SOLUTIONS OF INITIAL VALUE PROBLEMS FOR A PAIR OF LINEAR FIRST ORDER ORDINARY DIFFERENTIAL SYSTEMS WITH INTERFACE-SPATIAL CONDITIONS

M. VENKATESULU and PALLAV KUMAR BARUAH

Sri Sathya Sai Institute of Higher Learning Department of Mathematics and Computer Science Prasanthinilayam 515134 (A.P.) INDIA

(Received April, 1995; Revised August, 1995)

ABSTRACT

Solutions of initial value problems associated with a pair of ordinary differential systems (L_1, L_2) defined on two adjacent intervals I_1 and I_2 and satisfying certain interface-spatial conditions at the common end (interface) point are studied.

Key words: Interface-Spatially Mixed Conditions, Ordinary Differential Systems, Equations, Initial Value Problems, Linearly Independent Solutoins, Fundamental Systems.

AMS (MOS) subject classifications: 34AXX, 34A10, 34A15.

1. Introduction

In the studies of acoustic waveguides in ocean [1], optical fiber transmission [4], soliton theory [3], etc., we encounter a new class of problems of the type

$$L_1 f_1 = \sum_{k=0}^n P_k \frac{df_1^k}{dt^k} = \theta f_1$$
 defined on an interval I_1

and

$$L_2 f_2 = \sum_{k=0}^m Q_k \frac{df_2^k}{dt^k} = \theta_2 f_2 \text{ defined on an adjacent interval } I_2,$$

where θ_1 , θ_2 are constants, intervals I_1 and I_2 have common end (interface) point t = c, and the functions f_1, f_2 are required to satisfy certain interface conditions at t = c. In most of the cases, the complete set of physical conditions on the system gives rise to self adjoint eigenvalue problems associated with the pair (L_1, L_2) . In some cases, however, the physical conditions at the interface may be inadequate to describe the problem in a mathematically sound manner. In such a situation, when the problem is formulated mathematically, it becomes ill-posed, and therefore cannot be solved effectively (uniquely) using existing methods. With the introduction of interface-spatial conditions (entirely a new concept), we shall be able to convert these ill-posed problems into well-posed problems and this justifies their mathematical study.

In a series of papers, we wish to develop a unified approach to these interface-spatial problems for both the regular and the singular cases. In the present paper, for the first time, we

shall study the initial value problems (IVPs) for a pair of linear first order ordinary differential systems satisfying certain interface-spatial conditions.

Before proving the main theorems, we introduce a few notations and make some assumptions. For any compact interval J of \mathbb{R} and for any non-negative integer k, let $C^k(J)$ denote the space of k-times continuously differentiable complex-valued functions defined on J. If I is a non-compact interval of \mathbb{R} , $C^k(I)$ denotes the collection of all complex-valued functions f defined on I whose restriction $f \mid_J$ to any compact subinterval J of I belongs to $C^k(J)$. Let $AC^k(I)$ denote the space of all complex-valued functions f which have (k-1) derivatives on I, and, the $(k-t)^{th}$ derivative is absolutely continuous over each compact subinterval of I. Let $I_1 = (a,c], I_2 = [c,b), -\infty \leq a < c < b \leq +\infty$, and let $f^{(j)}$ denote the j^{th} derivative of f. For a matrix A, let R(A) and $\rho(A)$ denote the range and rank of A. Let \mathbb{C}^n denote the complex n-dimensional space.

Let $A_1(t)$ $(A_2(t))$ be matrix valued functions of order $n \times n$ $(m \times m)$, whose entries belong to $\mathbb{C}^0(I_1)$ $(\mathbb{C}^0(I_2))$. Let $b_1(t)$ $(b_2(t))$ be a vector-valued function of order $n \times 1$ $(m \times 1)$, whose entries are integrable over every compact subinterval of I_1 (I_2) .

Let the functions $P_k \in \mathbb{C}^k(I_1)$ (k = 0, 1, ..., n) $Q_k \in \mathbb{C}^k(I_2)$ (k = 0, 1, ..., m) $P_n(t) \neq \emptyset$ on I_1 and $Q_m(t) \neq \emptyset$ on I_2 . Let $g_1(g_2)$ be a measurable complex-valued function defined on I_1 (I_2) which is integrable over every compact subinterval of $I_1(I_2)$.

Without loss of generality, we assume $n \ge m$. Let A and B be $m \times n$ and $m \times m$ matrices with complex entries respectively, and R(A) = R(B). Consequently, $\rho(A) = \rho(B) = :d(\le m)$. Let N be a subspace of R(A), and the dimension of N equals d'. Let $t_i \in I_i$ (i = 1, 2), $C = \operatorname{column} (c_0, c_1, \ldots, c_{n-1}) \in \mathbb{C}^n$, and $D = \operatorname{column} (d_0, d_1, \ldots, d_{m-1}) \in \mathbb{C}^m$. Let $Y_1 = \operatorname{column} (y_{11}, y_{12}, \ldots, y_{1n})$ and $Y_2 = \operatorname{column} (y_{21}, y_{22}, \ldots, y_{2m})$.

Consider the following interface-spatially mixed pair of linear first order ordinary differential systems:

$$Y'_{1} = A_{1}(t)Y_{1} + b_{1}(t), \ t \in I_{1},$$
(1)

$$Y'_{2} = A_{2}(t)Y_{2} + b_{2}(t), \quad t \in I_{2},$$

$$\tag{2}$$

$$AY_1(c) - BY_2(c) \in N. \tag{3}$$

Also, consider the initial conditions

$$Y_1(c) = C \tag{4}$$

 and

$$Y_2(c) = D. (5)$$

We call problems (1)-(3) and (4)((5)) the interface-spatially mixed initial value problems (IFSIVP)(I)((II)).

Consider the following interface-spatially mixed pair of linear ordinary differential equations (of orders n and m):

$$L_1 f_1 \equiv \sum_{k=0}^n P_k \frac{d^2 f_1}{dt^2} = g_1, \ t \in I_1,$$
(6)

$$L_2 f_2 \equiv \sum_{k=0}^m Q_k \frac{d^2 f_2}{dt^2} = g_2, \quad t \in I_2,$$
(7)

$$A\widetilde{f}_1(c) - B\widetilde{f}_2(c) \in N, \tag{8}$$

where

$$\tilde{f}_1 = \text{column}(f_1, f_1^{(1)}, \dots, f_1^{(n-1)},$$

and

$$\widetilde{f}_2 = \text{column } (f_2, f_2^{(1)}, \dots, f_2^{(m-1)}).$$

Also consider the initial conditions

$$f_1^{(j)}(t_1) = c_j \quad (j = 0, 1, \dots, n-1), \tag{9}$$

$$f_2^{(j)}(t_2) = d_j \quad (j = 0, 1, ..., m-1).$$
 (10)

We call problems (6)-(8) and (9) ((10)) the interface-spatially mixed initial value problems (IFSIVP) (I') ((II')).

Definition 1: We call a pair of vector-valued functions (Y_1, Y_2) , defined on $I_1 \times I_2$, and interface-spatially mixed (IFS) solution of (1)-(2) if

(i)

(ii)

(iii)

 $\begin{array}{l} Y_{1j} \in AC^1(I_1) \quad (j=1,\ldots,n), \\ Y_1 \text{ satisfies equation (1) for almost all } t \in I_1, \\ Y_{2j} \in AC^1(I_2) \quad (j=1,\ldots,m), \\ Y_2 \text{ satisfies equation (2) for almost all } t \in I_2, \end{array}$ (iv)

and

(v)the pair (Y_1, Y_2) satisfies relation (3).

Definition 2: We call a pair of complex-valued functions (f_1, f_2) , defined on $I_1 \times I_2$, an interface-spatially mixed (IFS) solution of (6)-(7) if

 $f_1 \in AC^n(I_1)$ and satisfies equation (6) for almost all $t \in I_1$, (i)

 $f_2 \in AC^m(I_2)$ and satisfies equation (7) for almost all $t \in I_2$ (ii)

and

the pair (f_1, f_2) satisfies relation (8). (iii)

Definition 3: We call a pair of vector-valued functions (Y_1, Y_2) , defined on $I_1 \times I_2$, and interface-spatially mixed solution of IFSIVP(I) ((II)) if

(i) (Y_1, Y_2) is an IFS solution of (1)-(2) and

 $Y_1(Y_2)$ satisfies condition (4) ((5)). (ii)

Definition 4: We call a pair of complex-valued functions (f_1, f_2) , defined on $I_1 \times I_2$, an interface-spatially mixed solution of IFSIVP(I') ((II')) if

(i) (f_1, f_2) is a IFS solution of (6)-(7) and

 (f_1, f_2) satisfies condition (9) ((10)). (ii)

Definition 5: We say that a collection of non-trivial pairs $(Y_{11}, Y_{12}), \dots, (Y_{p1}, Y_{p2})$ are linearly independent if for any set of scalars $\alpha_1, \ldots, \alpha_p$,

$$\sum_{i=0}^{p} \alpha_{i}(Y_{i1}, Y_{i2}) = (0, 0)$$

implies that $\alpha_1 = \alpha_2 = \ldots = \alpha_p = 0.$

Similarly, we define the linear independency of a collection of pairs $(f_{11}, f_{12}), \ldots, (f_{p1}, f_{p2})$.

Definition 6: By an IFS fundamental system for the IFSIVP(I) ((11)), we mean a set of linearly independent IFS solutions of IFSIVP(I) ((II)) which span the IFS solution space of IFSIVP(I) ((II)).

Similarly, we define a fundamental system for the IFSIVP(I') ((II')).

2. Main Theorems

Theorem 1: (a) If either $b_1(t) \neq 0$, $b_2(t) \neq 0$, or C is a nonzero vector, then the IFSVP(I) has an IFS fundamental system consisting of "m - d + d' + 1" linearly independent IFS solutions of IFSIVP(I). If $b_1(t) \equiv 0$, $b_2(t) \equiv 0$, and C is a zero vector, then the IFSIVP(I) has an IFS fundamental system consisting of "m - d + d'" linearly independent IFS solutions of IFSIVP(I).

(b) If either $b_1(t) \neq 0$, $b_2(t) \neq 0$, or D is a nonzero vector, then the IFSIVP(II) has a fundamental system consisting of "n-d+d'+1" linearly independent IFS solutions of IFSIVP(II). If $b_1(t) \equiv 0$, $b_2(t) = 0$, and D is a zero vector, then the IFSIVP(II) has an IFS fundamental system consisting of "n-d+d'" linearly independent IFS solutions of IFSIVP(II).

Proof: Since the components of $b_1(t)$ are measurable complex-valued functions integrable on I_1 by Theorem 2.1 [2], there exists a unique vector-valued function $\phi(t) = \text{column}(\phi_1(t), \phi_2(t), \ldots, \phi_n(t))$ defined on I_1 with $\phi_i \in AC^1(I_1)$ such that

$$\label{eq:phi} \begin{split} \phi'(t) &= A_1(t)\phi(t) + b_1(t), \ t \in I_1, \\ \phi(t_1) &= C. \end{split}$$

Let $\phi(c) = \eta$. Since R(A) = R(B), there exists a vector $\beta^0 \in \mathbb{C}^m$ such that $A\eta = B\beta^0$. If $A\eta \neq 0$, β^0 is a nonzero vector, and if $A\eta = 0$, then we take β^0 to be zero vector. Since $\rho(B) = d$, there exist (m-d) linearly independent vectors $\beta^1, \beta^2, \dots, \beta^{m-d} \in \mathbb{C}^m$ which are solutions of $B\beta = 0$. Clearly, $\beta^0, \beta^0 + \beta^1, \dots, \beta^0 + \beta^{m-d}$ are (m-d+1) or (m-d) linearly independent solutions of $A\eta = B\beta$, affected by $A\eta \neq 0$ or $A\eta = 0$.

Also, since the components of $b_2(t)$ are measurable complex-valued functions integrable on I_2 , there exists a unique vector-valued function $\psi_0(t) = \text{column } (\psi_{01}(t), \dots, \psi_{0n}(t))$ defined on I_2 with $\psi_{0i}(t) \in AC^1(I_2)$ such that

$$\begin{split} \psi'(t) &= A_2(t)\psi_0(t) + b_2(t), \ t \in I_2, \\ \psi_0(c) &= \beta^0. \end{split}$$

Let $\psi_i(t) = \text{column}(\psi_{i1}(t), \dots, \psi_{in}(t))$, defined on I_2 with $\psi_{ij} \in AC^1(I_2)$, be the unique vector-valued function such that

$$\begin{split} \psi_i(t) &= A_2(t)\psi_i(t), \quad t\in I_2,\\ \psi_i(c) &= \beta^i, \quad i=1,\ldots,m-d. \end{split}$$

Clearly, $\psi_1, \ldots, \psi_{m-d}$ are linearly independent and if $\beta^0 \neq 0$, then $\psi_0, \ldots, \psi_{m-d}$ are also linearly independent.

Choose a basis $\alpha^1, \ldots, \alpha^{d'}$ for N, and let $\beta = \beta^{m-d+i}$ be a solution of

$$-B\beta^{m-d+i} = \alpha^i \quad (i = 1, \dots, d')$$

Since α^i are linearly independent $\beta^{m-d+d's}$ are also linearly independent. In fact, $\beta^1, \ldots, \beta^{m-d+d'}$ are linearly independent.

Again, let $\psi_i(t)$, defined on I_2 , be a unique vector-valued function such that

$$\begin{split} \psi_i(t) &= A_2(t) \psi_i(t), \ t \in I_2, \\ \psi_i(c) &= \beta^i \ (i = m - d + 1, \dots, m - d + d'). \end{split}$$

Clearly, $\psi_1, \ldots, \psi_{m-d+d'}$ are linearly independent.

Now, define

$$(Y_{01}, Y_{02}) = (\phi, \psi_0),$$

$$(Y_{i1}, Y_{i2}) = (\phi, \psi_0 + \psi_i) \ (i = 1, ..., m - d + d').$$

Clearly, each pair (Y_{i1}, Y_{i2}) (i = 0, 1, ..., m - d + d') is an IFS solution of (1)-(2). Moreover, if $b_1(t) \neq 0$, $b_2(t) \neq 0$, or $C \neq 0$, then the pair (ϕ, ψ_0) is nontrivial.

Claim: For $b_1(t) \neq 0$, $b_2 \neq 0$ or $C \neq 0$, $\{(Y_{i1}, Y_{i2}), i = 0, ..., m - d + d'\}$ is an IFS fundamental system for the IFSIVP(I). m - d + d'

Let
$$\sum_{i=0}^{m-d+d} a_i(Y_{i1}, Y_{i2}) = (0, 0)$$
, where a_is are scalars. Then
 $\sum_{i=0}^{m-d+d'} a_iY_{i1} = 0$ and $\sum_{i=0}^{m-d+d'} a_iY_{i2} = 0.$ (11)
sequently, we get

Consequently, we get $m - \underline{d}$

$$\sum_{i=1}^{m-d+d'} a_i [A\phi(c) - B(\psi_0(c) + \psi_i(c))] + a_0 (A\phi(c) - B\psi_0(c)) = 0,$$
$$\sum_{i=m-d+i}^{m-d'} a_i (-B\psi_i(c)) = 0,$$
$$d+d'$$

i.e.,

$$\sum_{i=m-d+1}^{m-a+a} a_i \alpha^i = 0$$
, which implies that $a_i = 0$ $(i = m-d+1, ..., m-d+d')$.

Hence, relation (11) becomes

$$\sum_{i=0}^{m-d} a_i \phi = 0 \text{ and } \sum_{i=1}^{m-d} a_i (\psi_0 + \psi_i) + A_0 \psi_0 = 0.$$
(12)

Again, from relation (12), we get

$$\begin{aligned} &(\sum_{i=0}^{m-d} a_i)\psi_0(c) + \sum_{i=1}^{m-d} a_i\psi_i(c) = 0, \\ &(\sum_{i=0}^{m-d} a_i)\beta^0 + \sum_{i=1}^{m-d} a_i\beta^i = 0. \end{aligned}$$
(13)

i.e.,

If $\beta^0 \neq \emptyset$, then $\beta^0, \beta^1, \ldots, \beta^{m-d}$, are linearly independent and hence $a_i = 0$ $(i = 0, 1, \ldots, m-d)$. If $\beta^0 = 0$, then relation (13) gives $a_i = 0$ $(i = 1, \ldots, m-d)$ and from relation (12) we get $a_0(\phi, \psi_0) = (0, 0)$, which implies that $a_0 = 0$. Thus, (Y_{i1}, Y_{i2}) $(i = 0, 1, \ldots, m-d+d')$ are linearly independent.

Now, let (Y_1, Y_2) be any solution of the IFSIVP(I). We note that $Y_1 = \phi$.

Case (i): Suppose that $AY_1(c) - BY_2(c) = 0$. Furthermore, since $A\phi(c) - B\psi_0(c) = 0$, we get $B(Y_2(c) - \psi_0(c)) = 0$, which implies that $Y_2(c) - \psi_0(c)$ belongs to the null space of B. Therefore, there exist constants a_i (i = 1, ..., m - d) such that

i.e.,

$$Y_{2}(c) - \psi_{0}(c) = \sum_{i=1}^{m-d} a_{i}\beta^{i},$$

$$\begin{split} Y_2(c) &= \beta^0 + \sum_{i=1}^{m-d} a_i \beta^i = (1 - \sum_{i=1}^{m-d} a_i) \beta^0 + \sum_{i=1}^{m-d} a_i (\beta^0 + \beta^i) \\ &= (1 - \sum_{i=1}^{m-d} a_i) \psi_0(c) + \sum_{i=1}^{m-d} a_i (\psi_0(c) + \psi_i(c)) \\ &= (1 - \sum_{i=1}^{m-d} a_i) Y_{02}(c) + \sum_{i=1}^{m-d} a_i Y_{i2}(c). \end{split}$$

Thus, by the uniqueness of the solution of IVPs for a system of ordinary differential equations, we have m-d m-d

$$(Y_1, Y_2) = (1 - \sum_{i=1}^{m-a} a_i)(Y_{01}, Y_{02}) + \sum_{i=1}^{m-a} a_i(Y_{i1}, Y_{i2})$$

Case (ii): Suppose that $AY_1(c) - BY_2(c) = \xi = \sum_{i=1}^{d} a_{i+m-d} \alpha_i$, where $a_i s$ are scalars. Define a pair (K_1, K_2) by

$$(K_1, K_2) = (1 - \sum_{i=m-d+1}^{m-d+d'} a_i)(Y_{01}, Y_{02}) + \sum_{i=m-d+1}^{m-d+d'} a_i(Y_{i1}, Y_{i2}).$$
(14)

Then (K_1, K_2) is an IFS solution of IFSIVP(I). Consequently, we get

$$B(Y_2(c) - K_2(c)) = 0.$$

Therefore, there exist scalars a_i (i = 1, ..., m - d) such that

$$\begin{split} Y_{2}(c) - K_{2}(c) &= \sum_{i=1}^{m-d} a_{i}\beta^{i}, \\ Y_{2}(c) &= K_{2}(c) + \sum_{i=1}^{m-d} a_{i}\beta^{i} \end{split}$$

i.e.,

Thus,

$$\begin{split} (Y_1,Y_2) &= (K_1,K_2) - \sum_{i=1}^{m-d} a_i(Y_{01},Y_{02}) + \sum_{i=1}^{m-d} a_i(Y_{i1},Y_{i2}) \\ &= (1 - \sum_{i=1}^{m-d+d'} a_i)(Y_{01},Y_{02}) + \sum_{i=1}^{m-d+d'} a_i(Y_{i1},Y_{i2}). \end{split}$$

Hence, the claim is proved. If $b_1(t) \equiv 0$, $b_2(t) \equiv 0$, and C = 0, then (ϕ, ψ_0) is a trivial pair and the pairs (Y_{i1}, Y_{i2}) (i = 1, ..., m - d + d') form an IFS fundamental system for the IFSIVP(I).

This completes the proof of part (a). Part (b) can proved similarly.

Theorem 2: There exist exactly "n + m - d + d'" linearly independent (IFS) solutions of

$$Y'_1 = A_1(t)Y_1, \quad t \in I_1, \tag{16}$$

$$Y'_{2} = A_{2}(t)Y_{2}, \quad t \in I_{2}, \tag{17}$$

satisfying the interface-spatial conditions

$$AY_1(c) - BY_2(c) \in N. \tag{18}$$

Proof: Since $\rho(A) = \rho(B) = :d$, there exists a basis $\{\eta^1, \ldots, \eta^n\}$ for \mathbb{C}^n such that $\{\eta^1, \ldots, \eta^{n-d}\}$ forms a basis for the null-space of A, and a basis $\{\beta^1, \ldots, \beta^m\}$ for \mathbb{C}^m such that $\{\beta^{d+1}, \ldots, \beta^m\}$ forms a basis for the null space of B.

Let \widehat{Y}_{i1} (whose components belong to $AC^1(I_1)$) be the unique solution of

$$\begin{split} Y_1' &= A_1(t) Y_1, \ t \in I_1, \\ Y_1(c) &= \eta^i \ (i = 1, \dots, n). \end{split}$$

Since R(A) = R(B), for each i = n - d + 1, ..., n, there exist scalars θ_j^i (j = 1, ..., d) such that

$$A\eta^i = \sum_{j=1}^{\infty} \theta^i_{j} B\beta^j.$$

Let \widehat{Y}_{i2} (with components belonging to $AC(I_2)$) be the unique solution of

$$\begin{split} Y_2' &= A_2(t) Y_2, \ t \in I_2, \\ Y_2(c) &= B \beta^{i - n + d} \ (i = n + 1, ..., n + m - d). \end{split}$$

Let $(\alpha^1, \ldots, \alpha^{d'})$ be a basis for N and choose $\widehat{\beta}^i \in \mathbb{C}^m$ such that

$$-B\widehat{\beta}^{i} = \alpha^{i} \quad (i = 1, ..., d').$$

Let \widehat{Y}_{i2} (with components belonging to $AC^1(I_2)$) be the unique solution of

$$\begin{aligned} Y_2' &= A_2(t) Y_2, \ t \in I_2, \\ Y_2(c) &= \widehat{\beta}^{i - n - m + d} \quad (i = n + m - d + 1, \dots, n + m - d + d') \end{aligned}$$

Define the pairs

$$(\boldsymbol{Y}_{i1},\boldsymbol{Y}_{i2}) = \begin{cases} (\hat{\boldsymbol{Y}}_{i1},0) & (i=1,\ldots,n-d), \\ (\hat{\boldsymbol{Y}}_{i1},\hat{\boldsymbol{Y}}_{i2}) & (i=n-d+1,\ldots,n), \\ (0,\hat{\boldsymbol{Y}}_{i2}) & (i=n+1,\ldots,n+m-d+d'). \end{cases}$$

Clearly each pair (Y_{i1}, Y_{i2}) is a nontrival IFS solution of (16)-(18).

n +

Claim: (Y_{i1}, Y_{i2}) (i = 1, ..., n + m - d + d') form an IFS fundamental system for the IFS solutions of (16)-(18).

First, we shall show that the pairs (Y_{i1}, Y_{i2}) are linearly independent. To this end, let

$$\sum_{i=1}^{m-d+d'} a_i(Y_{i1}, Y_{i2}) = (0,0), \text{ where } a_is \text{ are scalars.}$$

$$\sum_{i=1}^n a_i \widehat{Y}_{i1} = 0 \text{ and } \sum_{i=n-d+1}^{n+m-d+d'} a_i \widehat{Y}_{i2} = 0.$$
(19)

Then,

Since
$$\hat{Y}_{i1}(c)$$
 $(i = 1, ..., n + m - d + d')$ are linearly independent, from the first equation of relation (19) we get $a_i = 0$ $(i = 1, ..., n)$. Consequently, the second equation reduces to

$$\sum_{i=n+1}^{n+m-d+d'} a_i Y_{i2} = 0.$$
 (20)

Evaluating the above expression at t = c and then applying the matrix B to the resulting expression, we get

$$\sum_{i=n+m-d+1}^{n+m-d+d'} a_i \alpha^{i-n-m+d} = 0,$$

which implies that $a_i = 0$, for i = n + m - d + 1, ..., n + m - d + d'. Thus, relation (20) reduces to

 $\sum_{\substack{i=n+1\\b\in easily \text{ verified}}}^{n+m-d} a_i \widehat{Y}_{i2} = 0, \text{ and since } \widehat{Y}_{i2}(c) \ (i=n+1,\ldots,n+m-d) \text{ are linearly independent (this fact can be easily verified), it follows that }$

$$a_i = 0$$
 $(i = n + 1, ..., n + m - d).$

This proves the linear independency of (Y_{i1}, Y_{i2}) s.

Next, let (Y_1, Y_2) be any IFS solution of (16)-(18). Choose scalars a_i (i = 1, ..., n) such that

$$Y_1(c) = \sum_{i=1}^n a_i \eta^i.$$
 (21)

Case (1): Suppose that $AY_{1}(c) - BY_{2}(c) = 0$.

Define the pair $(K_1, K_2) = \sum_{i=1}^{n} a_i (Y_{i1} Y_{i2})$. Then $K_1(c) = \sum_{i=1}^{n} a_i Y_{i1}(c) = Y_1(c)$. Hence, $Y_1 = K_1$ and $B(Y_2(c) - K_2(c)) = 0$, which implies that

$$Y_2(c) = K_2(c) + \sum_{i=n+1}^{n+m-d} a_i \beta^{i-n+d} \text{ for some scalars } a_i s,$$

i.e.,

$$Y_{2}(c) = K_{2}(c) + \sum_{i=n+1}^{n+m-d} a_{i}Y_{i2}(c).$$

Thus,

$$(Y_1, Y_2) = (K_1, K_2) + \sum_{i=n+1}^{n+m-d} a_i(Y_{i1}, Y_{i2})$$
$$= \sum_{i=1}^{n+m-d} a_i(Y_{i1}, Y_{i2}).$$

Case (2): Suppose that $A(Y_1(c) - BY_2(c) = \xi = \sum_{i=n+m-d+1}^{n+m-d+d'} a_i \alpha^{i-n-m+d}$, where $a_i s$ scalars. are scalars.

Define $(H_1, H_2) = \sum_{\substack{i=n+m-d+1\\i=n+m-d+1}}^{n+m-d+d'} a_i(Y_{i1}, Y_{i2}).$ Then $A(H_1(c) - Y_1(c)) - B(H_2(c) - Y_2(c)) = 0$, and therefore, by case (1), $(Y_1 - H_1, Y_2 - H_2) = \sum_{i=1}^{n+m-d} a_i(Y_{i1}, Y_{i2})$ for some scalars $a_i s$.

Thus,

This completes the proof.

Remark 1: The assumption d' = d yields that there are no explicit boundary conditions at the interface point.

If d' = 0, then the interface-spatial condition becomes

$$AY_1(c) - BY_2(c) = 0,$$

which is generally called the *interface condition*.

Since higher order ordinary differential equations can be converted into a system of first order

equations, Theorems 1 and 2 yield the following results for the pair (L_1, L_2) :

Theorem 3: (a) If either $g_1 \neq 0$, $g_2 \neq 0$, or c_0, c_1, \dots, c_{n-1} are not all zeros, then the IFSIVP(I') has a fundamental system consisting of "m-d+d'+1" linearly independent IFS solutions of IFSIVP(I'). If $g_1 \equiv 0$, $g_2 \equiv 0$, and c_0, c_1, \dots, c_{n-1} are all zeros, then the IFSIVP(I') has a IFS fundamental system consisting of "m-d+d'" linearly independent solutions of IFSIVP(I').

(b) If either $g_1 \neq 0$, $g_2 \neq 0$, or $d_0, d_1, \ldots, d_{n-1}$ are not all zeros, then the IFSIVP(II') has a IFS fundamental system consisting of "n-d+d'+1" linearly independent IFS solutions of IFSIVP(II'). If $g_1 \equiv 0$, $g_2 \equiv 0$, and $d_0, d_1, \ldots, d_{n-1}$ are all zeros, then the IFSIVP(II') has an IFS fundamental system consisting of "n-d+d'" linearly independent IFS solutions of IFSIVP(II').

Theorem 4: There exist exactly "n + m - d + d'" linearly independent (IFS) solutions of

$$\begin{split} & L_1 f_1 = 0, \ t \in I_1, \\ & L_2 f_2 = 0, \ t \in I_2, \end{split}$$

satisfying the interface-spatial conditions

$$A\widetilde{f}_1(c) - B\widetilde{f}_2(c) \in N.$$

Remark 4: For d' = d, Theorems 3 and 4 reduce to Theorems 1 and 4 of [6].

For d' = 0, Theorems 3 and 4 reduce to Theorems 3 and 6 of [6].

For d' = 0 as well as for the $(m \times n)$ matrix A given by

$$A = \begin{pmatrix} m^{th} \text{ column} \\ 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \end{pmatrix}$$

and B equal to the $(m \times m)$ identity matrix, Theorems 3 and 4 reduce to Theorems 2 and 5 of [6].

3. Physical Examples

Example 1 - Acoustic waveguides in ocean [1]: The following problem is encountered in the study of acoustic waves in the ocean consisting of two layers: an outer layer of finite depth and an inner layer of infinite depth:

$$L_1 f_1 = \frac{d^2 f_1}{dt^2} + k_1^2 f_1 = \lambda f_1, \quad 0 \le t \le d_1,$$
(22)

$$L_2 f_2 = \frac{d^2 f_2}{dt^2} + k_2^2 f_2 = \lambda f_2, \quad d_1 \le \le t \le +\infty,$$
(23)

together with the end point conditions given by

$$f_1(0) = 0, \lim_{t \to \infty} f_2^{(1)}(t) = 0,$$
 (24)

and the interface conditions given by

$$f_1(d_1) = f_2(d_1), \quad 1/\rho_1 f_1^1(d_1) = 1/\rho_2 f_2^{(1)}(d_1).$$
(25)

Here ρ_1, ρ_2 are constant densities of the two layers, k_1, k_2 are the constants which depend upon the frequency constant and the constant sound velocities c_1, c_2 of the two layers, respectively, λ is an unknown constant, d_1 denotes the depth of the outer layer, and f_1, f_2 stand for the depth eigenfunctions.

In this example, the interface conditions at $t = d_1$ of the two layers can be written in the matrix form

$$\begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_1 \end{pmatrix} \begin{pmatrix} f_1(d_1) \\ f_1^{(1)}(d_1) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_1 \end{pmatrix} \begin{pmatrix} f_2(d_1) \\ f_2^{(1)}(d_1) \end{pmatrix}$$

e $A = \begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_1 \end{pmatrix}$, rank $A = \operatorname{rank} B = 2, m = n = d = 2$ and $d' = 0$.

Here $A = \begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1/\rho_2 \end{pmatrix}$, rank $A = \operatorname{rank} B = 2$, m = n = d = 2 and d' = 0. Hence, by Theorem 3 and Remark 2, there exist a unique IFS solution for any IFSIVP

Hence, by Theorem 3 and Remark 2, there exist a unique IFS solution for any IFSIVP associated with (22)-(23) and (25). Also, By Theorem 4 and Remark 2, there exist exactly two linearly independent IFS solutions of problems (22)-(23) and (25).

Example 2 - Optical fiber transmission [4]: In the study of wave optics of step index fiber, we encounter the following problem:

$$L_1 f_1 = \frac{d^2 f_1}{dt^2} + 1/t \frac{df_1}{dt} + (\eta_1^2 k_0^2 - \nu^2/t^2) f_1 = \beta^2 f_1, \ 0 < t \le a,$$
(26)

$$L_2 f_2 = \frac{d^2 f_2}{dt^2} + 1/t \frac{df_2}{dt} + (\eta_2 k_0^2 - \nu^2/t^2) f_2 = \beta^2 f_2, \ a \le t < \infty,$$
(27)

together with the interface conditions at t = a, given by

$$\lim_{t \to 0} |f_1(t)| < +\infty, \lim_{t \to \infty} |f_2(t)| = 0.$$
(29)

Here η_1 and η_2 are the refractive indices of the core and cladding, respectively, β is the wave propagation constant, ν is an integer $k_0 = w/c$, c is the prorogation velocity and w is the wave frequency and f_1 and f_2 are the field (electromagnetic) distributions of core and cladding, respectively.

In this example, relation (28) gives continuity conditions at t = a. Here A and B are the 2×2 identity matrices, n = m = d = 2 and d' = 0. Hence, by Theorem 3 and Remark 2, there exists a unique IFS solution for IFSIVP associated with (26)-(28). Also, by Theorem 4 and Remark 2, there exist exactly two linearly independent IFS (continuous) solutions of (26)-(28).

Example 3 - One-dimensional scattering in quantum theorem [3]: In quantum theory, the one-dimensional time-independent scattering problem with the delta function scattering potential is represented by the problem:

$$L_1 f_1 = \frac{d^2 f_1}{dt^2} + k^2 f_1 = 0, \quad -\infty < t \le 0, \tag{30}$$

$$L_2 f_2 = \frac{d^2 f_2}{dt^2} + (k^2 - \nu_0) f_2 = 0, \quad 0 \le t < +\infty,$$
(31)

together with the interface conditions given by

$$f_1(0) - f_2(0) = 0, (32)$$

$$f_1^{(1)}(0) - f_2^{(1)}(0) = -\nu_0 f_1(0), \tag{33}$$

where $k^2 = 2mE/h^2$, ν_0 is a constant, and the functions f_1 and f_2 are associated with the flux density of the particle of the two regions, respectively. Here, m denotes the mass of the particle, E denotes its total energy, and h denotes the Planck constant divided by 2π . In this example, the interface conditions at t = 0 of the two regions can be written in the matrix form

$$\begin{pmatrix} 1 & 0 \\ \nu_0 & 1 \end{pmatrix} \begin{pmatrix} f_1(0) \\ f_1^{(1)}(0) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f_2(0) \\ f_2^{(1)}(0) \end{pmatrix}.$$
 Here
$$A = \begin{pmatrix} 1 & 0 \\ \nu_0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
rank $A = \operatorname{rank} B = 2, m = n = d = 2, \text{ and } d' = 0.$

Here

Hence, by Theorem 3 and Remark 2, there exists a unique IFS solution of any IFSIVP associated with (30)-(33). Also, by Theorem 4 and Remark 2, there exist exactly two linearly independent IFS solutions of (30)-(33).

Example 4: In this illustrative example, consider the following problem:

$$L_1 f_1 = \frac{d^2 f_1}{dt^2} - k_1^2 f_1 = 0, \ a \le t \le c,$$
(34)

$$L_2 f_2 = \frac{d^2 f_2}{dt^2} + k_2^2 f_2 = 0, \ c \le t \le b,$$
(35)

together with interface condition

$$f_1(c) = f_2(c) \tag{36}$$

and the end point conditions

$$f_1(a) = 0 = f_2(b), \tag{37}$$

where k_1 and k_2 are constants. Problems (34)-(37) can be thought of as the transverse vibrations of a string stretched between a and b, fixed at a and b, with different uniform linear densities (in the portion) between a and c and between c and b, and plucked at the point t = c.

In this example, there is only one condition at the interface (i.e., the continuity condition), and no definite relation between the derivatives is available. Therefore, we may take

$$f_1^{(1)}(c) - f_2^{(1)}(c) = \alpha, \ \alpha \in \mathbb{R}.$$
 (38)

We note that relation (38) is not at all a restriction on derivatives. Consequently, relation (36)and (38) can be written as

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f_1(c) \\ f_1^{(1)}(c) \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f_2(c) \\ f_2^{(1)}(c) \end{pmatrix} \in N,$$
(39)

where N = the linear span of $\begin{pmatrix} 0\\1 \end{pmatrix}$.

Here, A = B = the (2×2) identity matrix, n = m = d = 2, and d' = 1. Therefore, by Theorem 3, there exist one or two linearly independent IFS solutions of the IFSIVP associated with problems (34)-(36) depending on whether the initial data is zero or nonzero. Also, by Theorem 4, there exist three linearly independent IFS solutions of problems (34)-(36).

Remark 3: The results of this paper are used in studying the deficiency indices and selfadjoint boundary value problems associated with (L_1, L_2) satisfying interface-spatial conditions which we shall establish elsewhere.

Acknowledgement

The authors dedicate the work to the chancellor of the Institute Bhagawan Sri Sathya Sai Baba.

References

- [1] Boyles, C.A., Acoustic Waveguides, Applications to Oceanic Sciences, Wiley, New York 1984.
- [2] Brauer, F. and Nohel, J.A., The Qualitative Theory of Differential Equations An Introduction, Benjamin, New York 1969.
- [3] Lamb, Jr., G.L., *Elements of Soliton Theory*, Wiley, New York 1980.
- [4] Noda, K., Optical Fiber Transmission, Studies in Telecommunication 6 (ed. by K. Noda), North-Holland, Amsterdam 1986.
- [5] Venkatesulu, M. and Bhaskar, T.G., Self-adjoint boundary value problems associated with a pair of mixed linear ordinary differential equations, J. Math. Anal. Appl. 144:2 (1989), 322-341.
- [6] Venkatesulu, M. and Bhaskar, T.G., Solutions of initial value problems associated with a pair of mixed linear ordinary differential equations, J. Math. Anal. Appl. 148:1 (1990), 63-78.