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ABSTRACT

Solutions of initial value problems associated with a pair of ordinary differ-
ential systems (L1,L2) defined on two adjacent intervals 11 and 12 and satisfying
certain interface-spatial conditions at the common end (interface) point are
studied.
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1. Introduction

In the studies of acoustic waveguides in ocean [1], optical fiber transmission [4], soliton theory
[3], etc., we encounter a new class of problems of the type

dfklLlf1 --.aPk-- Of1 defined on an interval I1

and
m k
X-"--, df2_

L2f2 v.,_aI- 2f2 defined on an adjacent interval I2,

where O1, 02 are constants, intervals I and 12 have common end (interface) point t c, and the
functions fl, f2 are required to satisfy certain interface conditions at t c. In most of the cases,
the complete set of physical conditions on the system gives rise to self adjoint eigenvalue problems
associated with the pair (L1,L2). In some cases, however, the physical conditions at the interface
may be inadequate to describe the problem in a mathematically sound manner. In such a situa-

tion, when the problem is formulated mathematically, it becomes ill-posed, and therefore cannot
be solved effectively (uniquely) using existing methods. With the introduction of interface-spatial
conditions (entirely a new concept), we shall be able to convert these ill-posed problems into well-
posed problems and this justifies their mathematical study.

In a series of papers, we wish to develop a unified approach to these interface-spatial
problems for both the regular and the singular cases. In the present paper, for the first time, we
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shall study the initial value problems (IVPs) for a pair of linear first order ordinary differential
systems satisfying certain interface-spatial conditions.

Before proving the main theorems, we introduce a few notations and make some assumptions.
For any compact interval J of N and for any non-negative integer k, let Ca(J) denote the space of
/a-times continuously differentiable complex-valued functions defined on J. If I is a non-compact
interval of R, CI(I) denotes the collection of all complex-valued functions f defined on I whose
restriction f lj to any compact subinterval J of I belongs to Ck(J). Let ACk(I) denote the
space of all complex-valued functions I which have (/-1) derivatives on I, and, the (k-t)th

derivative is absolutely continuous over each compact subinterval of I. Let 11 (a, el, 12 -[c, b),
-oo_<a<c<b_< +oo, and let f(J) denote the jth derivative off. For a matrix A, let R(A)
and p(A) denote the range and rank of A. Let Cn denote the complex n-dimensional space.

Let Al(t) (A2(t)) be matrix valued functions of order n x n (m x m), whose entries belong to
C(I1) (Cd(/2)). Let bl(t (b2(t)) be a vector-valued function of order n x 1 (mx 1), whose entries
are integrable over every compact subinterval of I1 (I2).

Let the functions Pk e Ck(I) (/ 0,1,...,n) Q e Ca(I2) (k 0,1,...,m) Pn(t) 7 q} on I
and Qm(t)5/: on 12. Let gl(g2) be a measurable complex-valued function defined on I1 (I2)
which is integrable over every compact subinterval of I1(I2).

Without loss of generality, we assume n>_m. Let A and B be mxn and mxm matrices
with complex entries respectively, and R(A)- R(B). Consequently, p(A)- p(B)-’d( <_ m).
Let N be a subspace of R(A), and the dimension of N equals d’. Let tie Ii (i-1,2),
C column (Co, c1,... cn 1) E Cn, and D column(d0, dl,... dm 1) E Cm. Let Y1 column
(Yll,Yl2,"" Yln) and Y2 clumn(Y21, Y22,’" Y2m)"

Consider the following interface-spatially mixed pair of linear first order ordinary
differential systems:

Yi AI(t)Y1 -t-bl(t), t E 11, (1)

Y’2 A2(t)Y2 + b2(t), E 12, (2)

AYI(C)- BY2(c) E N. (3)
Also, consider the initial conditions

YI(C)=C (4)
and

Y2(c) D. (5)

We call problems (1)-(3) and (4)((5)) the interface-spatially mixed initial value problems
(IFSIVP) (I)((II)).

Consider the following interface-spatially mixed pair of linear ordinary differential equa-
tions (of orders n and m):

n d2flLlfl E Pkdt2 gl, t E I1, (6)
k=0

L2f2 Qk
d

g2, t E I2, (7)
k =o dt

where
Aft(c)- Bf2(c E N,

71 -clumn(fl,fl),...,fn-l),
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and

72 column (f2, fl),..., fm 1)).
Also consider the initial conditions

fJ)(tl) cj (j 0,1,...,n- 1), (9)

fJ)(t2) dj (j O, 1,...,m-1). (10)

We call problems (6)-(8) and (9) ((10))the interface-spatially mixed initial value problems
(IFSIVP) (I’) ((II’)).

Definition 1: We call a pair of vector-valued functions (Y1,Y2), defined on 11 x 12, an

interface-spatially mixed (IFS) solution of (1)-(2)if
(i)
(ii)
(iii)
(iv)

and

Y.j E ACI(I1) (j- 1,...,n),
Y1 satisfies equation (1) for almost all t E I1,
Y2j e ACI(I2) (j- 1,...,m),
Y2 satisfies equation (2) for almost all t 12,

the pair (Y, Y2)satisfies relation (3).
Definition 2: We call a pair of complex-valued functions (fl,f2), defined on 11 x 12, an

interface-spatially mixed (IFS) solution of (6)-(7) if

(i) I e Acn(I1) and satisfies equation (6) for almost all t G I,
(ii) I2 6 AC’(I2) and satisfies equation (7) for almost all t e 12

and
(iii) the pair (f, f)satisfies relation (8).
Definition 3: We call a pair of vector-valued functions (Y1,Y2), defined on 11 x 12, an

interface-spatially mixed solution of IFSIVP(I) ((II)) if
(i) (Yl, Y2)is an IFS solution of (1)-(2)

and
(ii) YI(Y2) satisfies condition (4) ((5)).
Definition 4: We call a pair of complex-valued functions (fl, f2), defined on 11 x 12, an

interface-spatially mixed solution of IFSIVP(I’) ((II’)) if
(i) (/1, I2)is a IFS solution of (6)-(7)

and
(ii) (/1, Ie) satisfies condition (9) ((10)).
Definition 5: We say that a collection of non-trivial pairs (YI, Y12),...,(Ypl, Yp2) are

linearly independent if for any set of scalars Cl,...,cp,
p

E ci(Yil’ Yi2) (0, O)
i--0

implies that c1 c2 =... Cp O.

Similarly, we define the linear independency of a collection of pairs (fll, f12),’", (fpl, fp2)"
Definition 6: By an IFS fundamental system for the IFSIVP(I) ((II)), we mean a set of

linearly independent IFS solutions of IFSIVP(I) ((II)) which span the IFS solution space of
IFSIVP(I) ((II)).

Similarly, we define a fundamental system for the IFSIVP(I’) ((II’)).
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2. Main Theorems

Theorem 1: (a) If either bl(t 5 0, b2(t 5 O, or C is a nonzero vector, then the IFSVP(I)
has an IFCo fundamental system consisting of "m- d + d’+ 1" linearly independent IFS solutions

of IFSIVP(I). If bl(t --0, b2(t _= 0, and C is a zero vector, then the IFSIVP(I) has an

fundamental system consisting of "m- d + d’" linearly independent IFS solutions of IFSIVP(I).
(b) If either bl(t 5 O, b2(t 5 0, or D is a nonzero vector, then the IFSIVP(II) has a

fundamental system consisting of "n d + d’ + 1" linearly independent IFS solutions of
IFSIVP(II). If bl(t _= 0, b2(t 0, and D is a zero vector, then the IFSIVP(II) has an IFS
fundamental system consisting of "n- d + d’" linearly independent IFS solutions of IFSIVP(II).

Proof: Since the components of bl(t are measurable complex-valued functions integrable on

11 by Theorem 2.1 [2], there exists a unique vector-valued function (t)=column(l(t),
2(t),..., en(t)) defined on 11 with ej E ACI(I1) such that

’(t) Al(t)(t) + bl(t), t E I1,

(tl) C.

Let ,c)= r]. Since R(A)- R(B), there exists a vector flE Cm such that At] B. If
Ar] 5/= 0, flu is a nonzero vector, and if A 0, then we take 0 to be zero vector. Since p(B) d,
there exist (m-d) linearly independent vectors t31,/32,...,m-dE Cm which are solutions of
B/? 0. Clearly, /3, 0 + 31,...,/0 +/3m-d are (m- d + 1) or (m- d) linearly independent
solutions of A B, affected by Ar] 5/= 0 or A 0.

Also, since the components of b2(t are measurable complex-valued functions integrable on I2,
there exists a unique vector-valued function o(t)=column (01(t),...,on(t))defined on

12 with oj(t)E ACI(I2)such that

’(t) A2(t)o(t + b2(t), t E 12,
#0.

Let i(t)-column(il(t),...,in(t)), defined on 12 with ij E ACI(I2), be the unique
vector-valued function such that

i(t) A2(t)i(t), t E 12,

i(c)_/i, i-1,...,m-d.

Clearly, 1,-", em- d are linearly independent and if/30 5 0, then.e0,... em- d are also linearly
independent.

Choose a basis Ct
1

ct
d’ /3rn-d +,..., for N, and let fl- be a solution of

--Bm-d+i=o (i- l,...,d’).
Since c are linearly independent m-d+ds are also linearly independent. In fact,
21 -.,m-d+d’ are linearly independent.

Again, let i(t), defined on I2, be a unique vector-valued function such that

i(t) A2(t)i(t), E 12,

i(c) --/i (i rn d + 1,..., rn d + d’).
Clearly, 1,’", em d + d’ are linearly independent.

Now, define

(Y01, Y02) (, 0),
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(Yil,Yi2)-(,o+i) (i-1,...,m-d+d’).

Clearly, each pair (Yil,Yi2) (i-0,1,...,m-d+d’)is an IFS solution of (1)-(2).
bl(t 0, b2(t 0, or C 0, then the pair (, o) is nontrivial.

Moreover, if

Claim: For bl(t)0, b20 or C=0, {(Yil, Yi2),i=O,...,m-d+d’} is an IFS fundamen-
tal system for the IFSIVP(I).

m-d +d
Let ai(Yil, Yi2) (0, 0), where ais are scalars. Then

=0 m-d+d m-d+d

E aiYil 0 and E aiYi2 O. (11)
z=O i=0

Consequently, we get
m-d +d

E ai[A(c)- B(o(C) + i(c))] + ao(A(c Bo(C)) 0,
i---1

m -d

E ai(-Bi(c))--O’
i.e., m- d +

m-d +d

E aio O, which implies that a 0 (i m d + 1,..., m d + d’).
i-’m-d+l

Hence, relation (11) becomes
m-d m-d

E ai 0 and E ai(O + i) + Aoo O.
i=0 i=1

Again, from relation (12), we get

E hi)Co(C)-4- E aii(c) O,
i=0 i-1

(12)

(E ai)0+ E aii- O. (13)
i=0 i=1

If o O, then 0, ill,..., tim d, are linearly independent and hence a 0 (i O, 1,..., m d). If
/-0, then relation (13) gives ai-O (i-1,...,m-d)and from relation (12) we get
ao(, o) (0, 0), which implies that ao 0. Thus, (Yil, Yi2) (i O, 1,..., m d + d’) are linear-
ly independent.

Now, let (Y1, Y2) be any solution of the IFSIVP(I). We note that Y1 "Case (i): Suppose that AYe(c)- BY2(c O. Furthermore, since A(c)- Bo(C 0, we

get B(Y2(c)-o(C))-0, which implies that Y2(c)-0(c) belongs to the null space of B.
Therefore, there exist constants a (i- 1,..., m- d) such that

m-d

Y2(c) 0(c) E aii’

m-d m-d m-d

y2(c 0 + E aii (1- E ai) + E ai( +
i=1 i=1 i=1

(1 E ai)o(C) + E ai(o(C)-t-
i--1 i=1

(1- E ai)Yo2(C) + E aiYi2(c)"
i=1 i=1
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Thus, by the uniqueness of the solution of IVPs for a system of ordinary differential equations, we

have m-d m-d

(YI’ Y2) (1 E ai)(Yol’ Yo2) + E ai(Yil’ Yi2)"
i=1 i=1

d
Case (ii): Suppose that AYI(C BY2(c a + m-dCi, where ais are scalars.

i=1
Define a pair (K1,K2) by

m-d +d m-d +d
(K1,K2) (1 E ai)(Yol’Y02) -’[- E ai(Yil’Yi2)"

m-d-t-1 m-d + l
(14)

Then (K1,K2) is an IFS solution of IFSIVP(I). Consequently, we get

B(r2(c K2(c)) 0.

Therefore, there exist scalars a (i- 1,..., m- d) such that
m-d

Y2(c) K2(c) E ai/3i’
i=1

i.e., m-d

Y2(c) --K2(c)+ E aii
i=1

m-d m-d

K2(c)- (E ai)t30 + E ai(0 + fli)
i=1 i=1

m-d m-d

K2(c)- (E ai)o(C) + E ai(o(C) + g2i(c))
i=1 i=1

Thus,
(15)

(YI’Y2) -(KI’K2)- E ai(Yol’Yo2)-t- E ai(Yil’Yi2)
i=1 i=1

m-d +d m-d +d
=(1- E ai)(Yol,Yo2)+ E ai(Yil,Yi2).

i=1 i=1

Hence, the claim is proved. If bl(t -0, b2(t -0, and C- 0, then (,0) is a trivial pair and
the pairs (Yi,Yi2) (i- 1,...,m-d +d’) form an IFS fundamental system for the IFSIVP(I).

This completes the proof of part (a). Part (b)can proved similarly.

Theorem 2: There exist exactly "n + rn d + d’ linearly independent (IFS) solutions of

Yi AI(t)Y1, t E 11, (16)

Y’2- A2(t)Y2, t e 12, (17)
satisfying the interface-spatial conditions

(18)AYI(C BY2(c e N.

Proof: Since p(A)-p(B)-’d, there exists a basis {r]l,...,r]n} for Cn such that
{r]l,...,/]n-d} forms a basis for the null-space of A, and a basis {/l,...,/m} for CTM such that
{/d + 1,..., /3TM} forms a basis for the null space of B.

Let il (whose components belong to AC(I1)) be the unique solution of
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Y’I AI(t)Y1, t E I,
Yl(C ]i (i- 1,...,n).

Since R(A)- R(B), for each i-n-d/ 1,...,n, there exist scalars 0j
that d

Aqi- E OB/3j"
j=l

Let Yi2 (with components belonging to AC(I2) be the unique solution of

Y’2- A2(t)Y2, t 12,

Y2(c)_B3i-n+d (i-n+l,...,n+-d).
Let (1,...,ad’} be a basis for N and choose i G Cm such that-- (- 1,...,’).
Let i (with components belonging to AC(I2)) be the unique solution of

Y- A(t)Y, t I,
Y(c) - +

Define the pairs

(j 1,...,d) such

(i n + m-d + 1,..., n + m-d +d’).

(Yil,Yi2)

Clearly each pair (Y/I, Yi2) is a nontrival IFS solution of (16)-(18).
Claim: (Yix, Yi2) (i 1,...,n + m-d +d’) form an IFS fundamental system for the IFS

solutions of (16)-(18).
First, we shall show that the pairs (Yil, Yi2) are linearly independent. To this end, let

n+m-d+d

E ai(ril, Yi) (0, 0), where ais are scalars.
i=1

Then, n n + m d + d’

Eaiil --0 and E aii2--0. (19)
i=1 i=n-d+l

(Yil,0) (i-l,...,n-d),

(1,) (i a + 1,..., ),

(O, Yi2) (i n + l,. n 4- m d + d’).

Since Nil(C) (i-1,...,n +m-d +d’) are linearly independent, from the first equation of
relation (19) we get a 0 (i 1,..., n). Consequently, the second equation reduces to

n+m-d+d

E aiYi2-O" (20)
i=n+l

Evaluating the above expression at t-c and then applying the matrix B to the resulting
expression, we get

n+m-d+d
O,aio

n- m +d

i=n+m-d+l

which implies that a O, for n + m d + 1,..., n + m d + d’. Thus, relation (20) reduces to
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n+m-d_, aiYi2 0, and since Yi2(c) (i n + 1,..., n + rn- d) are linearly independent (this fact can
i--n+l

be easily verified), it follows that
ai-O (i-n+l,...,n+m-d).

This proves the linear independency of (Yil, Yi2)s.
Next, let (Y1,Y2) be any IFS solution of (16)-(18). Choose scalars a (i- 1,...,n) such that

n

YI(C) E ai7i" (21)
i=1

Case (1): Suppose that AYI(C BY2(c O.
n

Define the pair (K1,K2)- ’ ai(YilYi2 ).
n i--1

Then Kl(C)- aiYil(C)-Yl(C). Hence, Y1-Ki and B(Y2(c)-K2(c))-O which
implies that i- 1

n+m-d

Y2(c) K2(c)+ E aii-n +d for some scalars ais
i=n+l

Thus,

n+m-d
Y2(c) K2(c)+ E aiYi2(c)"

i’-n+l

n-l-m-d

i=n+l

n+m-d

i=1

Case (2): Suppose that A(YI(C -BY2(c --are scalars.
nTm-dTd

Define (H1,H2)- E ai(Yia,Yi2)
i=n+m-d+l

n nt- m d .q- d

i=nTrn-dT1
aioi n m -b d, where ais

Thus,

Then A(HI(C Yl(c))- B(H2(c Y2(c)) 0, and therefore, by case (1),
nTm-d

(Y1 HI, Y2- H2) E ai(Yil, Yi2) for some scalars ais.
i=1

nTm-d
(YI’Y2) (Hi’H2)+ E ai(Yil’Yi2)

i-1

nTm-dTd

E ai(ril, Yi2)"
i=1

This completes the proof.

Remark 1: The assumption d’= d yields that there are no explicit boundary conditions at
the interface point.

If d’ 0, then the interface-spatial condition becomes

AYI(c)-BY2(c)-O,

which is generally called the interface condition.

Since higher order ordinary differential equations can be converted into a system of first order
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equations, Theorems 1 and 2 yield the following results for the pair (L1,L2):
Theorem 3: (a) If either gl # O, 92 O, or Co, Cl,...,Cn_ 1 are not all zeros, then the

IFSIVP(I’) has a fundamental system consisting of "m-d +d’+ 1" linearly independent
solutions of IFSIVP(I’). If gl =- O, g2 =- O, and Co, Cl,...,Cn_ 1 are all zeros, then the IFSIVP(I’)
has a IFS fundamental system consisting of "m-d+d’" linearly independent solutions of
IFSIVP(I’).

(b) If either 91 7 O, 92 O, or do, dl,...,dn_ 1 are not all zeros, then the IFSI’VP(II’) has a

IFS fundamental system consisting of "n-d +d’+ 1" linearly independent IFS solutions of
IFSIVP(II’). If 91 =- O, g2 O, and do, dl,...,dn_ 1 are all zeros, then the IFSIVP(II’) has an
IFS fundamental system consisting of "n-d+d’" linearly independent IFS solutions of
IFSIVP(II’).

Theorem 4: There exist exactly "n + m-d + d’" linearly independent (IFS) solutions of

Llf1=0, t G11
L2f2=0, tEI2,

satisfying the interface-spatial conditions

Afl(c Bf2(c G N.

Remark 4: For d’ d, Theorems 3 and 4 reduce to Theorems 1 and 4 of [6].
For d’= 0, Theorems 3 and 4 reduce to Theorems 3 and 6 of [6].
For d’ 0 as well as for the (m n) matrix A given by

mth column
T

1 0 ...0 0 0

A- 0 1... 0 0 0

0 0 1 0 0

and B equal to the (mx m) identity matrix, Theorems 3 and 4 reduce to Theorems 2 and 5 of [6].

3. Physical Examples

Example 1 Acoustic waveguides in ocean [1]: The following problem is encountered in the
study of acoustic waves in the ocean consisting of two layers: an outer layer of finite depth and
an inner layer of infinite depth:

d2fl + kf1 AI1 0 < t < d1 (22)Llfl dt2

d2f2 + kf2 Af2, dl < < t <_ + c, (23)L2f2 dt2

together with the end point conditions given by

--0 It f1‘ ’- 0,fl (0) t (24)

and the interface conditions given by
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fl(dl)- f2(dl), 1/Plf(dl) 1/P2f1)(d1). (25)

Here ill, f12 are constant densities of the two layers, kl,k2 are the constants which depend upon
the frequency constant and the constant sound velocities Cl, c2 of the two layers, respectively, is
an unknown constant, dI denotes the depth of the outer layer, and fl,f2 stand for the depth
eigenfunctions.

In this example, the interface conditions at t- dI of the two layers can be written in the
matrix form

0 1/pI fl)(dl) 0 1/pI fl)(dl)

Here A_( 1 o ), g-( 1 o )o / o /
,rankA-rankB-2, rn-n-d-2andd’-0.

Hence, by Theorem 3 and Remark 2, there exist a unique IFS solution for any IFSIVP
associated with (22)-(23) and (25). Also, By Theorem 4 and Remark 2, there exist exactly two
linearly independent IFS solutions of problems (22)-(23) and (25).

Example 2 Optical fiber transmission [4]: In the study of wave optics of step index fiber, we
encounter the following problem"

d2fl (rlk t2)f fl2fl 0 < t < a (26)LlfI dt2
+ lit + -u2/ 1

d2

_
L2f2

f2 _4_ l/t + (ri2k u2/t2)f2
2- f2,

dt2

together with the interface conditions at t- a, given by

a _< t < co, (27)

It Ifl(t) < -4-,ttlf2(t) o.
t---0

(29)

Here r]l and q2 are the refractive indices of the core and cladding, respectively, is the wave pro-
pagation constant, u is an integer k0 w/c, c is the prorogation velocity and w is the wave fre-
quency and fl and f2 are the field (electromagnetic) distributions of core and cladding, respective-
ly.

In this example, relation (28) gives continuity conditions at t a. Here A and B are the
2 2 identity matrices, n rn d 2 and d’= 0. Hence, by Theorem 3 and Remark 2, there
exists a unique IFS solution for IFSIVP associated with (26)-(28). Also, by Theorem 4 and
Remark 2, there exist exactly two linearly independent IFS (continuous) solutions of (26)-(28).

Example 3 One-dimensional scattering in quantum theorem [3]: In quantum theory, the
one-dimensional time-independent scattering problem with the delta function scattering potential
is represented by the problem:

d2fl-4-k2fl-O, -cx3<t<0, (30)Llfl dt2

L2f2-- d2f2dt2 + (/c2 "o)f2 O, 0 _< < + cx, (31)

together with the interface conditions given by

fl(O)- f2(O)--0, (32)
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fl)(0) fl)(0) P0fl (0), (33)

where k2- 2mE/h2, vo is a constant, and the functions fl and f2 are associated with the flux
density of the particle of the two regions, respectively. Here, m denotes the mass of the particle,
E denotes its total energy, and h denotes the Planck constant divided by 277. In this example,
the interface conditions at t 0 of the two regions can be written in the matrix form

Here
’o 1 fl)(o) 0 1 fl)(o)

(1 o)Uo 1

rankA=rankB=2, rn=n=d=2, andd’=0.

1 0 ),0 1

Hence, by Theorem 3 and Remark 2, there exists a unique IFS solution of any IFSIVP
associated with (3o)-(33). Aso, by Theorem 4 and Remark 2, there exist exactly two linearly
independent IFS solutions of (30)-(33).

Example 4: In this illustrative example, consider the following problem:

d2fl.-kf1-0, a<_t <_c,Llfl dt2
(34)

d2

L2f2_ f2+kf2_O, c<t<b
dt2

together with interface condition

and the end point conditions

(35)

fl(c) f2(c) (36)

fl(a) 0 f2(b), (37)

where kI and k2 are constants. Problems (34)-(37) can be thought of as the transverse vibrations
of a string stretched between a and b, fixed at a and b, with different uniform linear densities (in
the portion) between a and c and between c and b, and plucked at the point t c.

In this example, there is only one condition at the interface (i.e., the continuity condition),
and no definite relation between the derivatives is available. Therefore, we may take

fl)(c)- fl)(c) o, c e N, (38)

We note that relation (38) is not at all a restriction on derivatives.
and (38) can be written as

Consequently, relation (36)

Here,

eN, (39)fl)(c) 0 1 fl)(c)

A=B=the (2x2) identity matrix, n m d 2, and d’= 1. Therefore, by
Theorem 3, there exist one or two linearly independent IFS solutions of the IFSIVP associated
with problems (34)-(36) depending on whether the initial data is zero or nonzero. Also, by
Theorem 4, there exist three linearly independent IFS solutions of problems (34)-(36).
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Remark 3: The results of this paper are used in studying the deficiency indices and self-
adjoint boundary value problems associated with (L1,L2) satisfying interface-spatial conditions
which we shall establish elsewhere.
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