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ABSTRACT

Let ((u), u >_ 0} be a stochastic process with state space A U B where A and
B are disjoint sets. Denote by/(t) the total time spent in state B in the interval
(0, t). This paper deals with the problem of finding the distribution of/(t) and
the asymptotic distribution of fl(t) as t-.oc for various types of stochastic process-
es. The main result is a combinatorial theorem which makes it possible to find
in an elementary way, the distribution of (t) for homogeneous stochastic process-
es with independent increments.

This article is dedicated to the memory of Roland L. Dobrushin.
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1. Introduction

Let {(u), u >_ 0) be a stochastic process with state space A U B where A and B are disjoint
sets. If (u)e A, then we say that the process is in state A at time u, and if (u)e B, then we

say that the process is in state B at time u. Denote by c(t) the total time spent in state A in the
time interval (0, t) and by (t) the total time spent in state B in the time interval (0, t). Clearly,
c(t)+(t)-t for all t_> 0. Our aim is to find the distribution of fl(t) and the asymptotic
distribution of (t) as t-oc for various types of stochastic processes.

Sojourn time problems have been studied extensively in the theory of probability. In 1939, P.
Lvy [13, 14] obtained some basic results for the sojourn time of Brownian motion. Let
{(u),u >_ 0} be a standard Brownian motion process. We have e{(u) <: x} -(x/V for
u > 0 where x

1 j 2/2

is the normal distribution function. We use the notation i(S) for the indicator variable of an

event S, that is, (S) 1 if S occurs, and (S) 0 if S does not occur. Define

1

J <
0

that is, T(c) is the sojourn time of the process {(u), u >_ 0} spent in the set (-oc, c] in the time
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interval (0, 1). If c _> 0, then

for0_<x<l, and

If a-0, then

0

P{7(a)- 1} 2(c)- 1.

P{7(0) _< x} arcsinx/
(4)

for 0 _< x _< 1. Formula (5) was found by P. Lvy [13, 14, p. 303] in 1939, and is called the arc-
sine law. The more general result (3) was also found by P. Lvy [14, p. 326] but in a form more
complicated than (3). The above form is given by M. Yor [24].

In 1949, M. Kac [11] gave a general method of finding the distribution of the random variable

/
0

for the Brownian motion {(u),u 0} where V(x) is a given function subject to certain restric-
tions. If, in particular, Y(x) is the indicator function of the set (-c, a] and t= 1, then e(t) re-

duces to r(a) defined by (2). M. Kac [11] showed that the double Laplace transform of r(t) can
be obtained by solving the differential equation

2 0x2 + 0, 0, (7)

subject to the conditions (x)0 as x- c, < M for x = 0, ’( + 0) #’( 0) 2.
In 1957, D.A. Darling and M. Kac [5] considered the problem of finding the asymptotic distribu-
tion of or(t) for a Markov process {(u), u _> 0}.

2. A Combinatorial Theorem

For any n real numbers Xl,X2,...,xn define fn, k(Xl, X2,...,Xn) 0 <_ k <_ n, as the elements of
the sequence

{0, Xl, X -}- X2,...,X1 -}- X2 "-[-...-]- an} (8)
arranged in nondecreasing order of magnitude, that is,

fn, O(Xl,X2,...,Xn)
_

fn, l(Xl,X2,...,Xn)

_ _
fn, n(Xl,X2,...,Xn). (9)

In particular,

and
fn, o(Xl, x2"" xn) min(0, Xl, X1 -}- X2,..., X1 -}- X2 --... -}- Xn)

fn, n(Xl’ X2"" Xn) max(0, Xl, X1 -}- X2,..., X1 -}- X2 -... + Xn).
Furthermore, define gn, k(Xl,X2,...,xn) for 0 _< ]c _< n as follows:

gn,O(Xl,X2,...,Xn)- fn,O(Xl, X2,...,xn),
gn, n(Xl, X2, Xn) fn, n(Xl’ X2" Xn),

(10)

(11)

(12)

(13)

gn, k(Xl,X2,...,Xn) max(0, Xl, xI + x2,...,x1 -]- x2 -}-...-}- Xk)
+ min(0, xk +,xt + + xk +2,’",xk + +... + xn)

for l<k<n.

Let c,c2,...,Ca,.., be a sequence of real numbers and denote by Cn the set of all n! permuta-
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tions of (Cl, C2,... Cn). Define the following sets:

Fn, k(Cl,C2,...,Cn) {fn, k(Xl,X2,...,Xn)’(Xl,X2,...,Xn) E Cn}
and

Gn, k(Cl,C2,...,Cn) {gn, k(Xl,X2,...,Xn)’(Xl,X2,...,Xn) Cn)
for 0<k<n.

We have

(15)

(16)

Also,

and then

and then

(20)
Formulas (19)and (20)follow

fn + 1, k(Cl, Cn + 1) > 0 if and only if C1 -- fn, k- 1(c2,’’ ", Cn + 1) > 0

fn + 1,k(Cl,’",Cn ac 1) Cl -- fn, k- l(C2,’’’,Cn -t- 1)"

f, + 1,k(Cl,’",Cn + 1) (" 0 if and only if C1 + f,,k(c2,...,cn + 1) < 0

and then

fn + 1,k(Cl,’",Cn -}- 1) Cl q- fn, k(c2,’",Cn + 1)"
In any other case fn + 1, (Cl,’", cn + 1) O.

Furthermore, we have

gn + 1,k(Cl,’",Cn + 1) > 0 if and only if c1 + gn, l- l(C2,"’,Cn + 1) > 0

gnTl,k(Cl,’",Cnq-1)-- Cl q-gn,k-l(c2’’’’,cnq-1)"
Also,

gn + 1,k(Cl,’",Cn + 1) 0 if and only if ck + -1- gn, k(Cl"’"Ck’Ck r- 2"’"Cn + 1) 0

and then
gn q- 1,k(Cl,’’’,Cn q- 1) ck + 1 q- gn, k(Cl"’"Ck’Ck -t- 2"’"Cn q- 1)"

In any other case gn + 1,/(Cl,’", Cn + ) O.

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

We have

G1,0(Cl)- F1,0(Cl) (17)
because gl, 0(Cl) fl, 0(Cl) min(0, Cl) and

GI,I(Cl)- FI,I(Cl) (18)
because gl, 1(Cl) fl, I(Cl) max(0, c1).

Theorem 1" For every n-1,2,.., and k-0,1,...,n and for every choice of the sequence

c c2,..., Cn, the two sets Fn, k (Cl, c2,’" Cn) and Gn, k(c c2,..., Cn) contain exactly the same
elements.

Proof: We shall prove the theorem by mathematical induction. If n- 1, then by (17) and
(18) the statement is true for k- 0 and k- 1. Let us assume that the statement is true for a

positive integer n and every k- 0, 1,..., n. We shall prove that it is true for n + 1 and k- 0, 1,
..., n + 1. This implies that the statement is true of all n 1, 2,... and 0 _< k _< n. The proof is
based on the following recurrence formulas:

fn+l,k(Cl,C2,...,Cn+l)--[Cl -JC fn, k_l(C2,...,Cn_t_l)] + -t-[C1 -t- fn, k(C2,...,Cn+l) (19)
and

gn -t- 1,k(Cl’C2"’"cn -t- 1) [Cl + gn, k- l(C2,’’"Cn + 1)] +

+ [ck -t- 1 na gn, k(Cl,’",ck, ck -t- 2"’"Cn nt- 1)]-
for l_<k_<n where Ix] + -max(O,x) and [x]- -min(O,x).
immediately from the definitions of fn, l and gn, k"
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Clearly Fn, 0(Cl, c2,..., Ca) Gn, 0(Cl, c2,..., Ca) and Fn, n(Cl, c2,..., Ca) Gn, n(Cl, C2,..., Ca)
for all n 1, 2, If 1 _< k _< n, then by the induction hypothesis and by (19) and (20) we obtain
that

Fn + 1,k(Cl, C2,’",Cn + 1) Gn + 1,k(Cl, C2,’",Cn -t- 1) (29)
for k- 1,2,..., n. For if we collect the elements fn _* 1,k(Cl,C2,’" cn + 1) given by (19) and the
elements gn + 1, k(Cl, c2,’" Cn + 1) given by (20) for all (Cl, c2,..., cn + 1) G Cn + 1, and if we take
into consideration that in both (19) and (20) one of the two terms on the right-hand side is necess-

arily 0 (possibly both terms are 0), then by the induction hypothesis we obtain (29). This com-

pletes the proof of the theorem.

Since

Fn, k(Cl,C2,...,Cn) Gn, k(Cl, C2,...,Cn) (30)
is true for any n- 1,2,... and k- 0, 1,...,n and for any choice of the real numbers Cl,C2,...,Cn,
Theorem 1 can also be extended to interchangeable random variables.

3. Stochastic Sequences

Let us suppose that 1,2,’",n are real random variables and write r- 1 -- 2-t-...-t-rfor r 1, 2,..., n and o 0. Define

coN(a the number of subscripts r 0, 1,...,n for which r -< a (31)
for n 1,2,... and a E c, c). Furthermore, define

rn j inf{a" wn(a) > j} (32)
for j 0, 1,..., n. Then

P{wn(a <_ j} P{rln, j > a} (33)
for j 0, 1,..., n and any real a e (-c, oe). We observe that the variables n, j(0 _< j _< n) are

simply the variables r(0 _< r _< n) arranged in nondecreasing order of magnitude, that is,

In particular,

and
rn, n -max((o, 1,"" (n)

rn,o min(o,l,...,n) max(-o, 1,’", -n)"

(34)

(35)

(36)

Theorem 2: If 1, 2,’", n are interchangeable real random variables, we have

P{(a) < j} P{v,j > a} P{ max jet + min (r- j) > a} (37)
0<_<

for 0 <_ j <_ n and a e (-cx,c).
Proof: For all n! permutations of any realization (Cl,C2,...,cn) of the random variables

(1, 2,-’-, n) we have identity (30). This implies that for 0 _< j _< n

rln’J " < r <_ r+j<_r<_nmin r--j), (38)
where the symbol means that the random variables on both sides of (38) have the same distri-
bution.

Note 1: By using a combinatorial method, in 1961, A. Brandt [4] already determined the dis-
tribution of Wn(a for interchangeable real random variables. Actually, he considered the random
variable Nn(a defined as the number of subscripts r- 1,2,...,n for which r > a. In our nota-
tion Nn(a)-n+l-wn(a if a>_0 and Nn(a)-n-on(a if a<0. By the result ofA. nrandt
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[4],
P{Nn(a k) P{ max (i--/)+mink < a and min k > a)

k<i<n 1<i< 1<i< (a9)
max (i- /) + min k > a and max ((i- (k) < a}+P{k<i<n 1 <i< k<i<n

for 0<k<nandany aE(-oo, oo).
Note 2: If 1, 2,"’, n are interchangeable random variables having finite expectations, then

by a theorem of M. Kac [12] J
E{max((0’(l’ ""j)} E 1 +7E{(i } (40)

i=l
for 1 <_ j <_ n. See also L. Takgcs [22]. Thus by (38),

E{r/nj}- E 1 + 17E{i }+ E 7E{i } (41)
1<i<3 l<i<n-j

for0<_j<_n.

If, in particular, 1,2,’",n are independent and identically distributed random variables,
then Theorem 2 is applicable and in this case the two random variables on the right-hand side of
(38) are independent. Thus we can write that

rl,j rlj, j + ,_ j, o (42)
for 0 _< j _< n where Tj, j and n-j,o are independent and n-j,o has the same distribution as

Tn j,O"

Note 3: In the case of independent and identically distributed random variables 1, 2,"’, n,
relation (42) can also be deduced from a result of F. Pollaczek [15] found in 1952. Let us define

Fn, j(s) U{e SUn, j}
for 0 <_ j <_ n and %(s)- 0. By Pdaczek’s result

E E r, j(s)pnwj rn, o(S)p r, n(s)(pw)n (44)
n=O j=0 n=O n=O

for %(s) O, Pl < 1 and [pw < 1. If we form the coefficient of p"w"i on both sides of (44) we

obtain that

r, () r, ()r_ ,0() (4)
for 0 _< j _< n nd (s)- 0. This implies (42).

Example 1: Let us suppose that {r, r >_ 1} is a sequence of independent and identically dis-
tributed random variables for which

P{{r- 1} p and P{{r- -1}- q (46)
where p > 0, q > 0 and p + q 1. Then {(r, r >_ 0} describes a random walk on the real line and

P{ 2j- n} ()pq’- (47)

for 0 _< j _< n. By the reflection principle we obtain that

P{rln, n < k} P{(n < k}- P{4n < -k} (48)
and

P{- n,0 < k} P{n > -k}- P{n > k} (49)

for k > 0 and n >_ 1. See L. Takgcs [21]. Probabilities (48) and (49) completely determine the dis-
tribution for Wn(a for n _> 1 and a E (-oo, oo).
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In this particular case, the distribution of Wn(a can also be expressed in a simpler form.
us define p(k) as the first passage time through k, that is,

p(k)- inf{r: r k and r >_ 0}

fork-0, +1,-t-2, Ifl_<k_<n, then

P{p(k) < n} P{n > k} + P{n < k}.
By symmetry

for j >_ 0.

Ifn_>l, then

P{wn(k j} -[P{p(k + 1) >_ j}-P{p(k) > j}][p-qP{p(1) < n-j}]

for l<k+l<_j<nand
P{wn(k -n + 1} P{p(1) > n}

for 0_<k_<n. See L. Takcs [23].

Let

(5o)

(51)

(52)

(53)

(54)

4. Stochastic Processes

Let {X(u), u >_ 0} be a separable homogeneous stochastic process with independent increments
for which P{x(0)= 0} 1. Define

1

/
0

for a E(-oo, c), that is, 7(a) is the sojourn time of the process {X(u),u > 0} spent in the set
(-oo, a] in the time interval (0, 1). We also define

7(x)- inf{a: "r(c)> x}
for 0 < x < 1, that is, {7(x),O < x < 1} is the inverse process of {r(a), -oo < a < oo}.
ly,

P{r(c) 5 x} P{7(x) > a}
for 0<x< 1 and -oo<c<c.

Theorem 3: We have

P{r(c) < x} P{7(x) > c} P{ sup X(u)q-nuf<0<u<x _1
for O < x < 1 and c E (-oo, co).

Proof: Let us assume that in Theorem 2

(56)
Obvious-

(57)

li__[nP{wn(a <_ j} P{r(c _< x}
for 0 < x < 1 provided that x is a continuity point of P{r(a) _< x}.
thin that if a ct and j [nx] where 0 < x < 1, then

(6o)
By (33), (57)and (60) we ob-

for r- 0, 1,...,n. If n--+oo, then the process {[nul, 0 _< u _< 1} converges weakly to the process
{X(u), 0 _< u _< 1}. Since r(c) is a continuous fufict[onal of the process {X(u), 0 _< u <_ 1}, we can
conclude that if a c and j [nx] where 0 < x < 1, then

(59)

>
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lLrnP{n, > a} P(7(x) >
is also true. This completes the proof of Theorem 3.

Accordingly, if we know the distribution functions

P{ sup X(u)_<c)-G(c,t)
0<u<t

and

(6)

(62)

P{ sup [-X(u)] _< c} H(c,t) (63)
0<u<t

for 0 < t < 1, then, by Theorem 3, we obtain that

P{r() _< z} P{7(z) > } / [1 -G(o + u,z)]d,H(u, 1 z) (64)
0

for 0 < x < 1 and c (-c,c).
In 1957, G. Bxter and M.D. Donsker [3] gave a general method for the determination of (62)

and (63). In 1984, D.V. Gusak [10] studied the problem of finding the distribution of r(); how-
ever, it does not seem that Theorem 3 can be deduced from his results.

Note 4: If we assume that {X(u), 0 u 1} is a stochastic process with interchangeable incre-
ments, then Theorem 3 is still valid.

Example 2: Let {(u),u 0} be a standard Brownian motion process. We have P{(u)
x} (x/) for u > 0 where (x) is defined by (1). Let us consider the process {(u)+ mxu,
u 0} where m is a real number. Define

1

7(a, m) / 5((u) + mu a)du, (65)
0

that is, 7(a, m) is the sojourn time of the process {(u) + mu, u 0} spent in the set , a] in
the time interval (0, 1). We also define

7(x, m) inf{a: 7(a, m) > x} (66)
for 0 < z < 1, that is, {7(z,m),O < z < 1} is the inverse process of {r(,m),- < < }. We
hve

P{r(, m) x} P{7(x, m) > } (67)
for 0 < x < 1 and e (-,). To find the distribution of 7(, m) or 7(x, m) by Theorem 3 it
is sufficient to determine the following probability

P{ sp [()+]}-F(,,) (68)
0<u<t

for 0 < t < 1 and m G (-,). Obviously, F(,m,t) F(/,m, 1) for t > 0. If we con-
sider Example 1 and assume that in the random walk {(r,r 0}

m andq-qn-1 m (69)-2 2
for u > m2, then the process {([nu]/,O u 1} converges weakly to the process {(u)+ mu,
0 u 1} as n. Since the supremum is a continuous functional of the process {(u)+ mu,
0 u 1}, we can conclude that if k -[u] where u > 0, then

,lLrnP{max(0,l,...,n) < k}- F(c,m, 1). (70)

If we apply the central limit theorem to the random variables
then by (48)we obtain F(o,rn, 1). Thus
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F(a, m, t) a -a-rot

and OF(a,m,t)

for t>0, a>0, andm(-,),where
1 e x2/2

is the normal density %notion. If a 0, then F(a, m, t) 0.

(71)

(72)

(73)

Now we have G(c, t)- F(a,m, t)and H(c, t)- F(c,- m, t), and by (58)

P{r(,m) <} [ [1-r(a+u,m,)]I(u, -m,i-)du
0

for 0 < x < 1 and c E (-oo, oo).

(74)

Several recent papers are concerned with the problem of finding the distribution function of
r(a,m). By the results of J. Akahori [1] and A. Dassios [6] the distribution function of r(a,m)
can be expressed in the form of a double integral. The above formula (74) is in agreement with
their result. Both authors applied the method of M. Kac [11] in their papers. In finding the densi-
ty function of 7(x, m), Dassios observed that this density function is the convolution of the densi-
ty functions of two random variables. One of the variables is sup0 < u < xX(u) and the other has
the same distribution as info < u < 1 xX(u) where X(u) (u) + mu -for - >_ 0. Thus Dassios con-
eluded that Theorem 3 is tru f the Brownian motion with drive. As we have seen, Theorem 3
is true more generally for homogeneous stochastic processes with independent increments. Recent-
ly P. Embrechts, L.C.G. Rogers and M. Yor [9] gave two different proofs for Dassio’s result.

By using formula (53) we can derive that
x

P{r(c, m) <_ x} 1/2 S f(a, m, u)f(O, m, 1 u)du
0

for 0<x<l and
P{(, m) 1 } ( ,) ’( ,)

(75)

(76)
for a _> 0 and m E (-oo, oo) where O(x)is defined by (1). See L. Takcs [23].

5. Exact Distributions

Let us consider again a stochastic process {(u),u >_ 0} with state space A U B where A and B
are disjoint sets. Let us assume now that in any finite interval (0, t) the process changes states on-
ly a finite number of times with probability one. Let us suppose that P{(0) A}- 1 and de-
note by c1, 1, c2, 2,’-" the lengths of the successive intervals spent in states A and B respective-
ly in the interval (0, oc). Denote by c(t) the total time spent in state A in the time interval (0, t)
and by /(t) the total time spent in state B in the time interval (0, t). Obviously, c(t) and /(t)
are random variables and c(t) + (t) for all >_ 0. Our aim is to determine the distributions
of c(t) and/(t) for >_ 0 and their asymptotic distributions as t---oc.

Define

")’n O1 "+- C2 "+"""" -+ Ctn (77)
for n >_ 1 and 70- 0; furthermore,

5n 1 q- 2 +"" q- n (78)
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for n >_ l and 60 0.

Theorem 4: If 0 <_ x < t, then

P{fl(t) < x} E [P{n < x, 7n < x} P{5n < x, 7n + 1 < t x}],
rt 0

and if O < x < t, then

P{a(t) < x} E [P{Tn < x, 5n 1 -- t--x}- P{Tn < x, (n -- t--x}].
n--1

(79)

(so)

Proof: Since P{a(t)< x}- 1- P{/(t)< t-x} for 0 < x < t, it is sufficient to prove (79).
For 0 < x <t denote by 7- v(t-x) the smallest u E [0, c) for which a(u)- t-x if such a u
exists. (If such a u does not exist, then (79) is trivially true.) Then (r) E A and we have

{fl(t) < x} {fl(r) < x}. (81)
This follows from the identities

< < < t} < t} <
Here we used that a(t)+/(t)- t for all t>_ 0, and that a(t) and fl(t) are nondecreasing contin-
uous functions of t for 0 < t < c.

Since/(v) 5n(n 0, 1,2,...) if 7n < t x _< 7n + 1, it follows from (82) that

P{fl(t) < x} E e{Sn -< x and 7n < t- x < 7n + 1} (83)
n--0

for 0 _< x < t which proves (79).
If for each t >_ 0 we define p(t) as a discrete random variable which takes on only nonnegative

integers and satisfies the relation
{p(t) < n} {Tn >- t} (84)

for all t _> 0 and n 1, 2,..., then we can write

P{/(t) _< x} P{hp(t- x) <- x} (85)
for0_<x_<t. We note that e{p(0)-0)-l.

Now 5.(t is the sum of a random number of random variables. If we can determine the dis-
tribution ofo)o for all t_> 0, then by (85) we can also determine the distribution of/?(t) for all
t>_ 0. If the sequences {an) and {fin) are independent, then {ha) and {p(t),t 0} are also
independent, and the problem of finding the distribution of/(t) can be reduced to the problem of
finding the distribution of the sum of a random number of random variables where the number of
variables and the variables themselves are independent.

In what follows, we assume that the two sequences {an, n _> 0} and {flu, n >_ 0) are indepen-
dent. If in addition, the random variables {an, n >_ 0) are identically distributed independent ran-
dom variables and the random variables {n,n >_ 0) are also identically distributed independent
random variables, then as an alternative we can determine the distribution of fl(t) by using
Laplace transforms. In this case, let us define

E{e } (s) (86)
and

for (s) > 0. Then by (84),
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for (s) >_ 0 and (q) > 0.
the distribution of 6p(t) and P{(t) <_ x} can be obtained by (85).

Finally, we would like to mention that if PA(t)- P{(t)E A}, then we have

for (s) > 0.
ing example.

1 -() (ss)q e-qtE{e s6p(t)}dt
1

0
If we know (s) and (s), then by inverting (88) we can determine

1 -(s)
e stPA(t)dt s[1 (s)(s)]

0

If PA(t) and p(s) are known, then by (89) we can determine (s).

(89)

See the follow-

Example 3: Let {(t),t_> 0} be a homogeneous irreducible Markov process with finite state
space I and transition probability matrix P(t)= [Pi k(t)]i,k) Let A-{i} and B-I\{i}
where e I is a given state. Let us suppose that P{(’(0)

e I"
-1. In this case, PA(t)--pi, i(t)

and
iixP{a, _< x} 1 -e (90)

if x >_ 0 where A p,i(0). Hence (s) Ai/(A + s). By (89) we obtain (s). Thus we have
all the ingredients for the determination of the distribution of fl(t).

For the sojourn times of two-state Markov chains various asymptotic distributions were
obtained by R.L. Dobrushin [7].

6. Limit Distributions

Let us assume that the two sequences {an, n >_ 0} and {n,n >_ 0} are independent. If we
know the asymptotic distributions of 7n c1+ c2 +-" + Cn and 6n fll + 2 +"" + fin as

n, then we expect that the asymptotic distribution of (t) for t is determined by these
two distributions. This is indeed the case. For a detailed discussion, see L. Takcs [18, 19]. Here
we consider only particular case.

Let us assume that both 7n and 5n have an asymptotic normal distribution if n, namely,

P 7anx (x) (91)

and
lim P/6n-- < x-

where (x)is the normal distribution function defined by (1) and a,b, rra
constants. We can simply write that Vn N(na, nrr2a) as n---,c and 6n
By (84) we can prove that

,(t) N(t/a,(r2at/a3)

(92)

and rb are positive real
N(nb, n) as n--c.

(93)
as t---,cx. Now 5 can be interpreted as a sum of a random number of random variables. ByP()
working with characteristic functions, H. Robbins [16, 17] determined the asymptotic distrib-
utions of such sums. By his results, we can conclude that

5p(t) N(bt/a, (a2r + b2a2a)t/a3) (94)
as t-c. This result can be proved in a simple way by a result of R.L. Dobrushin [8] for com-
pound random functions. The substance of Dobrushin’s idea is that the asymptotic distribution
of 5p(t) is independent of the particular choices of {Sn} and {p(t)}; it depends only on their asymp
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totic distributions.

and p(t) by

Consequently, we may replace 5n by

+

p*(t) t/a -t- t0-bP/a3/2
(95)

(96)
where and p are independent random variables having the same normal distribution defined by
(1). Since o(t) has the same asymptotic distribution as p*(t) if tc, we can conclude that

tli_,rnP
P < x P/ :i7-2 < x (97)V/

This proves (94). Finally, by (85) and (94) we obtain that

fl(t) g(bt/(a + b), (a20- + b20-2a)t/(a / b)3) (98)
as t---oo. For the asymptotic distribution of /3(t), many more examples can be found in L.
Takcs [18, 19].

By using a limit theorem of F.J. Anscombe [2], we can find the asymptotic distribution of
13(t) as tee for stochastic processes in which (cn,n) are independent vector random variables.
For details, see L. Takcs [19, 20].

Example 4: Let us suppose that in the time interval (0, co) customers arrive at a counter in
accordance with a Poisson process of intensity A and are served by one server. The server is
always busy if there is at least one customer at the counter. The service times are assumed to be
independent identically distributed random variables having a finite expectation a and a finite
variance 0-2 and independent of the arrival times. It is also assumed that ,a < 1. Denote by
/3(t), the total occupation time of the server in the time interval (0, t). Now the lengths of the
successive idle periods, an(n= 1,2,...) and the lengths of the successive busy periods,
fln(n 1,2,...) are independent sequences of independent and identically distributed random
variables and by (98) /3(t) has an asymptotic normal distribution. The parameters in (98) are:

2 1/Az, b-a/(1 Ac)anda-- 1/), o-a--
0- (0-2 d- )o3)/(1 oz)3. (99)

Thus,

tlimp 71(0-:. + c2)t-
=(x) (100)

where (I)(x)is defined by (1). For further details and extensions, see L. Takcs [19].
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