) 1, k

_
0

and has a unique solution [3]"

(t, sic)--exp{(sic, t]
/ A(s)db(s)+(sic, t]

/ S(s)dMs

H {1 + A(s)Ab(s) + S(s)AMs}. exp{ A(s)Ab(s)- S(s)AMs};
Sk<S<t

(I’(t, sic) exp {(sic, t]
/ A(s)dbC(s) + / S(s)dMCs-1/2/ S2(s)d(MC)s}(,t] (,t]

(24)

H {1 +A(s)Ab(s)+S(s)AMs}
Sk<S_t

where bC(t) is the continuous path of the function b(t), sic <_ < sic + 1, k

_
O.

Let us notice that if
A(t)Ab(t) + S(t)AM 1
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on (sk, sk + 1), from the solution of (24) it follows

inf (I)(t, sk) > 0
sk <_ < Sk+ 1 AT

with some T E [sk, oc), k _> 0.

Let now define the function (I)(t), t E +, where

(I)() (I)(t, sk) sk

_
7 < sk + l, ] -- 0.

(25)

It follows from(25) that the function (I)- l(t), G + is correct defined and bounded on every
finite interval [0, T], T G +. Consequently, for every t G +, it holds true that

2(s)d(M)s
(0,t]

(26)

Theorem 3: The unique solution of the equation (22) is given by

+ +

(b(s) d(MC)s slc <t<slc+l’ k>O.

(,]

(27)

Proof: Observe that (25) ensures that the process X is well defined. We will show that the
process Xtk from (27) is a solution of equation (22) over the interval [sk, sk + 1), k _> 0.

We apply Ito’s rule to (27) on the interval (stc, sk + 1):

Xk + J Xs_ A(s)db(s) + / X S(s)dMsXkt
(,] (,]

1 II{Ab s)+ 1 +A(s)Ab(s) +S(s)AMs
=o} I{Ab(s) 0}]

(,t]

If sk < < sk + 1, then

sk

f f
+ / Xs_A(s)db(s)+ / Xs_S(s)dMs

(,t] (,t]

+ / r(s)dMs+ / a(s)db(s).
(,t] (s,t]
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X X + ] [X- A(s) + a(s)]db(s) + J [X- S(s) + r(s)]dM.
(,t] (,t]

The last representation and (23)lead to (22). D

Pemark 3: The coefficients A(t), (t), S(t), and a(t) of equation (22) are f-predictable func-
tions. It will be convenient for applications to represent solution (27) in the form

Xt O(t’sk) Xsk + (s- )[1 + A(s)Ab(s) + S(s)AMs]
(sk, t]

a(s) db(s)+ (P(s-)[1 + A(s)Ab(s)+ S(s)AMs]
(sk, t]

(I)(s-)[1 + A(s)Ab(s) + S(s)AMs] s

(,t]

t [Sk,8k+l), ]- 0.
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