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ABSTRACT

We use a variety of real inversion formulas to derive the structure distribu-
tion in a mixed Poisson process. These approaches should prove to be useful in
applications, e.g., in insurance where such processes are very popular.
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1. Introduction

One of the most classical examples of a counting process {N(t);t >_ O} is the homogeneous
Poisson process. The probability distribution is given on N in the form:

e-t(t)n

pn(t) P(N(t) n) n!

The risk-parameter A gives the average number of events per unit time.

In many applications, however, the Poisson process is too simple to be applicable.

Example: If N(t) is the number of claims up to time t in a specific insurance portfolio, then
it has been known to actuaries that the variability in the portfolio-expressed by Var{N(t)}- is
much larger than At, the value corresponding to the strict Poisson case. One reason is that, even

when the number of claims for each individual policy follows a Poisson distribution, the averages
vary over the portfolio. This means that the value A for an individual policy is one of the
possible values of a random variable A. This then leads to the notion of a mixed Poisson process,
which is defined as follows (see Lundberg, [11]).

Definition: A mixed Poisson process (MPP) {N(t);t >_ 0} is a pure birth process with state
space N and counting distribution Pn(t) of the form:

/Pn(t) P(N(t) n)
e- At(At) .dH(A),n

o
where H is the structure distribution given by H(A)= P{A A} with H(0)= 0.

Here are a few popular choices for the structure function.
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Homogeneous Poisson process. The random variable A is degenerate at ,( > 0). This is
the only MPP that is simultaneously a renewal process. The interclaim times are

independent and exponentially distributed.
Double Poisson process. The structure distribution has two different jump points,
and ’2, with corresponding heights, Pl (0,1) and P2 1-p, respectively. The
counting distribution is then

A1 )n A2t n

P() P n + p n t > O.

This kind of process might be used if the population were to be subdivided into females
and males.
P61ya or Pcal press. For this example, the structure distribution is Gamma(a, 1/b),
where , b > 0, so that

b -A-IdU(A) e dA.

The resulting counting distribution is then

p (t) t
n t+b] tb] t>O,

which is a Pascal or negative binomial distribution. The two parameters, a and b, allow
great flexibility while one fits actual data to this theoretical distribution.
Sichel proc. In [12], Sichel introduced a distribution as a mixed Poisson by mixing it
with a general inverse Gaussian distribution of the form:

h()dH()_-OO-i { 2+}dA --2K0()exp 2fl
where the three parameters, fl,0 and , are nonnegative. The function K0 is the
modified Bessel function of the third kind. An explicit form of the probabilities can be
obtained so that

(t)n _}(o + n)Uo + .(41 + 2fit)
Pn(t) n 1 + 2t) KO(

The case where 0 -1/2 is particularly interesting since the general inverse Gaussian
distribution simplifies to the classical inverse Gaussian distribution.

The introduction of a general MPP is probably due to Thyrion [15] for the general case and
to Ammeter [4] for the special case of the Pascal process. The first detailed and fundamental
study of MPP’s is due to Lundberg [11], who derived the deeper connection between MPP’s and
continuous-time Markov chains. In particular, Lundberg derived the binomial criterion as a

characterization of MPP’s among Markov processes.

Other contributions are due to Albrecht [1-3], who has been the first to discuss statistical
problems connected with MPP’s. For more information on MPP’s, see Johnson and Kotz [9],
Bfihlmann[5], Gerber [6, 7] and Grandell [8]. Moment estimators and maximum likelihood
estimators for the structure distribution have been derived by Tucker [16] and Simar [13]; they
result in discrete estimates for H. Again, Albrecht [3] studied estimators for the case of a mixture
of a known finite number of Poisson components. In all these estimators, one uses the number of
claims in successive repetitions of the process.

An alternative approach is due to Karr [10], who estimated H by inverting the Laplace
transform. In this case, only the time epoch of the first claim in each of the realizations of the
MPP is used. Our approach is more in the spirit of Karr’s.
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2. Estimation of H by Real Inversion Formulas

Before we start deriving inversion formulas, let us introduce an abbreviation. For 0 _< Yl -<
Y2 < c, we shall write

H{Yl;Y2}" 1/2H({yl} + H(yl, y2)+ 1/2H({Y2} ). (1)
In the above H({y}) is the point mass of H at the point y, while H(yl, y2) denotes the mass in
the open interval (Yl, Y2)"

2.1 Inversion using the Laplace transform of H

This method is based on the equality"

where H is the Laplace transform of H.

We know that

N(e) 1 At
E 1- e E n! dH(A)

n’-O
0

0 0

(2)

2.1.1 Inversion via Poisson variates

The following limiting relation can be derived by looking at a sequence of independent,
identically distributed Poisson variables. See, for example, Teugels [14].

t):
n, 0

Define, for 0 < Yl < Y2 < , the expression"

0 als t < u
als t u

1 als t > u.

[nY2
In(Yl’Y2)" E

m 1 + [nYl]
Using the definition of H, we can write that

(- n)mi(m)(n)m!

[nY2]
In(Yl Y2)-- E (-- n)m )m /m! (-1 e

+ [u] o
Xn,mdH(,)

/ ell(a)
0 m 1 + [nYl]

m-----’e

j {dn(’Y2)-dn(1’Yl)}dH(1)"
0

On the other hand, equality (2) can be invoked to write

{ N(t)!(N(t)- . N(t)-rn}(m)(O)--(--t)- ’E m)! ( t
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Interchanging summation and expectation, we see that

Iu(y!,y2)- E E (N(mt)) () (1-)N(t)-m
m 1 + [nYl]

We combine this with the first formula and apply Lebesgue’s dominated convergence theorem to
arrive at a first inversion formula:

H{Yl,y} lim E 1 (4)
n|c

m 1 + [ny1

For the mass at a point, we can use a slightly different approach than that for

1 als v- 1exp{ n(v 1 -log v)} 0 als v 1.

Following the same argument as above, we get

-limE [ N(t)! N(t)-n e nH({y}) ,qoo [,(N(t)-n)’(1-yY) (Y)
2.1.2 Inversion via Gamma variates

An analogous derivation can be made starting from a sequence of i.i.d, exponential variables.
For the latter we have the limiting relation"

u f 0 als u < 1

r(n) 1/2 1

0 1 als u > 1.
Define

Y2

"n(Yl,Y2):- i (-}n(n)()sndp( 1"

Yl
We easily find from the definition of H that

"n(YI’Y2)- J
0

From (2) we see that

Jn(Yi’ Y2) g
g(rt, N(,I r - 1)

ty2

n
ty1

zn-l(1--z)N(t)-ndz

Combining these elements with Lebesgue’s theorem, we obtain a second inversion formula:

n
ty1

H{Yl;Y2} nliTrnE B(n,N(tI n + 1)/ zn- 1(1 z)N(t) -ndz
ty2

(6)

One advantage of this latter formula is that, if the density h of H exists, then

h(y)-limE { 1 1 (n)n(n)N(t)-n}B(n, N(t) n + 1) -7 1 -7
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2.1.3 Normal approximation

For both of the inversion formulas, (4) and (6), one can apply a normal approximation.
us illustrate the procedure on (6).

Let

In (6), let z- anU + bn, where an and bn are functions of t that are to be determined in the
sequel. Rewrite the incomplete beta-integral in the form:

t ()

] zn-l(1 _z)N(t)-ndz--anti
tY2

with bn- 1-bn and

(anu + bn)n- 1(n

i- 1,2.

The expression inside the expectation sign in (6) then reads as

1 f z.-1 (t nd
B(n, N(t) n + 1) (1 z)N z I1 (n)

ty2

where --N(t)-anb b.I1() (n- 1)!(N(t)- n)!
and

anu)N(t)-ndu,

exp(I2(n,u))du,

I2(n, u)- (n- 1)log ( an) (l +--u + (N(t) n) log
b

1 a )
Now choose an and bn such that exp(I2(n u)) converges to the key factor in the normal density.
We then need both N(t) and n to be large, but also N(t)- n needs to be large. A series expan-
sion of the logarithms yields for 12 that

I2(n u)--uan{n-1 N(t)-n} u2_2 {n-1 N(t)-n} (nn )3+ +o

The obvious choice for bn should annihilate the first term on the right. The subsequent choice of
an is made to reduce the coefficient of -u2/2 to 1. This yields the choices"

(n- 1)(N(t)- n)N(t)-n
bn Nn(t) 1 bn- and 2

-1’ N(t)- 1’ an- (N(t)- 1)3

With the help of these expressions and Stirling’s formula, one easily shows that Ii(n),,o (27r)
Introducing the above values for an and b, in ai yields

3

(N(t)-l)2 {n n-1 } / n{N(t) 1(i(n) v/{n 1)(N(t) n) tYi N(t) 1"- l-tt tYi

Combining all of the above results, one obtains a normal approximation to (6)"

{i n N(t) 1)}-{i n,n N(t) 1)}H{YI Y2} 1--ff(t)( YI 1--(t)( tY2

2.2 Inversion based on the time epochs

As an alternative, we can start from the explicit expression for the distribution of the epoch
of the nth event, Tn, and combine this with the limiting relation (5). According to a result by
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Lundberg [11], (see alternatively, Albrecht [3]),

fT (x) n /
For the distribution we get

w

fTn(U)du--
0

Henceforth,

)x)n(n 1)!dH(A)

(n-1 en
0

P(Yl nY2)-

Now, we apply (5) directly to obtain a fourth inversion formula:

H{Yl;Y2} limPlyI <
n )n o,:) \ -n < Y2

3. Simulations

3.1 Simulation of an MPP

Another important property of an MPP is that the waiting times between epochs of events,
with each Wn Tn 1- Tn, are dependent, unless we are dealing with a strict Poisson process.
Albrecht [3] has shown that the Wn’s are identically distributed, exchangeable, but positively
correlated. More specifically, one has

Cov(Wn_ 1, Wn)- ,ar(-).
There are at least two distinct procedures to simulate the time epochs of an MPP.

(i) A first method to simulate the time epochs of an MPP uses the above interdependence
between the waiting times. Recall from Albrecht [3] that

n-1 Pn- l(t nt- tn-1)P(Wn <_ t Tn_ 1 tn_l) 1- t / tn_ 1 Pn_l(n_l)
(ii) A second method is based on the uniformity property of the MPP. Given that

N(t)- n, the first n epochs, T1,...,Tn, have the same joint distribution as the order
statistics of a sample from a uniform distribution on (0, t) (Albrecht [3]). One starts
with the simulation of n as a value of N(t) with a given value of t and in accordance
with the distribution pn(t). One then simulates n random numbers in (0, t). After
rearrangement, these values give a sample (T1,... Tn).

3.2 Illustrations

We perform simulations for the empirical versions of the inversion formulas given in (4), (7)
and (8) on homogeneous, double Poisson processes, Pascal processes, and mixtures of Pascal proc-
esses with Poisson point masses. In all cases, we considered the distribution function by taking Yl
to be zero. From the simulations, we can conclude that the estimators for the inversions (4) and
(8) perform quite well, even for a relatively small number of realizations. On the other hand, the
normal approximation in (7) seems to be too rough. Generally, continuous structure functions
are better estimated by the inversion formulas than discrete distributions are. By means of
example, the results of two simulations are shown in Figures (a) and (b).
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In both parts, the estimators are based on 15 simulated realizations with fixed t 20. The solid
lines represent the theoretical structure function and the dotted lines represent the estimator for
(8), while the points are the estimators for inversion formula (4). For Figure (a), we simulated
double Poisson processes with parameters A1 2, 2 4 and Pl .5. The value of n in (4) was

taken to be 20. In the case of the estimator for (8), we considered the averages for n-values from
n 18 to n N(20). Figure (b) concerns simulations of Pascal processes with parameters a 21
and b- 10. The value for n in (4) was taken to be 18, whereas for (8) the averages for n- 15 to
n- N(20) were considered.
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