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ABSTRACT

We use the path-vMued process called the "Brownian snake" to investigate
the trace at the boundary of nonnegative solutions of a semilinear parabolic par-
tial differential equation. In particular, we characterize possible traces and in
dimension one we prove that nonnegative solutions are in one-to-one correspon-
dence with their traces at the origin. We also provide probabilistic representa-
tions for various classes of solutions.
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1. Introduction and Statement of the Results

The goal of this work is to develop a probabilistic approach for studying the trace at the
boundary of positive solutions to the semilinear parabolic equation

Ou 1/2Au-ont (1)U
2

This approach has been inspired by our previous work [14] and the recent paper of Dynkin and
Kuznetsov [7], which both dealt with the trace at the boundary for related semilinear elliptic par-
tial differential equations. Our main probabilistic tool is the path-valued process called the
Browniau snake, whose connections with semilinear partial differential equations have been investi-
gated in several recent papers [10, 13, 14]. Since the Brownian snake is closely related to the
super-Brownian motion, part of these connections can be viewed as a reformulation of Dynkin’s
important work on the relation between superprocesses and partial differential equations [3-5].
However, we think that the Brownian snake is more tractable, although less general, for certain
applications. In particular, it is not clear how to derive the results of [14] or of Section 4 of the
present work, using only the theory of superprocesses. On the other hand, it is very plausible that
superprocesses can be applied to extend a significant part of the present work to more general
equations where the nonlinear term u2 is replaced by us for 1 < c _< 2.

The problem of the trace at the boundary for semilinear elliptic or parabolic equations of type
(1) has also been studied recently by analytic methods. See in particular, Marcus and Vron [15].
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Very recently, as the final version of this work was in preparation, we received the note [16],
which announces results that generalize some of the statements below (Theorem 1 and the
analytic part of Theorem 4) to equations of form (1) with a nonlinearity up instead of u2, for any
p > 1. Nonetheless, we feel that it is worth developing the probabilistic approach, which in the
case p 2 gives slightly more precise results (in contrast to [16], we are able to characterize all
possible traces; see Proposition 2 below) and also yields explicit probabilistic formulas for the
solutions.

Let us now state our main results. For y E d and r > 0, we denote by B(y, r) the open ball
of radius r centered at y.

Theorem 1: Let be a domain in d and let u C1,2((0,cx)x ) be a nonnegative solution

of (1) in (O, oc) x a. Set

{y e f;Vr > 0 lim / u(t z)dzA
t--O

(,)
There exists a Radon measure , on f\A such that, for every 9 G Cc(a\A),

(u,)- lim / u(t z)(z)dz.
t--O

\A
The pair (A,u) is called the trace of u.

The method of proof gives precise information about the behavior of u near (0, y), when y
f\A. See Lemma 6 and the remark following the proof of Theorem 1 in Section 3.

Our second result gives a characterization of possible traces of a solution. It is obviously
analogous to Theorem 1.3 of Dynkin and Kuznetsov [7]. In this statement, "polar" means "polar
with respect to Brownian motion in Rd.,

Proposition 2: Let A be a closed subset of and let u be a Radon measure on \A. In
vai (A..) of a no.n  a iv  o1. ion of in

ary and sufficient that the following conditions hold:
(a) u does not charge polar sets.
(b) Let Ex(u) {y G A, Vr > O,u(B(y,r)) cx} be the set of explosion points of u and let

H be a polar subset of a such that A\H is closed and H V Ex(u)= . Then H O.
Proposition 2 resolves the problem of the existence of a solution with a given trace. We now

address the uniqueness problem when f- Nd. We use the probabilistic representation of
solutions involving the Brownian snake (Ws, s >_ 0) under its excursion measures Nx, x E Nd. A
brief presentation of these probabilistic objects is given in Section 2 below. Here, we simply note
that, under Nx, for every s >_ 0, Ws:[0,s]--d is a finite path in [d started at x and with
"lifetime" s" The lifetime process (s,s _> 0) is distributed under Nx according to the It
measure of positive excursions of a linear Brownian motion. For every _> 0, we set

t-{Ws(t),sO,st},
which corresponds to the values at time t of all paths Ws with lifetime s >- t. Let u be a finite
measure on Nd not charging polar sets. For every t > 0, we can consider the finite measure on
paths with lifetime t defined by

#z, t(dw) J u(dy)Pt(X, Y)Ptu(dw),
where pt(x,y) is the Brownian transition density, and Ptu denotes the law of the Brownian
bridge from x to y in time t. Following [2], we can associate with the measure #t x an additive
functional of the Brownian snake with initial point x. We denote by At’u- 1Ats’U,s _> 0) this
additive functional. By a monotonicity argument, the definition of At’u can be extended to the
case when u is a countable sum of finite measures not charging polar sets.
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Proposition 3: Suppose that f- d and let (A,) be a pair satisfying the conditions of Pro-
position 2. Then there exists a maximal nonnegative solution of (1) with trace (A,), and it is
given by the probabilistic formula

u(t,x)-2Nx(YtAeq))+2Nx l{ftA=O}(1-exp(-A 2)) (2)

If A is polar, u is the unique nonnegative solution with trace (A,u). On the other hand, if d >_ 2,
and if (A,0) is a possible trace, with A O, then there exist infinitely many solutions with the
trace (A, 0).

For a general choice of (A,u) in dimension of d _> 2, it is not easy to decide whether there is a

unique associated solution. A natural guess would be that uniqueness holds if and only if
A- Ex(u), but we were unable to prove this.

In dimension d 1, uniqueness always holds. This follows from the next theorem, where the
probabilistic representation of solutions is made somewhat more explicit by the following
considerations. For every t > 0, denote by Lt= Lts, s >_ 0) the local time process of (s,s >_ 0) at
level t. Then let X be the random measure on N" supported on S defined by

(Xt, 9) J dnts(Ws(t))"
0

Then [9] the distribution of (Xt, t > 0) under Nx is the canonical measure of super-Brownian
motion with initial point x. When d 1, it follows from well-known results (see e.g., Sugitani
[18], Theorem 1) that the measures X are absolutely continuous, and, more precisely, we may
write Xt(dY Yt(Y)dy where the process (Yt(y);t > 0, y ) is jointly continuous. With this
notation at hand, we can state our last result, which is analogous to the main result of [14].

Theorem 4: Let d-1 and f-R. The formula

u(t,x)-2Nx(tC?A O)+2Nx (l{tA:O}(1-exP-1/2]u(dY)Yt(y))) (3)

gives a one-to-one correspondence between nonnegative solutions of (1) and pairs (A,p), where A
is a closed subset of and, is a Radon measure on NA. gu is given by formula (3), the trace
of u is (A,

The paper is organized as follows. In Section 2, we recall the basic facts about the Brownian
snake, its additive functionals and the connections with solutions of (1). Several results of this sec-

tion are valid in a much greater generality, but we limited ourselves to those facts that are needed
in the proofs of the following sections. In Section 3, we give the proof of Theorem 1 and Pro-
positions 2 and 3. Several arguments of this section are inspired from [7], although our definition
of the trace is different and more analytic in the spirit of [15] and [16]. Finally, in Section 4, we

prove Theorem 4 following ideas from [14].

2. Preliminaries

2.1 Analytic Preliminaries

In view of the probabilistic representation, it will be preferable to deal with a slightly
modified form of equation (1). We shall be interested in solutions of the equation

0__u_u + 1/2An 2u (4)0t
in oc, 0) x f. Up to a trivial scale parameter, the change of variables t t reduces the study
of (1) to that of (4). Rather than proving the results stated in the introduction, we shall prove
below the equivalent statements concerning (4). As we shall deal only with nonnegative solu-
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tions, the word "solution" will always mean "nonnegative solution". A solution of (4) in the do-
main D of N x d is thus a nonnegative function u E C1’2(D) such that (4) holds pointwise in D.

Brownian motion in d will be denoted by . For every (t,x) x Nd, we will denote by

Pt, x the probability measure under which starts at x at time t (r is thus defined for r >

Let D be a bounded domain in NxNd. We denote by 7 the exit time of from D’r-
inf{r; (r, r) D}. A measurable subset H of OD is called total if Pt, x((r, r) H) 1, for every
(t,x) D. The following maximum principle for solutions of (4) can be found, in a more general
form, in the appendix of Dynkin [4].

Maximum principle: Let u1 and u2 be two (nonnegative) solutions of (4) in D. Assume that
u1-u2 is bounded above and that there exists a total subset H of OD such that for every
(r, y) H,

limsup (Ul(t,x) -u2(t,x)) <_ O.
Ds(t,x)-+(r,y)

Then uI _< u2.

2.2 The Brownian snake

It will be convenient to work in a time-inhomogeneous setting as described in [13], Section
2.1. Therefore, we slightly extend the notation of the introduction as follows. For every fixed
(t,y) N x Nd, we denote by rt, x the space of all finite continuous paths w’[t,]Nd such that
w(t)- x (here w can be any real number in [t, c)). We denote by (Ws, s >_ 0) the Brownian
snake in t,x and by Nt, x its excursion measure away from the trivial path in t,x with -t
(see [13], Section 2.1). Under Nt, x, each Ws:[t,s]--Nd is a finite path in Nd, started from x at
time t and stopped at time s" The distribution of (s,s >_ 0) under Nt, is the It8 measure of
excursions of linear Brownian motion above level t. Informally, the path Ws extends itself by
adding little pieces of Brownian motion when s increases, and erases itself when s decreases.

For w gt, x, we also denote by P*w the law of the Brownian snake started at w and stopped
when it first hits the trivial path of Irt, x (equivalently when first hits t).

The range and graph of the Brownian snake are defined respectively as

> 0, t _< _< > 0, t _< _<
Note that 1 and are compact connected subsets of [Rd and R x d, respectively. It is easy to
prove that for every g > 0,

Nt, x(J n B(x g)c 5 O) Cde
2 Nt, x(On[t+e,) xd 0)--(2e) -1

where cd is a positive constant (see e.g., [10]).
For t’ > t, we also set

Jt[t,t, {Ws(r); s >_ O,t <_ r <_ ’ A s}"
Let r > 0 and r() Nt, (%[t, + ] N B(x, r)c =/: ). We shall frequently use the fact that

limCr()-0. (5)
One way to derive (5) is to check from the Kolmogorov lemma that the paths Ws, s > 0, satisfy
a uniform HSlder condition in the variable t. In fact, results much more precise than (5) are
known. See in particular, Theorem 3.3 of [1].

As in Section 1, we write fr-{Ws(r)’s>-0,s>-r}, for every r_>t. Note that
Jr} x 5r- n ({r} x Nd). By a result of Dynkin [4], if H is a Borel subset of Nd and r > t,
Nt, x(fr N H q)) is positive if and only if H is not polar. This fact explains the relevance of polar
sets in our main results.
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2.3 Exit measures

We now consider a domain D in x d of the type (- c,a)x Q. As previously, we denote
by r the first exit time of Brownian motion from D and we also write r(w) for the first exit time
from D of a finite path w.

Assuming that (t,x)E D, we can define the exit measure of the Brownian snake from D
under the excursion measure N x (see [13], Section 2.2 or [10]). This measure, denoted by XD, is
a finite measure supported on (r(W,), W,(r(W))); s > 0, r(W) < c} C 0D. In the special case

D Da -cx3, a) x d, we can write XDa 5a (R) Xa, where Xa is a finite measure on d. This
definition is consistent with the notation of Section 1.

Let g be a nonnegative measurable function on 0D, which is bounded on the sets
0D A ([r,c)xEd). By applying Theorem 4.2 of [10] to the special case when the underlying
spatial motion is a space-time Brownian motion, we get that the function

u(t,x) -Nt, x(1-exp-<XD, g>), (t,x) ED,
solves the integral equation r

.(t, +

From this integral equation and the classical connections between (space-time) Brownian motion
and the heat equation, we easily deduce that the function u solves (4) in D.

Conversely, solutions of (4) can be represented in the previous form.

Mean value property: Let u be a solution of (4) in D. Let D’ be a subdomain of D of the
form D’--(- c, a’) ’, where a’ < a and ’ is a relatively compact subdomain of . Then, for
every (t, x) D’,

u(t, x) Nt, x(1 exp <XD’, u)).
This follows from the maximum principle applied to u and to the function

Nt,(1-- exp (xD’, u)) in the domain (r,a’)xf’,r < a’. We have seen that v solvesv(t, x) (4)
in D’ and from the integral equation satisfied by v, it is easy to verify that v has boundary value
u on a total subset of 0D’.

In the special case - Nd, we can take ’- B(0, R) and then let R--<x to obtain

u(t,x) Nt, z(1 -exp-(Xr, u(r )})
for t < r < a.

Remark: The previous mean value property can be stated in a much more general form.

2.4 Additive functionals

We now take D (- oe, 0)x f for simplicity. In order to construct more general solutions of
(4), we introduce additive functionals of the Brownian snake. Let be a finite measure on f.
We first assume that has a finite energy in the classical potential-theoretic sense:

/ /(dY)(dZ)fd(’Y-Z’)<cx3’
where fl(r)-l,f2(r)-log+(1/r), and fd(r)--r2-d ifd>3. If t<0 and x,y, we denote

tOby Pxy the law of the Brownian bridge started from x at time t and conditioned to be at y at
time 0. We can view Ptx as a probability measure on the set {w e qirt, x, 0}. We also denote

by ptO, the law of the bridge conditioned to remain inside . We setxy
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f#t

where pr(X,y) stands for the transition density of Brownian motion killed when it exits Ft. We
can interpret t,x as the law of the h-transform of a space-time Brownian motion in D started at
(t,x) corresponding to the harmonic function h(t,x)- f u(dy)p t(x, y).

The energy of t,x with respect to the Brownian snake in t,x is easily computed from [12]
Proposition 1.1"

e("t, x) 2Et, z drh(r, r)2 2 dr dyp_ t(x, y) u(dz)p r(Y, z)

Thus,
("t, x)2 f / u(dz)u(dz’)Ft, x(z’z’)’

0
where Ft, (z, z’) 2 f dr f dypr t(x, y)p r(Y, z)p r(Y, Z’). Elementary estimates give the

d
bound Ft,(z,z’ C(t)fd(lZ-z’l), with a constant C(t)< depending only on t. Therefore
our assumption on guarantees that (Pt, x) < "

We can then use [2] Theorem 5 to construct the continuous additive functional associated
with the measure t,z, which we denote by A’- (A’, s _> 0) (we drop (t,x)in the notation
since it is understood that we work under the measure Nt, x)" For any nonnegative measurable
function F on t,x, we have

0

An approximation for Au’ can also be given as follows. or every r >0, set

D , r) x a, and make the convention that h 0 on , 0) x 0a. Then,

Aa lim(xDr, h} (7)
r0

in L2(Nt, x) (compare with [13], Section 4.4). This follows from standard energy calculations" for

t < r < O, (xDr, h)- A’r, where Au’’r is the additive functional whose associated measure

t,x,r is the image of t,x under the mapping ww][t,r]. Then observe that Pt, x,r converges to
in the energy norm.t,x
It is easy to extend the previous construction to the case when u is a finite measure that does

not charge polar sets. By a classical result, we may write u- limUn, where the measures un

have a finite energy. Then, we may define A’- limTAun’ for every s0, Nt, x a.e. By (6),
Nt, z(AU) h(t,x)< , so that A<, Nt, x a.e. In addition, from the time-reversal
invariance property of additive functions ([2] Theorem 5), we have also A-A’=

-As ), for every s O, Nt, x a.e. It follows that the convergence of Ash’ to A’
is uniform in s 0, and we easily conclude that Au’ is also a continuous additive functional for
which formula (6) still holds.

Proposition 5: Let be a finite measure on that does not charge polar sets.
(t, ) , 0) ,

,,(t,) ,( -x- A).
The function uu, is the unique nonnegative solution of the integral equation

For every
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In particular, uu,t solves (4) in (-c,0). In addition, for any bounded continuous function
on , we have

lim J (t, x) / (dx)(x).

Proof: Write u-u, and h(t,x)- f(dy)pt(x,y as previously. We use the strong

Markov property under t,x [10] and the fct that A"’ is an additive functional to obtain

u(t,x) Nt, dA’ aexp (Aa A’a) Nt, x dA’aE(exp-Aa)
0 0

By (6) and the form of the measure #t,, we know that dA’fl a.e. Ws is a finite path in Q

started at time t and stopped at time 0. We can use [10] Proposition 2.5 to compute

Ews*(exp A). Approximation (7) allows us to verify that, under es,A- EA(wi),
in the notation of this proposition, and so we get t,z a.e., dA’ a.e.,

0

(xp-A) xp- ] dn, w()(1 -xp- A).
Hence, 0

by (6). The proof of (8) is then completed by routine calculations. Using simple properties of the
law of the Brownian bridge, we get

u(, z) h(, ) 2 f u(d)pa_ t(,)Ea (r, w(r))exp (s, w(s))

e(,h(, (e), e( )p(,

h(t, x) 2Et, x dr u(r, r)2

where in the last equality we used the previous displayed formula for u.

Since h is space-time harmonic (for + A)in D, it is easy to verify that u solves (4). The
uniqueness of the nonnegative solution of (6) follows by the same arguments as in the uniqueness
part of the proof of Proposition 4.1 in [13]. Alternatively, this uniqueness can also be obtained as

very special case of Theorem 1.1 in [6].
To prove the last assertion, we first assume that has a finite energy. Consider the case

1, and note that u(t,x) h(t,x) f (dy)p_ t(x, y). It follows that

]" et, (, et, -()p (,)
d

0

d
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-2t

0

which tends to 0 as tO by the dominated convergence theorem. Hence,

/ dxu(’, x)- lim / dxh(,, x)- (u 1).lim
tTo tTo

Then, it is sufficient to consider the case 0

_
p

_
1. In this case,

lim sup f dxa(x)u(t, x) <_ lim sup f dx(x)h(t, x) (,, ),
tT0 J tT0 J

and replacing p by 1- yields the desired result. FinMly straightforward monotonicity argu-
ment makes it possible to drop the finite energy assumption.

Remark: Dynkin and Kuznetsov [6] solve integrM equations of a more generM form than (6)
in terms of additive functionals of superprocesses. As consequence of their results ([6], Theorem
1.3), the condition that u does not charge polar sets is necessary for the existence of (nonnega-
tive) solution of (6). A proof of this fact using the Brownian snake can also be given Mong the
lines of the proof of Proposition 4.3 in [13].

2.5 Singular solutions

It is also easy to get a probabilistic representation for solutions that tend to infinity on a part
of the boundary. We limit ourselves to a special case that will be needed later. Let D
(- cx3, 0) as previously. Define under Nt, x the graph of the Brownian snake in D by

{w(); _> 0, _< _< (w) .
Note that the support of XD is contained in Df3 0D. Let U be a measurable subset of cOD, and

let u be a finite measure on d not charging polar sets. Write Au- Au’ for simplicity. The
function

u(t, x) Nt, x(OD rq U # O) + Nt, x(D U 0;1 exp A), (t, x) D,
is a solution of (4) in D. The easiest way to verify this fact is to use the special Markov property
for the nrownian snake [13]. Note that u(t,x)-Nt, x(1-e-Z), where_ Z-A+
oo-1 oD Let D’- (- oo, a)x ft’ be a subdomain of D, with a < 0 and ’ C . Then if

{
(wi, I) denote the excursions of the nrownian snake outside D’ (see [13]), it is easy to verify
that Z Z(wi), Nt, x a.e. for (t,x) D (use (7) to deal with the additive functional part). The
special Markov property then gives

u(t,x) Nt, x(1 -exp--{xD’,u))
and, as we saw previously, this implies that u solves (4) in D’.

Let (r, y) belong to the relative interior of U in OD. Suppose that either r 0 or y is regular
for c (with respect to Brownian motion). Then, by writing u(t,x)>_ Nt, x(1-exp-n(xD, 1u)),
it is easy to verify that u has boundary value + oc at (r, y).

3. The Trace of a Solution

The next lemma is the key to the proof of Theorem 1.
tion 5.

Recall the notation uu, ft from Proposi-
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Lemma 6" Let u be a (nonnegative) solution of(4) in the domain (-cx,O)xa. Let B be an

open ball whose closure B is contained in Q. Suppose that there exists a neighborhood B’ of B in
such that

B

Then there exists a finite measure u on B not charging polar sets such thai, (,) <_ (, ), v(, ) oo, 0) B,

and, for every compact subset K of B,
lim sup u(t,y) Uu, B(t,Y) --0. (9)
tT0 yEK

Proof: We may assume that B’ is a ball and B’ C . Choose a sequence tnO such that

sup f u(tn, y)dy < c. (10)
J
B’

We set Dn-(-oO, tn) xB, D’n-(-oO, tn) xB’,D-(-oo, O) xB and D’-(-oo, O) xB’. We
also denote by rn, rn and r the first exit times from Dn, Dn and D, respectively. For (t x) G D’
set

vn(t, x) Nt, x(1 exp (XDn," 1 B,U)){tn} x

By the results recalled in Section 2.3, vn solves the integral equation

Vn(t x) + 2Et, / Vn(r r)2dr Et, ,(U(tn, tn)l{rn in}).
From (10), we get for every (t, x) E D’

and so

sup E z(U(tn,t )1 })<oo,
n: n > n {rn tn

sup Et, xJ vn(r,r)2dr < c. (11)
n: n >

Choose r > 0 such that B(y, r)C B’ if y E B. Then, the "mean value property" of solutions
of (4) gives for (t,x) Dn,

u(t,x) Nt, x(1 exp (XD, u))

_< Nt, x((1 exp- (XD, u))l{% c B(x,r)})+Nt, x(%B(x,r)C O)

_< v(t, x) + cr- ,
because on the event {% B(x, r)}, it is clear that XD is supported on {t} x B’. From the last
bound, (11), and Fatou’s lemma, we get for (t,x)e D that

,] (,): < . (1)

We then set for (t,x) D
un(t,x Nt,x(1 exp- (XDn, l{tn} x Bu))"
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Note that Un(t,x <_ Nt, x(1-exp-(xDn, u)) u(t,x). Furthermore, u solves (4) in Dn
satisfies the integral equation

Un(t’x)+ 2Et’xJ drun(r’r)2 Et’x((l(tn} BU)(’n’rn))

/
B

From this integral equation, we easily see that

lim Un(t,x)
0 if r < tn, Y OB,

D (t,x)+(r,v) [ U(tn, Y if r-- t,y B.

Since un + 1 u on {tn} x B, the maximum principle implies that un+ un in Dn.
therefore set for (t,x) D,

and

We can

Replacing (tn) by a subsequence, we may assume that the measures 1B(Y)U(tn, Y)dy converge
weakly to a finite measure (dy) on B. We let u be the restriction of r on B. We can then pass
to the limit noo in the integral equation for Un, using the weak convergence of the measures

1B(Y)u(tn, y)dy the bound un <_ u, and (12) to justify dominated convergence. In the limit we

get

J J
B

By Proposition 5, this exactly means that v- uu, B. Furthermore, by the remark at the end of
Subsection 2.4, the existence of a nonnegative solution to the previous integral equation implies
that u does not charge polar sets.

To verify (9), note that suppxDnc [t, tn] x -Jt[t,0], Nt, x a.e. Let K be a compact subset of
B, and let r > 0 be such that B(y, r) C B for every y G K. By the previous observation, if x G K
and < tn,

u(t x) < N ((1-exp-(xDn, u))l x’ {[t,0] c B(,)}) +t, ([t,0] B(,r) 0)

_<Nt, x(1-exp-(xDn, l{tn}xBu))+Nt,x([t,O]CIB(x,r)c

=Un(t,x)+r(--t).
By passing to the limit n--,oc, we get u(t,x)< Uu, B(t,x)+ Cr(--t), for every (t,x) (--oc,0)
g. Recall from (5) that r(- t)0 as tT0. Since we already know that uu, B < un < u in On, the
proof of (9) is complete.

Proof of Theorem 1: Let u be a solution of (4) in c, 0) x 2. Set

{yA
tT0

(u,)
Note that A is a closed subset of f. By Lemma 6 and the last assertion of Proposition 5, for
every x G f\A, there exists an open ball Bx centered at x, contained in f\A, and a finite measure
uB on Bx not charging polar sets such that

x

lim/ dyu(t,y)p(y)- f uB (dy)p(y)
tT0 x

B
for every Cc(Bx). Standard arguments then give the existence of Radon measure u on \A
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not charging polar sets and such that

lim]tT0 dyu(t,y)p(y)- /u(dy)p(y),
n\A

for every E Cc(\A). Theorem 1 follows. El

Remark: The pair (A,u) is called the trace of . As a consequence of Lemma 6, we also
arrive at the following fact that will be needed alter. Let uI and u2 be two solutions of (4) in

OO, 0) X 1 and oo, 0) x 22, respectively, with respective traces (A1,/21) and (A2, 2)" Sup-
pose that there exists a ball B such that B C (fl\A1)r3 (f2\A2) and the measures t/1 and u2 co-
incide on a neighborhood of B. Then,

lim sup ttl(t, X) u2(t x) O.
tT0

This follows from_ (9) by comparing uI and u2 with the solution uu, B,, where B’ is a suitable
neighborhood of B and u stands for the restriction of Ul, or u2, on B’.

The proof of Proposition 2 depends on the following two lemmas.

Lemma 7: Let (A,u) be the trace of a solution u of (4) in (-(x,O)xf. Property (b) of
Proposition 2 holds for the pair (A, u).

Proof: Let H be as in property (b), and suppose that He0. Then, let xGH and let B be
an open ball centered at x such that B N A is polar and u(B’) < (x for a certain neighborhood B’
of B. The existence of follows from our assumptions on H. Denote by uB, the restriction of u

on B’ and write AuB’’-. Finally, let (9 71A) denote the open e-neighborhood of 71A in Nd

and for (t, y) G D" c, O) x B, set

ve(t,y Nt, u({%[t,olnBC :/: 0} U {Yo n (B nA) :
+Nt, u({%[t,o]nB-O}n{2on(B nA)-O}; 1-exp-A ).

The function vs is of the type considered in Subsection 2.5. Hence, v solves (4) in D. Further-
more, for r < O, z OB,

lim v(t, y) c.
(t,)--(,z)

In addition, if z (B r-I A) r-1 B, a simple argument using (5) shows that

lim (v(t, y) Nt, u( r? Dc :/: ,)) O,
(t, )-(0, )

and because Nt, u( r Dc - 0)is the maximal solution in D (Dynkin [4]), we also have

limsup (u(t,y) ve(t,y)) <_ O.
(t, u)-(0, )

This inequality also holds if z //\A, from the trivial bound Nt,v(1-exp-A2B’ <_ ve(t,y) and
the remark following the proof of Theorem 1.

By combining the previous observations, we have

limsup (u(t, y) re(t, y)) <_ O,
(t,y)--,(r,z)

for every (r,z) 0D. In particular, u-v is bounded above on the sets of the form (a,O) B,
and the maximum principle implies that u _< v in D. By letting 0, we get

tl(t,y)

_
Nt, y({’-J[t,O] r-’l Bc : 0} U {o r-"l (B r’l A) -)/: 0})
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+ N (Jo o VI BC O) gl ( o VI B CIA)

Nt, y(Jo[t,o]OBc O) +Nt, y(-/J[t,o]FIBc
1-exp- A2B’
1 exp A2B’),

because the polar set B N A is not hit by 0, Nt, v a.e. This bound and (5) imply that
uBlimsup (u(t,y)-Nt, y(1-exp- Aoo ))_<0,

(t, )(0, )

uniformly when z varies over a compact subset of B. Clearly, this implies that B N A- 0 which
gives a contradiction.

Lemma 8: Let A be a closed subset of Nd and let v(t,y)- Nt, y(fo fl A 0). The set

H- {y
tto

s polar.
B(,

Proof: It is relatively easy to give an analytic proof along the lines of the proof of Lemma 5.1
in [7]. We will give a probabilistic argument that does not use the connections with partial differ-
ential equations. It is sufficient to prove that, if B is an open ball such that, for a certain
sequence tnTO,

sup I v(tn, z)dz < oo,
J

then B r3 A is polar. B

First note that, by the first-moment formula for Xt, if t < tn and x E [d,

Nt, x((X,n, 1Bv(tn, ))) Et, x(1B(tn)v(tn,tn)),
and so by our assumption,

1BV(tn, ))) <sup Nt, x((Xtnn: n <
On the other hand, by the special Markov property [13], Nt, x((Xtn, lBv(tn,.)))is the expected

number (under Nt.x) of the "excursions" of the Brownian snake in [tn, oo x Nd that start from

{tn} x B and hit{0} x A. Letting n+oo, we get from the previous bound that

Nt, x(Card{s >_ 0; (s O, Ws(O B f3 A)) < oo.

This implies that the set {w;(- 0, w(0) B r3A} is semipolar for the Brownian snake, hence
also Mt, x-polar in the terminology of [9] (because the Brownian snake is a symmetric Markov
process, see [9]). By the Dynkin result recalled at the end of Subsection 2.2, this is equivalent to
saying that B V1 A is polar.

Proof of Proposition 2: The necessity of condition (a) has already been established in the
construction of the trace, and the necessity of (b) follows from Lemma 7. To prove the
sumciency of (a) and (b), we may clearly take f- Nd (otherwise we construct a solution in
(-oo, 0)x Nd with trace (A tO fY, u)and then we restrict it to (-oo, 0)x f).

Let (Kn) be an increasing sequence of compact subsets of Ac such that Kn is contained in the
interior of Kn + and Ac- limgKn (thus any compact subset of Ac is contained in Kn for n

sufficiently large). Denote by un the restriction of u on Kn. Following Section 2, we can define

for every n the additive functional Aun Aun’ and these additive functionals form an increas-
ing sequence. We then set

A limTA.
It is easy to verify that this definition does not depend on the choice of the sequence (Kn).
Clearly AUoo may be infinite. However, on the event {50 Cq A- }, we can find a (random) integer
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n such that ’0 C K, and then A-An < oo.

We then claim that

u(t,x)-Nt, x(oNA ) + Nt, x(’0 N A ; 1 exp A) (13)
is a solution with trace (A,,). The fact that u solves (4) follows from Subsection 2.5. Then, let
B be an open ball such that B C Ac and let n be such that B C Kn. From formulas (13) and (5)
it easily follows that

1((,) t,x(1 exp An)) 0,

Eniformly when x varies on a compact subset of B. It follows that if (A,Y) is the trace of u,
A , and is the restriction of on Ac. To complete the proof, we need only verify that
A A. However the set AA contains no explosion point of , hence no explosion point of .
Fuhermore, AA is polar by Lemma 8. By the property (b) of the pair (A,), we conclude that

AA -0.

mark: The previous argument is very similar to the proof of Theorem 5.2 in [7].
Prf of Prosition 3: We first check that the function u defined by (13) is the maximal

solution with trace (A,v). For > 0, let A, be the open e-neighborhood of A and let

+t,x({%[o,t c B(0,- 1)} {0 h. };1 -xp- A).
From Subsection 2.5, ue solves (4) in (-, 0)x B(0,- 1), and it is clear that ueu as 0. Let v
be another solution with trace (A,). Arguing as in the proof of Lemma 7, it is easy to see from
the maximum principle that v u in (-,0) xB(0,-]). Letting 0, we conclude that
v<u.

Suppose that A is polar. Then, we can write

,(t, =) ,,( -xp- A),
because Nt, x(0A )- 0. Let v be another solution with trace (A,) and let the sequence
(Kn,n) be as in the previous proof. By the remarks following the proof of Theorem 1, it is clear
that for every y Kn,

im l(t, =)- U,,.(1 -x-"+ 1) 0.
(t, =)(0, )

Hence,
limsup (Nt, a:(1 -exp-An) v(t,x)) <_ O. (14)

(t, )-(0, )
The same bound holds trivially true when y Kn, because then, by (5),

lim Nt, x(1 -exp-An) O.
(t, )-(0, )

Thus (14) holds for every y e Rd. Let BR B(O,R). Bound (14) is valid a fortiori for y E R if
BR v

we replace Avn by An’ <_ Aoon. The maximum principle then gives for every t < O, y BR,

S)v(, y) >__ N,,v(1 -exp-An’

By letting R-+oo, we get v(t,y)>_ Mr, v(1-exp-An) and by letting n-+oo, we arrive at v >_ u,
which implies v- u.

Finally, suppose that d _> 2 and that (A, 0) is a possible trace, with A # 0. By property (b) of
Proposition 2, for every y A and r > 0, the set Af’lB(y,r) is not polar. Choose a sequence
(Yn)n > 1 dense in A, and for every n a decreasing sequence (rPn)p > 1 of positive numbers, and set
forev&y p>_l
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[.J
n--1

If Up(t,x)- Nt, x(f0 NAp O), then Up is a solution of (4) in (-oc, 0)x Nd (of. Subsection 2.5).
By comparing Up with the function Nt, x(3,0NA-fi O) near points (O, Yn) and using the fact that
the sequence (Yn) is dense in A, one easily concludes that the trace of Up is (A, 0). We claim that,
for a suitable choice of the numbers rPn, infinitely many of the functions Up must be different. To
see this fix a point (t0, x0). From the estimates for hitting probabilities of balls found in [1]
(Theorem 3.1), if d >_ 3 and in [11] if d- 2, we can choose each number rPn small enough to make

 o(eO # O)
as small as desired. Hence, by a suitable choice of the numbers rPn, we can construct the sets Ap
so that Up(to, Xo) tends to 0 as pc. This completes the proof. [:l

4. The One-Dimensional Case

In this section, we prove Theorem 4. We will rely on Theorem 1, although a direct argument
can also be given along the lines of [14].

Let t > 0, x E R. Under Nt, x, for every r > t, the measure Xr is absolutely continuous and,
more precisely, Xr(dy Yr(y)dy, where the process (Yr(y),(r,y) (t, cx)R)is continuous.
This follows from Theorem 1 in Sugitani [18] and the connections between super-Brownian
motion and the Brownian snake.

Note that there are no nonempty polar sets in dimension 1, so that any pair (A,u), where A
is a closed subset of and u a Radon measure on Ac, is a possible trace. To prove Theorem 4, it
suffices to verify that, if u is a solution of (4) in (-(x), 0)x R with trace (A,) then u can be re-

presented in the form

u(t,x) Nt, x(3,o A - )+ Nt, x(3,o f’l A ;1-exp- ]u(dy)Yo(y)). (15)

As was recalled in Subsection 2.3, we can write for t r 0,

u(t,x) Nt,x(1-exp-(Xr, u(r, )>) Nt, x(1-exp- ] dyYr(y)u(r,y)).

Passing to the limit r0 in this formula we see that (15) follows from the below lemma.

Lemma 9: (a) Nt, x a.e. on the set {3,0 M A- q}} it holds true that

limrT0 / dYYr(Y)u(r’Y)- / u(dy)YO(y)"

(b) Nt, x a.e. on the set {3’0 f A -7(=

lim dyYr(y)u(r y) oc.

Proof: Part (a) is easy to prove (in fact, much easier to prove than the corresponding
statement in the elliptic case [14]). We know that 3’0 is compact. Hence, on the event
(3’0 A q)}, the function Y---Yo(Y) is continuous with compact support contained in \A.
Because 0 is a.e. not a time of discontinuity of the mapping r---3’r (see Perkins [17] or the last
section of [8]), on the same event we can find r0 < 0 and a compact subset K of \A such that,
for every r e [r0, 0], the function Y---*Yr(Y) is supported on K. Then, if r0 _< r < 0,

f dYYr(Y)u(r, Y)) f u(dy)Yo(y)
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\yK
K

which converges to 0 by Theorem 1 and the joint continuity of Yr(V).
Le us now prove part (b) of the lemma. From the definition of the trace and the joint contin-

uity of Yr(V), it suffices to verify that, a.e. on {50 f A # }, there exists a point z E A such that
Yo(z) > 0. We will prove that this holds for z WT(O), where

T inf{s; {8 0, Ws(0 e A}
is a stopping time that is finite a.e. on {500 N A }.

We have to show that

Nt, x(T < oc, Yo(WT(O)) 0) 0. (16)
By the strong Markov property at T, we have

-O)- Nt, x(T < oc, eVT(Yo(Wo(O)i 0)).N,(T < Yo(WT(O))
(To see that the definition of Y0 still makes sense under , use Proposition 2.5 of [10].)

We will prove that, if w: [t, O]--R is a finite path over the time interval It,0], then
P(Yo(w(0)) 0) 0 as soon as, for a certain constant A > 0,

Card{n; {w(r), 2- ’ _< r _< 0} C B(w(O),A2- n/2)} oc. (17)
To this end, note that, by Proposition 2.5 of [10],

0

F’*w(Yo(w(0)) 0) exp- 2 / drNr, w(r)(Yo(w(O)) > O)

-2 -n-1

_< 1-In0exp 2 drNr, w(r)(Yo(w(O)) > 0),
-2

where no is the first integer such that t _< -2- no.
Let y, z @ R and r < 0 such that 2 n _< r _< 2 n- 1 and y z < A2 n/2. By the

Cauchy-Schwarz inequality,
(Nr, u(Y0(z)))2

r,u(Yo(z) > 0) >_
Nr, u(y0(z)2)

Formulas for the moments of Y0 are easily derived from the well-known formulas for the
moments of Xt:

0

p_ z),  (V0(z) 4 j f v)p_ o(v, z)

These formulas and our assumptions on y,z,r easily lead to the existence of two positive
constants C1 and C2 depending only on A, such that

Nr, v(Yo(z)) > C12-n/2, Nr, v(Yo(z)2) < C2.

It follows that ]r,y(Yo(z)> O)>_ C32-n, with C3 -C2- 1C12. By applying this bound to the
previous formula for e(Yo(w(0))- 0), we get

P;(Vo(w(0)) 0) _< exp( -C3Card{n _> no; {w(r), 2- n <_ r <_ O} C B(w(O), A2- n/2)})
and, consequently, e(Y0(w(0))- 0)- 0 by (17).

To get (16) and complete the proof, we need only validate (17), Nt, x a.e. on {T < oc) for the
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path w--WT. However, this follows from the results of [11], which show that one can fix a
deterministic constant A such that (17) holds simultaneously for all paths Ws such that s 0.
This completes the proof of Lemma 9 and of Theorem 4. [:1
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