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ABSTRACT

We consider models typical to the area of reliability, and a failure rate func-
tion for processes describing the dynamics of these models. Various approxima-
tions of the failure rate function are proposed and their accuracies are investigat-
ed. The basic case studied in the paper is a regenerative model. Some interest-
ing particular cases (Markov, semi-Markov, etc.) are considered. All proposed
estimates are stated in a tractable analytic form.
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1. Introduction

Like many other great scientists, R.L. Dobrushin had a knack for getting to the root of a pro-
blem due to his belief that only a simple and clear idea provides a foundation for studying any
phenomena. His fantastic mathematical technique allowed him to convert such ideas into brill-
iant solutions of intricate problems.

This paper contains an example of how a general idea can be transformed into a solution lead-
ing to numerical results. We took a particular problem from the area of reliability that consists
of the comparison of two failure rate intensities. Such a problem can be solved directly given
additional assumptions imposed on the underlying system (say, that the system is Markovian).
But such a solution is unsatisfactory, in general, because the additional assumptions lead to use

tools which are not the best.

Our approach can be outlined in abstract terms as follows. First, we express the desired goal
function in terms of auxiliary characteristics of the underlying process (which can be estimated
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separately) without imposing unnecessary restrictions. For example, the difference between
failure rate intensities under comparison (a goal function) can be expressed in terms of passage
times of various auxiliary processes (auxiliary characteristics). Second, we give estimates of
auxiliary characteristics by any available method (analytical, numerical, or simulation). The
choice of the method is dictated, in general, by the type of the underlying process. Note that the
additional assumptions arise on the second stage only, while the expression of the goal function
via auxiliary characteristics is obtained under general assumptions at the first stage. This enables
us to enlarge the class of investigated systems.

The paper is concerned specifically with a so-called failure rate function that plays an impor-
tant role in reliability and represents a conditional density to fail at time t provided that there
was no failure until t. It seems clear to us and is reflected in the approach that before we can

establish distributional properties of random processes, we must first study their structural
features (such as regeneration or Markov property) and pathwise properties.

Throughout the paper, we deal with various random processes defined on [0, oo). It is conven-

ient to denote by (r/s) a random process having state r/s at time s C [0, oo). Sometimes (when this
cannot lead to a confusion) we will use a shorter notation r/= (%). The notation (r/s)0 < s <t
refers to the restriction of (%) to the time segment [0, t] (so, (r/s) (r/s)0 <s < oo)"

Let a random process (r/s) describe the dynamics of a system and its state space E be parti-
tioned into two subsets: E Ag tO P, alg A q). We will view alg as a subset of "good" (or oper-
ating) states and P as a subset of "bad" (or failed) states assuming that E is a complete
separable metric space and all paths of (r/s) are cadlag (that is they are right-continuous and have
limits from the left). Additional restrictions on process (r/s) will be imposed later on. Let

er inf{s: r/, C D} (1.1)
be the first break-down time (or lifetime) of the system. The following characteristic

A(t) --A+01im
P(r _< +AAIr > t) (1.2)

is called the failure rate function for process (r/s). Of course, it is nothing else but a hazard rate

function for random lifetime r. We assume that A(t)is defined correctly by relation (1.2). Unfor-
tunately, function A(t) defined this way cannot be calculated easily, even for simple systems that
are of interest in engineering. Even if we approximate lifetime a by another random variable

(r.v.) a’ which is close to r, for example in a weak topology, this does not guarantee that the
hazard rate function for er’ is close to A(t) in a natural sense.

Because of this, the following characteristic, called the Vesely failure rate, is often used
instead of A(t)" p(r/t + ( )lr/t ( )

v(t) lim (1.3)
AO A

(see Cocozza-Thivent and Roussignol [4] and [5]). These two functions .(t) and Av(t have differ-
ent meaning. While A(t) characterizes the behavior of process (r/s) until its first entrance into the
subset 2, function Ay(t) is concerned with the behavior of (r/s) even after its first entrance into .
Nevertheless, in many applications Av(t) serves as an approximation of A(t) and it is important
to give estimates of the accuracy of this approximation. In this paper, we develop a general
approach for obtaining such estimates, give corresponding examples, and propose another approxi-
mation A(t) for A(t) which depends on the behavior of (r/s) until its first entrance into P.

In all considerations, we deal with limiting (as t--c) characteristics, namely with (c),
Av(CX), and A(c), assuming that these limits exist. These characteristics are quite typical for re-
liability systems. Moreover, the usage of limiting characteristics instead of the prelimiting ones
can be justified (see Cocozza-Thivent and Roussignol [4]).



The Failure Rate in Reliability" Approximations and Bounds 499

The paper is organized as follows. In Section 2 we consider a decomposition which is a key
tool in obtaining basic results. Examples of the decomposition are given. The core of the decom-
position is the representation of the dynamics of (r/s) (until its first entrance to P) as the
dynamics of a process (r/s) (obtained from (r/s) by tabooing transitions to the subset of failed
states) subjected to failures. These failures form a Cox process (a Poisson process with an

intensity a modulated by (r/s); that is, a -a((r/s)0 <s < t))" Such a decomposition is used in
Section 3 to obtain the failure rate function A(t) (see CI.2)-) in terms of the intensity at. In turn,
this enables us (in subsection 3.1) to write an equation determining A(oc)in the case where (r/s) is
a regenerative process with inter-regeneration times having an exponential moment. In subsection
3.2 we propose an upper bound 0 for A(oc) which is an expectation of c with respect to the
stationary distribution of (r/s) and we prove that A- v(OC)in particular cases (the resulting
inequality A(oc) _< Av(OC is very useful in practical studies). Subsection 3.3 deals with the Vesely
failure rate (1.3) and its expression in terms of stationary characteristics of the process (r/s)"

The remainder of the paper refers to the case where intensity c depends on the current state
of (r/s): at- c(r/t) In this case, (ec) can be represented as an expectation of a(r/) with respect
to a specific measure (.). Section 4 contains a construction of a regenerative process for
which is a stationary distribution. Using the mentioned constructions, we give accuracy
estimates of A and v in Section 5, under different restrictions imposed on process (r/s)"

Various examples illuminating the estimates proposed will appear in [6] as the second part of
this work. These examples are motivated by their applications in reliability area. In particular,
they show how the derived estimates can be used in engineering.

2. Decomposition of he Initial Process

2.1 Definitions

Throughout the paper, we will assume that all random objects are defined on a common pro-
bability space (2,,P) with elementary outcomes o E f. But the argument c0 will be skipped in
most cases.

The following construction is crucial for us. Consider a random process (r/s) with state space
M1, and a random process (Ms) such that

(1) for every t, the r.v. M is a function of 0r/s)0 < s < t;
(2) for every t, the r.v. M is non-negative;
(3) the functional M is a nondecreasing function of t.

In other words, if t is the r-field generated by random variables r/s 0 < s < t, and
50-(5t)t > o is the natural filtration generated by the history of the process (r/s), then (Mr)is
an increasirg process adapted to the filtration 5 (see Jacod and Shiryaev [13] (Chapter 1)). Let
us call (Mr) an integral intensity function. As we will see, the integral intensity function will be
typically represented as the integral

M / cudu (2.1
0

with respect to the Lebesgue measure, and the intensity function au -au((r/s)0 < s < u) is a non-

negative and right-continuous process, adapted to the filtration 5. To avoid pgtho--logical cases,
let us assume in this paper that representation (2.1) holds true. In fact, all results below can be
reformulated in terms of M only, and therefore the requirement (2.1) can be relaxed.

Definition 2.1: Say that ((r/s,r) can be decomposed into ((r/s), (as)) if

P((r/s)O <s <t E ",r > t) EI((r/s)0 <s <t e ", > t)
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E I(( or/s)O_<s_<t C ") exp audu (2.2)
0

for any t>_0.

To clarify equation (2.2), let us define an r.v. T jointly with (r/s) by the conditional distribu-
tion

P(T > t (r/s)) exp(- Mt) exp audu (2.3)
0

It follows from the restrictions imposed on au that, for any t > 0,

P(T > t (r/s))- P(T > t o()o ( ( /- P( > 1 o). (.4)

()o((.Thus a can be viewed as a random conditional failure rate of r.v. T at time t given o

Equation (2.2) is equivalent to

)o ( ( ", > ). (.)P(()o ( ( , > ) P(( o

This las equation will play a role similar o the coupling used in Cocozza-Thiven and Roussignol
[4].

The following lemma is an obvious but useful consequence of Definition 2.1.

0ate, W0.
Then,

P( > ) e- , V >_ 0.

This lemma means that r is dominated stochastically by an r.v. having an exponential law
with parameter e if the intensity function is bounded by e. The notion of stochastic domination
can be found in Shaked and Shanthikumar [21] (Section 1.A) or Lindvall [18] (Chapter IV.l).

2.2 Examples

In this subsection we treat a variety of models partly motivated by their applications to relia-
bility. They illustrate Definition 2.1 and contain corresponding decompositions which will be
used in the sequel.

Example 2.3" Markov process on a discrete state space. Consider a time-homogeneous
Markov process (r/s) on a discrete state space E with transition rates

A(i,j) lira
P(r/t + A J lr/t i)

A-0 A j, i, j E E. (2.6)

Let (r/s) be a Markov process with the same initial distribution as (r/s) and transition rates

A(i, j) A(i, j), 7 j, i, j .Zig. (2.7)
Define intensity a as

where
A o., (,,.). (2.8)

A(i, V) E A(i, j).
je

Then decomposition (2.2) holds true; the proof will be given later for a more general case (see
Examples 2.4 and 2.9). This decomposition is widely used in the theory of Markov processes, and
in that case Lemma 2.2 is quite intuitive.



The Failure Rate in Reliability: Approximations and Bounds 501

Example 2.4: Semi-Markov process on a discrete state space. Let (X, T)= (Xn, Tn)n > 0 be
a Markov renewal process on a discrete state space E having a semi-Markov kernel with denfflty q,
that is

P(Xn+l-j, Tn+l-Tn<_tlXn-i)- / q(i,j,x)dx.
0

Denote by (r/s) the semi-Markov process associated with (X, T) and defined by the equality

r/t Xn if Tn <_ t < Tn + 1"

The conditional density of T, given Xo i, has the form

f(i, t) E q(i, j, t),
jEE

and its hazard rate function is equal to
f(i, t)

h(i, t) hm.,1--P(T1 _< t -F A IX0 -i, T1 > t) OO

f
Let

p(i j t)
q(i, j, t)
f(i, t) P(X1 j lX -i, T1 t).

Then the density of the semi-Markov kernel can be represented as

q(i,j,t)- p(i,j,t)Z(i,t)- p(i,j,t)h(i,t)exp h(i,s)ds
0

So the transition rate function,

A(i, j, t) -ILmo-P(X1 j, T1

_
t --/k IX0 -i, T1 > t),

can be expressed as

A(i, j, t) = p(i, j, t)h(i, t). (2.9)
Since j e EP(i, J, t) 1,

h(i, t) E A(i, j, t)
and therefore,

J E

( )q(i,j,t)- A(i,j,t)exp E A(i,k,s)ds (2.10)
kE

It follows from relation (2.10) that a semi-Markov process can be defined either by its kernel or

by transition rate function.

The decomposition of a semi-Markov process is given in the following proposition.

Proposition 2.5: Let (rls) be a semi-Markov process with a finite state space E and transition
rate function A(i, j, x) and suppose ro E . For zp C E define

A(i,,t)- E A(i,j,t)

and cr- inf{t:r/t E zp}. Let (r/s) be a semi-Markov process with state space Jig, the same initial
distribution as (r/s) and transition rates

Ao(i,j,t A(i,j,t), 5 j, i,j dig.

Define the intensity function a by the equality

c A(Vt, 2, yt) (2.11)
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0where Yt is the time spent by process (z/s) in its current state.

Then ((z/t),r) can be decomposed into ((z/t) (st)).
Sketch of the Proof: It is sufficient to show that, for any O<tl<...<tk<tk+l-t and

P(tl--il,...,tk k, > ) E I(_l il,...,tk ik)exp ud (2.12)
0

Introducing the Markov renewal process (X, T) and conditioning by o- Xo- io, we obtain

P(tl il,...,t
k

ik, > t l0 io)

P {x.-i,r.< +l},r<T+,>lXo-io

(( nr+l
n-I

) )N r:0 +1 +1 r+l- +1 nr+ 1 +1 n
/=1 r

k nr+l-nr -1

(N r=0 /=1 Xr+l,l r=0 Unr

nr -l- nr --1 ) FX H q(Xr+l,l’Xr+l l+l’Un +/+1) f(Xk+l n-nk-l,S)ds
n

x I {u1 -k-...-1- un < tj < uI +...-t- un } u1 + + un < t du1 .dun,
j=l J- j+l (2.13)

where the outer sum [ N is taken over the set N {(no,...,nk + 1).0 no <_ nI <... < nk <_
nk +1--n}. Let qo be the Markov renewal kernel density of process (z/u). Equation -2.10- and a
similar equation written for process (z/s show that

q(i,j,u)- qo(i,j,u)exp A(i,,s)ds (2.14)
0

If ho is the hzad rte of the first jump time for process (), then

I(i,s)ds exp h(i,s)ds exp (ho(i,s) + A(i,,s))ds (2.15)
u 0 0

Substituting (2.14) and (2.15) into (2.13) we arrive at the desired formula (2.12). H

Example 2.6: Redundant system. Let a system consist of N elements. Each element can be
in one of the two states 0 or 1. State 0 corresponds to the failure of an element while state 1
means that the element is operating. Assume that all elements are independent and let

t- (t(1),...,t(N)) be the state vector of the system. Assume additionally that each marginal
process t(i), 1 N, is an alternating renewal process. Then successive sojourn times of t(i)
at states 0 and 1 are independent r.v.’s. Denote by $(i)(t) and (i)(t) failure and repair rates of
element (1 N), respectively. In these terms, the density function of a sojourn time at state
1 (at state 0, resp.) for element can be represented in the form

f(t)- ()(t)exp ()()d
o
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Let

resp. gi(t)- #(i)(t)exp #(i)(s)ds
o

Yt (yt(1),’",yt(N)) (2.16)
be the vector of elapsed time of elements in their current states. For instance, yt(i) is the time
elapsed from the last (before t)jump of (s(i)). In fact, Yt can be viewed as a functional of

(rls)0 < s < t" Process (rls) can be regarded as a piecewise-constant process with jumps defined by
the raes-

and

A(i)(Yt(i)) -li_.m0-P(r]t + A(J) ]t(J), Vj i; t + A(i) 0 (s)O <_ <_ t, t(i) 1)

#(i)(Yt(i)) =Alim0-P(’t + a(J) lt(J), Vj # i; ’t + a(i) 1 (7)o <_ <_ t, ?t(i) 0).

Now, let us assume that process (s) can reach set P from 1 only at times when one of the
element fails. Let ]- ((1),...,(N)) be a vector of binary components denoting a state of the
system and let

/1(])- {]: r](])- 1, 1

_
k _< N}

be the set of operating elements. For r/E , define another subset of elements (that may be
empty)

/(]) C l(r]), (2.17)
such that

k R()cv(k) 1, (V(1),..., r](k- 1), 0, r(k + 1),...,(N)) @.

In other words, R(r]) is the set of "critical components" with respect to state
wise-constant process (rls) with state space by the rates

Define a piece-

0 0 0 0 0A(i)(Yt(i)) P(t + A(J) t(J),VJ # i;]t + A(i) O (r/s)0<_s <t_ ,]t(z) 1)

and
#(i)(yt(i)) limo-P(rlt tit(2), Vj i;Tt+ A(J) 0 0 +h(i)-ll(s)0 <s<t, rlt0(i) 0),

0where vector Yt of elapsed times for (rls) is defined quite similarly as Yt"

Then condition (2.2) is met. i R(,s)

Let

The proof of this result can be given by similar arguments as in the previous example. We
will exhibit another approach in the following subsection and give an alternative proof for this
result (see Example 2.11).

Observe that, in reliability theory, one often considers decomposed processes, where (rlt)
describes the system dynamics without failuring factors. The failure occurs within [t, t + A) with

0probability chA and the intensity c to fail depends either on state rlt or even on prehistory
0()o < < -2.3 A general method

We now present a general approach that can be applied for time-homogeneous Markov
processes (s)" Some aspects that are intuitively reasonable are taken at face value, in order that
the basic idea may be exposed without the burden of too much mathematical detail. The assump-
tion that (rls) is a Markov process is not restrictive since a non-Markov process can be embedded
into a Markov process by equipping it with supplementary coordinates (see Example 2.11 and
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Kalashinikov [15] (Chapter 10)). Process (r/s) can be defined in terms of its transition probability

Q(r/;t,.) P(s+t e Is ). (2.19)
However, this characteristic is not convenient for practical purposes since it cannot be found in a

closed form for many processes of interest. In practice, one prefers to define Markov processes
with the help of so-called infinitesimal characteristics. One of the most useful infinitesimal
characteristics is the generator A. A naive definition of the generator can be given as follows (see
Oynkin [9] (Chapters 1 and 2), Feller [11] (Chapter X), and Ethier and Kurtz [10] (Chapter 4) for
rigorous definitions). Let us view the transition probability (2.19) as an operator that maps the
set of measurable bounded functions f: E-R1 into itself by the formula

gt() / f()Q(; t, d) E(f(t) 0 ), t 0,
E

where g0(): f()" The following characteristic is called the infinitesimal operator or generator
of ():

g() A/(O) -lim
gt() -g0()

t0 t (2.20)

provided the limit exists in the sup-normed topology l f ] -sups f() Af() is a derivative
of the mean value of f(t) at t- 0, along the path of process (s) given 0- ; it is not defined
on the set of all measurable bounded functions (in general) but only on a subset DA called the
generator domain. This subset depends on the type of process under consideration. Actually,
there are several definitions of the generator owing to the variety of meanings of the limit in

(2.20) (see Oynkin [9]) and due to the expansion of the domain of A to unbounded functions (see
Davis [7] and Kalashnikov [14]).

We restrict ourselves with only Feller processes (see Dynkin [9] (Chapter 2) and Meyn and
Tweedie [19]). This class of processes can be characterized by the property that transition proba-
bilities (2.19) map the set of bounded continuous functions into itself. It follows, in particular,
that Feller processes have transition functions that are continuous with respect to the first argu-
ment (initial state).

Operator A is linear and there is one-to-one correspondence between A and transition
probability Q under wide conditions (see Dynkin [9] (Chapter 1)). Here, we will assume that such
a correspondence takes place. Formula (2.20) is equivalent to the equation

U(f(h) 0 ) f() + hAt(o) + o(h). (2.21)
The following theorem gives a general way of decomposing a Markov process.

Theorem 2.7: Let (s) be a Markov process with state space E and generator A, and let
be a subset of E, c and a inf{t:t }. Suppose that A can be decomposed into the
8urn

A-A+Av, (2.22)
such that Af() does not depend on values f((), , ff , and component A has the
form

Af() / f()A(; d) f()A(; ), E, (2.23)

where A(;. is a finite positive measure with support for each , continuous with respect
o and sup, e A(,, V) < . T ((,,),) ca dcood ito ((), ()),
() a iaovo i* rator A (*ct o ) and

, A(,; V). (.4)
Proof: Formula (2.24) can be regarded as a consequence of more general results contained in
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Dynkin [9] (Theorem 9.7 and Sections 10.1 to 10.3) if one treats (rs) as a Markov process that
exits a time r. Our purpose here is to present an intuitive reasoning of the result rather than its
rigorous version given in the cited book.

Let us estimate the probability

(B)- P((,)0 < < B; > t) (2.)
for fixed time t > 0 and subset B. Process (s) has right-continuous paths. Therefore, it is suffi-
cient to find probability (2.25) for a cylindric set B that is to take B of the form

{w:(s)0 < s < t(w) E B} {w:t .(w) Bd C
, 1 j n,O t < t2 <... < tn t},

where n 1 and 0 t1 < t2 <... K tn t are arbitrary.

Let us define a killed Markov process (Ys) (see Dynkin [9], (Chapter 10))"
y ( >)+( < ).

is not defined after stopping timeThis means that the state s
(s)" In these terms,

Pt(B) P(’tj Bj, 1 <_ j <_ n,
Let us take a function f from the domain of operator A that is equal to zero in
(2.22) and (2.23),

A/() f() A/() A(, )f(r),

(.)
Denote by A the generator of

This means (see (2.21)) that, for any e ,
E(f(h) 0 ) f() + hAf() hA(; 2)f() + o(h)

(1 A(; )h)(f(?) + hAf(rt)) + o(h)

(2.29)

0A(,; )hE(/(h) ( ) + o(h)

A o o(h).E f()exp (rls;ZP)ds I- +
0

(2.30)

As there is one-to-one correspondence between transition functions and their generators, we have,
for any CC,

P(h G c IW0 w) E I(r e C)exp A(ou;)du O r + o(h). (2.31)
0

Using the Markov property of processes (s)and ()and equality (2.31), and letting h0, we
have for any s- mh, m 1,

P(s C)-i.E ( P((5 +a) 5)P(mh C ’s-h)

=iE P( e C l_h) exp A(;)d
j =0 jh

E I( e C)exp A(r/u;V)du
0

This and the Markov property imply that the probability (2.28) has the form
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pt(B) E I(r/tj E Bj, 1 <_ j <_ n)exp (r/u;V)du
o

This yields the result. V1

Remark 2.8: It is useful to know that 1 E DA and therefore 1 1- 1 DA.

To prove this, note that f(r/)- 1, r/G tt, belongs to DA0. This function f definitely belongs to

the domain Ox (where A is defined in (2.29)) by (2.20), (2.21), and (2.22). In fact, A is the

generator of the killed Markov process that exits at time a and D. DA0 by Theorem 9.3 from
Dynkin [9]. Let us extend f as follows:

1, if r/
Iv(r/)

O, if r/e V.

Such an extended function belongs to DA just because of the definition of generators A,A, and
equality (2.29).

Process (r/s) may contain both jumpwise and continuous components (see Examples 2.10 and
2.11). But, due to form (2.23) of operator Av, process (r/s) may hit set V only by jumps, and the
intensity of the jump at point x E E is equal to A(x;V). If such a jump leads to subset V, then
the state of process (r/s) just after the jump is random with the probability distribution
A(x;. )/A(x; V), while process (r/s) stays in otto.

Example 2.9: Markov process on a discrete state space.
2.3. By definition (2.6), its generator has the form

Af(i) E A(i, j)(f(j) f(i)),
jEE

Let us decompose the operator A in the following way:

A- A +Av,
where

and

Consider process (r/s) from Example

Af(i) E A(i, j)(f(j) f(i)), E,
j E dtI

AVf(i) E A(i, j)(f(j) f(i)),

Then, all conditions of Theorem 2.7 are fulfilled and formulas (2.8) and (2.24) coincide.

Example 2.10: Semi-Markov process on a discrete state space. Consider a semi-Markov
process (r/s) from Example 2.4 and denote by Ys the elapsed time of the process in its current
state at time s. Then process r/s (r/s, Ys) s > 0 is Markov and its generator has the form

Of(i, y__) + E A(i, j, y)(f(j, O) f(i, y)).Af(i,y)- Oy
jeE

Let .Zig’= x [0, oc) and V’= V x [0, oc). This means that (i, y) tt’ if and only if and
(i,y) ’ if and only if i . The term Of(i,y)/Oy in the above formula is responsible for
deterministic behavior of Yt between successive jumps of (s), and, for (i,y) ’, it does not
depend on values of f(j,z), (j,z) ’. We arrive at the decomposition

A-A+A
with

A0f(i, y) Of(i, y + A(i j, y)(f(j, O) f(i y))
je
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APf(i’ Y) E A(i, j, y)(f(j, O) f(i, y)).

The expression for A(r/;. given in Theorem 2.7 (see equation (2.23)), for r/= (i,y), is equal to
A(i,. ,y) and formula (2.11) agrees with (2.24).

Example 2.11: Redundant system. Consider process (s) from Example 2.6. If r/’s (r/s ,ys),
where Ys is defined by (2.16), then (s)is a Markov process. It can be verified that

N f(, )Af(, y) + a(i)(, y)(f((i), y(’) f(, y)),
i=1

where = ((1),...,(N)),y (y(1),...,y(N)),

A(i)(y(i)), if r/(i)- 1,a(i)(r/’ Y) #(i)(y(i)), if r/(i) 0,

v()(j)- (j), j i; r/(i)(i) 1 r/(i);

y(i)(j) y(j), j #: i; y(i)(i) O.

Let Jib’ dth x [0, ec)N and P’ P x [0, oc)N.
Example 2.10

where

Decompose operator A in the same way as in

A- A + A2,

Af(r/’ Y) ,. a W a(i)(r/, y)(f(r/(i), y(i)) f(r/, y))

(the set R(r/) is defined in (2.17)) and

In this case,
Af(r/’Y) E a(i)(r/’

R(,)

A((r/, y); P) E a(i)(r/’ Y)"

Using Theorem 2.7, we arrive at formula (2.18).

(2.32)

3. The Asymptotic Failure Rate and its Approximations

3.1 The asymptotic failure rate

The failure rate A(t) and its limiting value A(oc) provide useful characteristics for doing a

number of calculations in reliability. In this section we obtain explicit expressions for them and
their approximations. To state our results, let us assume that the intensity function a

at(( 0r/s)O < s < t) satisfies the following conditions"

Conditions C(a)
1. ((r/s), ) can be decomposed into ((r/s), (as)).
2. For each >_ 0, function as as(w is right-continuous at s t for almost all w E .
3. There exists an absolute constant such that

supas < + oc (3.1)
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The first condition is crucial to our approach. The second condition is quite natural because
of the assumption that paths of (gs) are cadlag. The third assumption is restrictive, of course.

For example, it may fail for semi-Markov models when holding time have IFR distributions with
unbounded intensities. Moreover, some final formulas in this work hold true in the case when
conditions C(a) are violated. This means that the third assumption can be relaxed. It seems

that the most straightforward and general way to do this is to find comparison estimates which
yield that the desired characteristics of the process with unbounded function a can be obtained as

the limit of corresponding characteristics for the process with intensity min(at,) when -.
We will not touch this problem here but refer the reader to works of Kalashnikov [16] and [17]
where such problems have been solved for specific characteristics of regenerative processes.
Perhaps, comparison estimates wanted for the purposes of this paper may lead to different setups
in comparison theorem.

We now express the failure rate function A(t) introduced in (1.2) in terms of the "decomposi-
tion components" of ((gs, r).

Lemma 3.1: Let conditions C(a) hold. Then

E

Eexp f audu
0

Proof: We have, by (1.2) and (2.2),

By condition C(a).2, for every t there exists a right derivative f au(w)du at(w (a.s.).
0

( (i’ ) )) (s’ )1__ exp cudu exp cudu < exp udu sup
t<s<t+l

0 0 0

As

for any 0 < A <_ 1, the Lebesgue dominated convergence theorem yields

0 0

This completes the proof.

Let us find sufficient conditions ensuring the existence of the limit

For this, we use a "regeneration technique" (see Kalashnikov [16]). Let us recall that a
probability distribution u is spread out if there exists an n such that u*n has a non-zero
absolutely continuous component (see Asmussen [1] (Chapter VI)). A random variable is said to
be spread out if its probability distribution is spread out.
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Conditions CO
1. Conditions C(a) hold true.
2. Process (s) is regenerative (in the sense of Smith) with the sequence of regeneration

times 0- So, S1,S2, Let S- S1 be spread out, ES
Assume that process (as) has the "lack-of-memory property" that is au only depends on

0

N(u) <_ s <_ u"

3. The following analog of Cramr’s condition holds" there exists a real number n > 0 such
that

Eexp (au- )du 1. (3.2)
0

4. There exists a > t such that E(eas) < + c.

Let us discuss the above conditions. Assumption C0.2 that (s) is a regenerative process is
quite natural from a practical point of view. In reliability, the regeneration property is often asso-
ciated with returning of the process to the state where all components are operating. In accord-
ance with this, the requirement of the lack-of-memory property for (as) seems to be natural. It
follows that process (as) is also regenerative with the same regeneration times So,$1,$2,
Hypothesis C0.4 requires the existence of an exponential moment for inter-regeneration time S.
This is necessary (but not sufficient, in general) for satisfying Cramr’s condition (3.2) which is
widely used in various applications since it enables one to simplify studying of underlying models.
As we will see, n is small for highly reliable systems. Therefore, assumption a > t in hypothesis
C0.4 is not restrictive in many practical reliability problems. However, condition C0.4 does not
seem quite satisfactory, even for Markov processes with a finite number of states. Because of this,
we will relax it in some particular cases.

The following theorem contains the desired representation of the limiting value A(c).
Theorem 3.2: Suppose that Conditions CO hold true. Then

and

E f aexp -f (au-n)du dt

A(c) o o (3.3)
EofSexp( fo (au-)du)dt

(c)- n. (3.4)
Proof." By Lemma 3.1, the following identity holds for any real

E (atexp(-ft(au-)du))_N
:,(t) o

( ) -D" (3.5)
E exp f (au- )du

0

Now, take n > 0 to satisfy (3.2) and prove that there exist limits for both numerator N and deno-
minator Dt. Since (s) is a zero-delayed regenerative process and the same is true for (as) N
satisfies the renewal equation

N E atexp (au- n)du ,S > + Nt_ uE exp (av- n)dv I(S du)
0 0 0
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Let
B(du) E exp (av-n)dv I(s e du)

0

By (3.2), B(. is a probability measure. Condition C0.4 implies that

b1- / uB(du)<cx.
0

As S is spread out, the distribution B has the same property. By C0.3 and C0.4,

g(t) E atexp (au- n)du ,S > t

0

is bounded, Lebesgue integrable and limt__.g(t -O. By the key renewal theorem (see Asmussen
[1] (Chapter VI, Corollary 1.3)) the following limit exists:

1E / ctexp (cu- )du (3.6)N =_th_mNt bl
0 0

Quite similarly,

D 1Ef exp (cu -g)du (3.7)D lim
t- b1

0 0

Now, by (3.2),Relations (3.5), (3.6), and (3.7) yield (3.3).

) )E/ atexp (au )du dt E exp (au )du dt. (3.8)
0 0 0 0

Substituting (3.8)into (3.3) w arrive at (3.4).

3.2 An upper bound of (oo)
Theorem 3.2 has the following useful corollaries giving upper bounds of A(c) in terms of a

stationary expectation of regenerative process (r/s).
Proposition 3.3: Suppose that Conditions CO hold true.

S
E f cudu

: c < :o =_ o
ES

Then

Proof: Applying the Jensen inequality we have from (3.2) that

1 E exp (au-n)du >exp -E (cu-n)du
o 0

Therefore,
S

Since ES < c and A(c)- g we arrive at (3.9).

cu)du <_ O. (3.10)

Note that the right-hand side of (3.9) is nothing else but the stationary expectation of states
of the regenerative process (as).
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Remark 3.4: Inequality (3.10) holds under wider assumptions than those listed in Conditions
CO. Indeed, it can be used whenever we know that Condition C0.3 holds true, A(x)< to, and
ES < x.

Remark 3.5: Just to illustrate Remark 3.4, suppose that (/s) is an irreducible Markov or
semi-Markov process on a finite state space E, with, for example, initial state 0 E E. Recall that
(r/s) is supposed to be regenerative, therefore state 0 is recurrent for both processes (s) and (ris).
Then they are regenerative with the first regeneration time, respectively, S
inf{s:s-0,s

_
:0} and -inf{s:ris-0,s_ #0}" It is easy to verify (using the same

method as in the proof of Proposition 2.5) that

Eexp (()- g)du E (e 1( < )),
0

and the CramSr condition (3.2) is nothing else but the r-recurrence property (see Cocozza-Thivent
and Roussignol [3]) with v- -a. Hence, the Cram6r condition (3.2) is true if distributions of
sojourn time in the states have rational Laplace transforms. Moreover, Theorem 6.3 of Cocozza-
Thivent and Roussignol [3] asserts that ()-a under these conditions. So all hypotheses in
Proposition 3.3 are fulfilled (without the necessity to turn to Assumption C0.4).

The following remark gives a useful representation of 0 for Markov processes. It is an

immediate consequence of definition (3.9) of 0.
Remark 3.fi: Let () be a Markov process conforming to the conditions of Theorem 2.7,

C0.1 and C0.2. Then

j A(,; (3.11)

0 being the stationary distribution of Markov process ().
Since the behavior of process () depends on the behavior of () until the first hitting time

of the subset , the estimates contained in Proposition 3.3 and its Corollary 3.6 are attractive for
practical use. Intensity 0 (see (3.9) to (3.11)) has a clear interpretation and can be calculated in
terms of stationary characteristics of the auxiliary process (). We will investigate an accuracy
of this approximation in Subsection 5.1.

The following lemma shows that stationary characteristics of () can be obtained in terms of
stationary characteristics of process () provided that ()is time-reversible.

Given a Markov process on a countable state space E with transition rates matrix A and
subset C E, we say that is communicative if, for any and j in , there exists a path from
to j, i.e., there exists n and il,... n in such that

il-i,i -j,

If E is communicative, the process is called irreducible. The process is time reversible if there
exists a probability distribution such that for any and j,

(i)A(i, j) (j)A(j, i). (3.12)
It can be easily seen that every distribution r satisfying (3.12) is stationary.

Lemma 3.7: Let us consider a ime-reversible Markov process (s) on a discrete state space
with stationary probability distribution (.), and let us suppose that set is communicative.
Then

Proof: Let A be the transition matrix (or generator) of the Markov process (). The
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irreducibility and reversibility yield for any /and j (see Disney and Kiessler [8] (Section 2.13.2))
that

> 0,

A(i, j) > OcezA(j, i) > O.

Now, let J0 be a (fixed) element of 1 and for any j in 1, we choose a path from J0 to j

J0 = il, i2," ", in 1, in J,

and define

Equation (3.12) implies

A(jo, i2)A(i2, i3)" "A(in 1_! J)(J) A(i2, j0)A(*3, i2)" .A(j,in 1)"

7r(j) (j)Tr(jo). (3.13)
Denote by Ao the transition matrix of process (r/s). By (2.7), we have

A(i, j) A(i, j)

for all and j from .hl. Let us now define the distribution 7r on 1 by

7r(j)- (j)Tr(j0), j E 1.

(3.14)

(3.15)
Given j and k from such that A(j,k) > 0, we have

7r(j) (j) 7r(j) A(k, j) A(k, j)
7r(k) (k) 7r(k) A(j, k) A(j, k)

(see (3.15), (3.13), (3.12), and (3.14)). Therefore, measure 7r is a stationary distribution of states
of process (r/s). By (3.13) and (3.15), we conclude that measures 7r and 7r are proportional on, which yields the proof. El

3.3 The Vesely failure rate

We now derive some useful relations for the Vesely failure rate. Let us start with an ergodic
Markov process (r/s) with a discrete state space E and generator A. Here "ergodic" means that
the Markov process has a unique stationary probability distribution 7r such that

lim E(f(r/t))- E
for every bounded function f on E. Any irreducible Markov process on a finite state space is
ergodic. It follows from (1.3) that the Vesely failure rate has the form

and consequently, under Condition C(a).3,

Av(OO) :tli_+mv(t 1 rr(r/) A" 2). (3 16)rr(Ytl,) E a(r/)l (. j}rr(r/) E r--) (r/’
o E E o E JI

Proposition 3.8: Let (s) be a time-reversible Markov process on a finite state space with a

stationary distribution of states (.) and a bounded generator A; let set be communicative.
Then,

v( o
and
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Proof: The proof follows from Example 2.3, Remark 3.6, Lemma 3.7, and formula (3.16) by
using the result indicated in Remark 3.5. El

Remark 3.9: Engineers are often interested in the Vesely failure rate since it can easily be
computed. Such calculations can be done with the help of a fault tree when the system consists of
independent components (see Example 3.14). In such a case the system behavior can be described
by a finite reversible Markov process, if the failure and repair rates of each component are

constant and strictly positive. Engineers observed (from practical examples) that A(oc) < Ay(C)
but, as far as we know, this result had not been proved. Now it is done and it is an important
result for applications.

As we will see in Proposition 3.15, the equality A0_ Av(CX3 is still true for a general redun-
dant system introduced in Example 2.6 (see also Example 3.14) in the case of constant failure
rates and general repair rates.

We now come back to general Markov processes. The following proposition generalizes repre-
sentation (3.16) of general Markov processes having the Feller property.

Proposition 3.10: Let (r/s) be an ergodic Feller process satisfying assumptions of Theorem 2.7
with stationary distribution of stales r. Then

Y(CX) r(t)f a(r/; P)r(dr/). (3.17)

Proof: By Remark 2.8, function f(r/)= ln p} belongs to the domain of the generator of

(%). The generator’s definition and (1.3) yield
e

Av(t) P(rh ) a--,olim P(r/t + a P r/t r/)P(r/t dr/)

1 lim / --z(E(f(r/A)/r/0 r/)-/(r/))P(r/t dr/)

1
P(r/t G dl

As the process is ergodic, this yields the desired result.

Example 3.11: Semi-Markov process on a discrete state space. We return to Examples 2.4
and 2.10 and preserve corresponding notations. Let the semi-Markov process by ergodic and let r

be its stationary distribution of states. Example 2.10 and Proposition 3.10 yield

1 e.j fro EA(i,j,y)r,(i, dy), (3.18)
s

where r’ is the stationary distribution of Markov process (r/s, Ys)"
for example, Disney and Kiessler [8] (Section 2.7))that

r’(i, dy)= Ku(i) exp

It is not difficult to prove (see,

h(i, s)ds dy,
0

(3.19)

where function h is defined in Example 2.4, u(. is the stationary distribution of the embedded
Markov chain X with transition probabilities p(i, j)= f q(i, j, y)dy, and It" is a norming constant.
Let us denote by r the stationary distribution of the semi-Markov process. It follows from (3.19)
that

[_ Ir.(i _ xp dy Ku(i)m(i),
0 0 0
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where the mean sojourn time in the state i, m(i)-E(Tllr]0-i), is finite. Thus, r can be
viewed as the stationary distribution of states of a Markov process with the same embedded
Markov chain X and the same mean sojourn times re(i). This Markov process has the generator

P(i, J)a(i, j) n-(-5
Substituting (3.19)into (3.18) and applying (2.9) to (2.10), we get

J0 0

This yields

(.2) E E Ku(i) q(i, j,y)dy
it j o

1 E E K’(i)p(i’j)-(’)
ie

1 ?t E (i)p(i’ J)"E e -()-() e v

,v(oo) () x--’ .l:,(,J) -()
a(i, j). (3.20)() v (i) ()

The arguments above imply the following result.

Proposition 3.12: For an ergodic semi-Markov process on a discrete state space, the
asymptotic Vesely failure rate is equal to the asymptotic Vesely failure rate of a Markov process
having the same embedded Markov chain and the same mean sojourn times in all states.

Remark 3.13: It can be seen from (3.20) that, in the Markovian case, Iv(OC -1/MUT,
where MUT means Mean Up Time of the system (see Pages and Gondran [20]). The last
proposition shows that this is also true in the semi-Markovian case.

Example 3.14: Redundant system. Consider the redundant system described in Examples 2.6
and 2.11 and preserve the same notations. Let us embed (ris) into the Markov process (s, Ys)"
Let r’ be its stationary distribution of states. By Proposition 3.10 and equation (2.32)

1 E [ E a(i)(7’Y)’(’dY)" (3.21)v() ’(’) ,e J % e

Since all components of the system are independent, the measure r’ has the product form
N

"(’, ) II ’()((i), (i)),
i--1

and the same is true for the stationary distribution r of states of process (rls)
N

()- l] ()(()).
i=1

For any i, function a(i) depends on r](i) and y(i) only. Hence, we can write a(i)((i),y(i))instead
of a(i)(rl, y). Let 7i and 6 be the mean sojourn time of the ith component in "good" state 1 and
in "bad" state O, respectively, and
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m(i)(r/(i) 7i, if r(i) 1,

6i, if (i) 0.

It can be easily seen from (3.19) that

1 cxp a(i)(l(i),s)ds+
0

and, consequently,

m(J)(rl(J)) 1 (j1 H 7 +bj +---- H 7r )(/(j)).
o

a(i)(’ y)r’(r/, dy)
7i + 6i j: j # J 7i j: j

Assume additionally that the system is coherent. This means that if the system is operating
(resp., failed) and if one more component becomes operating (resp., failed) then the system
remains operating (resp., failed). This assumption is typical and natural for reliability studies.
Then

E E / a(i)(rl’ Y)Tr’(rl’ dy), e 2 e n() o

1 YI r(/)(r(J))E,),i._[_5
rl’ieR() j.ji

1ETi+bi(r(:(r(1),...,rl(i-. 1),0,(i + 1),...,r/(N)) e 2)

r(: (r/(1),..., r/(i 1), 1, r(i + 1),..., r/(N)) e 2)).

Equations (3.21) and (3.22) yield the following formula, well-known to engineers:

av(oo) r()l /1.7i + 5i(r(:((1),...,rl(i- 1), 0, r/(i + 1),...,/(N)) e

r(r: ((1),..., (i 1), 1, r(i + 1),..., r/(N)) 9)).

It can easily be computed with the help of fault trees and existing software.

The following result generalizes Remark 3.9. It uses PH-distributions (see Asmussen [1]
(Section II.6) and Kalashnikov [15] (Subsection 9.5.3)) which can be treated as distributions of
absorption times for Markov processes with a finite state space.

Proposition 3.15: Consider the redundant system described in Example 2.6. Let the system
be coherent with constant failure rates and general strictly positive repair rates, and repair times

having finite means. Then we have:
,X-Consequently, if the repair times have PH-distributions or if conditions C0.3 and C0.4 are

satisfied, then
() < .().

Proof: We use notations from Examples 2.6 and 2.11. Since failure rates are constant, it is
not necessary to consider all y(i)’s from (2.16) to obtain a Markov process. Define another vector
y with N components:
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(i)-{ (i),

0,
Process (ris, ys) is Markov with generator

where

A_ f(ri.y)
i:,(i) =o

Of(I.y
cOy(i) + E a(i)(r](i)’ Y- (i))(f(7(i)’ y_(i)) f(r, y)),

.()(_ ()),a(i)(r(i), y___ (i)) (i)(y___ (i)) )(i)(o (i)
if r](i) 0,

if (i)- 1.

All assumptions of Theorem 2.7 are fulfilled and thus

Of(.Y)
o.:.()

+ E a(i)((i)’ Y--- (i))(f(r](i)’ y_(i)) f(r], y )).
(,)

Let us prove that stationary distrbution _0 of the Markov process with generator _A is defined by
the relation

? E .) j" r](j) 0 0 j" r(j) 1 r(j) 0

(3.23)
where is a bounded measurable function and K0 > 0 is a norming constant. Define functions gy_

(j)( )exp f J)(s)ds if r/(j) O,
gi(ri(j), y (j)) o

1/(J), if ](j) 1,

and g as

g(’ Y) H gJ((J)’ Y-(J))’

and prove that. for every function f from the domain of _A,
C(f) E / A-f(, y )g(, y H dy (j) O.

, j j: ,(j) o

(3.24)

Let be such that (i) 1. Then by integrating by parts,

,g(r]. y_ H dy (j)0y () j’rl(j) --0

gJ((J)’-Y (J))j’j # dy_ (j) Of(7.o -Y(-
y

exp

.() =o

()()d d_ (i)
0

j:j j:j i, j:j i,
,(j) o .(j) o

Using the fact that y y(i) if (i) 1 and system’s coherence, we have

C(f) / f(r], y_(i))H gj(ri(j), y (j))H dy_ (j)
, .Ai. ,(i) o j: j # j: j # i,

,(j) =o
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+ / #(i)(y (i))f(r], y )g(, Y-)H dy (j)
, j :,(i) o j:,(j) o

/ #(i)(y_ (i))f(r], y )f(, y )g(, y H dy (j), j i:,() o j:,(j) o

+ / f(rl(i), y (i))l-I gj(rl(j), y (j))H dy (j)
rl e i: rl

(i) e .2, J: j j" j i,

(i) 1 (j) 0

j( f(rl, y_ (i))H gj(rl(j), y_ (j))H dy_ (j)
.j

i. o( .j, j: j j" j i,

,(i) ,(j) o

,Y(i)) H gj(7(J),Y (J)) H dy (j)
j: j j: j 5 i,

,() o

Similar calculations show that the stationary probability distribution for process (ris, ys) is given
by the relation

_Tr () It" / (, y )g(r/, y H dy (j), (3.26). e E j: ,(j) o
where is a bounded measurable function and K > 0 is a norming constant.

Equations (3.23), (3.24), (3.25), and (3.26)imply that

Theorem 2.7 yields A_((ri, y);)- i e R(u)
(i)- c(r/). Then the statement of the present

proposition is a consequence of rroposition 3.i0, Remarks 3.5, 3.6, and Theorem 3.2. VI

Remark 3.16: Conditions of Proposition 3.15 are optimal in the following sense. Generally,
Av(OC) A0 for a redundant system where failure rates are not constant. Moreover, the
inequality ,kv(OO < A(oc) may hold true. As an example, let us consider two independent
components C1 and C2 in parallel. Suppose that the lifetime of component C1 has the Erlang
distribution with parameters 2 and 1 (that is the lifetime can be viewed as a sum of two
independent random variables, each one being exponentially distributed with parameter 1) and its
repair rate is #(1)_ 10. Suppose that the failure rate of component C2 is (2) 1 and its repair

()rate is # 10. It can be seen that

A(oc) 8.7024- 10- 2 Av(OO) 8.6957.10- 2 ,k 9.4340.10- 2

that is, A0 :/: ,v(OC and
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4. A Stationary Representation of the Asymptotic Failure Rate

Throughout the remainder of this paper we will assume that the following Conditions C1 are
met:

Conditions C1
1. Conditions CO hold.

02. Intensity u depends on the current state r/u only, that is cu c(r/u).
In this section, we construct a regenerative process (s) such that A(c) is equal to the

stationary mean value of a(’s). For this, we define the following measure on subsets of

E f I(r/t
_

.) exp f (u-tc)du dt

(.)_ o o
S .4.1.

El0 exp (-f(au-g)du)dto
Then, by (3.3), A(cx)can be represented as

() /() (a). (4.2)

Remark 4.1: It can be easily seen (using (2.2) and the same arguments as in the proof of
Theorem 3.2) that is the quasi-stationary distribution of process (r/s), i.e.,

(" =tli_rnoP(r/t e a > t).

Before constructing a regenerative process with stationary distribution , let us build a

regenerative process r/1 (r/is) with initial distribution .
Formula (4.1) yields the following general construction. Let us regard random process

r/0_ o(r/s)(W) as defined on probability space (9, ,P) and expand this space as follows (a similar
construction was used by Thorisson [22]; see also Kalashnikov [16] (Section 1.6)). Let % be the
collection of all Borel subsets of [0, 1]. Set

co’= (co, u), co E , u e [0,1]; (4.3)
’=x[O,l]; ’=5x%;

P’(dco’) P’(dco, du)= P(dco)du; (4.4)

where

P"(dw’) -S(w)exp (-
s()

J" (a(r/ov(w))-n)dv)P’(d
0

’), (4.)

D E/ exp (a(r/v) tc)dv dt. (4.6)
0 0

This construction has the following meaning. Formulas (4.3) and (4.4) imply that the r.v. U is
defined independently of other random elements (this leads to the probability P’). Then we
introduce a new probability measure P" on the expanded probability space (see (4.5)and (4.6)),
where D is a norming constant. After this, we can define a new process r/l_ (r/is) on the
probability space (’, if’, P") by the relation

where

o (co)- (t9u r/)t -(w, u), (4.7)r/t (co) r/t + uS(w) S(w)
stands for the shift operator on time s onward. We are going to see that construction
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(4.3) through (4.7) implies that process 1 can be viewed as regenerative with regeneration times

Consider the pair

defined by (4.7)and (4.8).

_1

+ > 0.

sl0,
Then the following chain of relations holds

P"(OS1 (r]1, S1)(w’) e
k

1

I(OsOk 4- 1 (w) -uS(w)fluS(w)(rlO’ sO)(w) e

exp (a(rlv)- tc)dv duP(dw)
0- rlO, S)(w) E exp (a(r/v)- n)

f 0 0
dv)dtP(dw)

1()
(70’ S)(w) )-E/ exp (a(r]0v) t)dv dt

o o

(4.8)

EI(Oso + l(W)
(r]0’ s0)(w)

EI((,S)(w) ).
Therefore, all shifts 0SI(r]I,s1 are identically distributed.

kevents

{@S(1,s1) e .}
and

e }
are independent.
process r/1 is .

(4.9)
Quite similarly, one can prove that

Moreover, it follows from (4.1), (4.5), and(4.7) that the initial distribution of

We now construct a regene.rative process that has as its stationary distribution. For
this, let us introduce.processes *, >_ 1 and positive random variables T such that

processes r/*, _> 0 are independent;
process r/ is a probabilistic replica of the "original" process 0 in the sense that it has
the same probability law (because of this, we did not change its notation);
processes 7’, >_ 1 are i.i.d, probabilistic replicas of the "original" process
for any >_ O,

Remark 4.3: If 0 is a Markov process, then the above construction shows that r]
1 is also a

Markov process with the same transition probabilities as r] (and with the initial distribution ).

Remark 4.2: Equality (4.9) shows that all shifts Osl(ql,S1) are distributed as (,S). By

the terminology adopted in the theory of regenerative processes, this means that (rl,s1) is a

version of (r,S), i.e., these two processes have identically distributed cycles but perhaps
different delays. Regenerative process (I,sl) is delayed, in general; that is, P(S :/: O) > O.
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P(Ti-<tl(q)s>_0)-P(Ti-<t](i)0s _<s_<t)-l-exp a(q)du (4.10)
0

Let us denote by (Sk)k>oi regeneration times of process i. Recall that S # 0 in general (see
Remark 4.2).

Hereafter, let us regard all processes as defined on the same measurable space (’,3’) and
preserve notations P, P’, and P" for the measures indicated in (4.4) and (4.5). Construct process

from fragments of the regenerative process qo and its i.i.d, versions , >_ 1, as follows"

rt(w), if t < T,
Tt_(TOT+...+Ti-1)( )’ ifT+...+Ti-l <_t<T+...+T i> l

(4.11)

Then for each >_ 1, set i {T- +... + Ti- 1 + S" ] 0, 0

_
S < Ti} is the collection of

regeneration times of the process t- To-...-T -1 occurring before its stopping at time Ti. Set

i may be empty if Ti_ S. Process thus defined can be viewed as regenerative in at least
two different ways:

(i) with regeneration times (TO +... + Tk)k > 0;

(ii) with regeneration times S- (S, z ,"’)- (S0,1,’") consisting of all "occurred"
regeneration times. By construction, So -0.

Let us call the regeneration times indicated above as those of the first and second types,
respectively.

Theorem 4.4: Under assumptions C1, there exists a regenerative process " with stationary
distribution such that

()/() (d).

Moreover,
o TO

t t if t< P(T0e ")--(’),

where TO is an r.v. such that

P(T _< t l(,s)s >_ 0)- P(T - t (’s)osht)- 1-exp a(,)du
0

Prf: Let us consider the regenerative process (,S). In order not to introduce new

notation, we denote by 7 the stationary distribution of which can be written as

S1

E] I( e )dt. (4.12)(.
ES1 0

To prove that distributions (4.1) and (4.12) are the same, it is sufficient to state that

N EJ I(tE. )dt- I(rtE )exp (a(ru)-)du dt. (4.13)
0 0 0

By construction (4.11),
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where

1 A TO 1
/ I(’ E" )dt + E I(T < 1)/ I(’t " )drN E
0 To

S’l
N1-El I(OTO’t .)dr

0

(4.14)

and S is the first regeneration time of the second type for the shifted process 0 o; evidently,
TS > To. Since S is measurable with respect to (s) it can be regarded as a constant when

conditioning with respect to (s). Therefore, equality (4.10) yields

(4.15)

All shifts OTO +... + Tk" are identically distributed. Because of this we have, similarly to (4.14),

Therefore,

/ o(rl)dt N1.

0

E"f I(ql.)exp (- f a(ql.)dv)dt
N1 0 0

E"exv f a(t)dt
0

Let us use construction (4.7) of process /./1 in order to find
variables, we have

(4.16)

By (4.3) to (4.8)and changing

uS(w)

-D
f o 0

/ I(ot + uS(w) G )exp a(v + us(w)(w))dv dtduP(dw)
0 0

S (].s )jS-s (].t )-EJ exp (a() n)dv I(rlt +s )exp c(v + s)dv dtds

0 0 0 0
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0 0 0

--EJ I(r/u E" )exp a()dv (e’- 1)du.
0 0

Similarly, by (3.2),

E"exp
0

c(rll)dt n-E exp a(v)dv (eS- 1)
0

(4.17)

1- Eexp a(rl)dv
0

(4.18)

Substituting this into (4.16), we have
S u

Ef I(r/u e )exp(- f a(v)dv)(eu- 1)du
NI_ o o

S
1-Eexp(- f a(qv)dv)

0

It follows from (4.14), (4.15), and (4.19) that

N E I(lt e exp (a(lu)- )du dt.

0 0

Hence, relation (4.13) holds true and Theorem 4.4 is proved.

(4.19)

Pemark 4.5: The construction above is a generalization of the construction from Cocozza-
Thivent and Roussignol [4] proposed there for Markov processes on a discrete state space. Let us
notice that Conditions C1 are met for such processes (see Remark 3.5) except for Assumption
C0.4 which is not needed.

It follows from Theorem 4.4 that
S1

A(cx) 1----E J a(t)dt.
ES1 o

Now, let us give another expression for A(oo) in terms of processes r/ and r/1. Similarly to (4.14)
and (4.16),

S1 S

E/ c(t)dt--E/ a(r/t)exp
o o

1 E exp a(rlOt)dt o

0

a(q)du dt

0

slo
a(/)exp (- f a(rllu)du)dt

0

slo
E"exp (- f a()dt)

0

slo
E"exp (- f a()dt)

0

S
1 Eexp(- f a(qt)dt)

0



The Failure Rate in Reliability" Approximations and Bounds 523

and
E"1 E/ exp a(rlu)du dt

0 0

Therefore,

where

(1 Eexp(- f a(rlt)dt))E" f exp (- f a(,lu)du)dt
0 0 0

slo
E"exp f a(rlt)dt)

0

)t(cx3) 1 1 Eexp a(,t)dt
0

/ /10 /D1--E/o exp (--/a(r u)du)dtE"eXPo o
a(r  )dt

(4.21)

((/))+ 1 Eexp a(rlt)dt E" exp a(rlu)du dr. (4.22)
0 0 0

The expectations E"exp (- f a(rl)dt and E"f exp (- f a(rllu)du)dt can be expressed in
0 0 0

terms of "ordinary" expectations E with the help of formulas (4.17) and (4.18) or Remark 4.3.

The estimates derived above can be used conveniently owing to the fact that, in many
practical problems, one can estimate all terms involved in (4.21) and (4.22) and thus give bounds
for )t() as we will see it in the following sections.

5. Accuracy Estimates of the Asymptotic Failure Rate

In this section, we obtain accuracy estimates for the proposed approximations of the
asymptotic failure rate.

5.1 Accuracy of,

Let )t0 be defined as in (3.9). Suppose that au a(u) and the assumptions of Conditions CO
or Remark 3.5 are satisfied. Then

S
E f (rlu)du

)tO= 0

ES
We have already proved, in Proposition 3.3, that )to>
accuracy of this approximation:

o - (c)
().

(5.1)
Let us estimate the relative

By (4.21), (4.22), and (5.1),
S

pO D1 o 1 (5.3)ES s
1 E exp(- f a(r/udu)

0
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Denote

Routine estimates show that

and

S- f ()d-

0

D1 --< ES + EES

(/)1-Eexp a(r/)du >_E-1/2E2.
0

Bringing together (5.1) through (5.6) and assuming that E2 < 2E, we arrive at the inequality

(.4)

(5.6)

EES/ES + E2/2Ep0 < (5.7)
1 E2/2E

In practice, all relevant characteristics in (5.7) can be estimated. Namely, ES represents the
mean inter-regeneration time for process (r/s); ES is the mean length of the delay of process (r/is);
and is the integral intensity to fail accumulated during a regeneration cycle of (r/s). All these
quantities can be estimated, say, by the test functions method (see Kalashnikov [15] (Chapter
50)) which uses rather general information about processes under investigation and does not
require solving various equations. Corresponding examples will be given in [6]. We only note
that both summands in the numerator on the right-hand side of (5.7) are small as a rule for
highly reliable systems.

5.2 Accuracy of Av(OO)
Let us estimate the relative accuracy

v()- ()1
pv () (5.8)

For this, let us give a stationary representation for Av(C similar to that presented in Theorem
4.4. We know that (see (3.17))

Let

1 /Av(OO) A(r/; P)r(dr/).

(.)’(’)- ()
be the conditional stationary measure of (r/s) restricted to . Let us prove that r’ can be
regarded as the stationary measure of a regenerative process r/’-(r/’s) and show that r/’ can be
constructed from r/0 and its i.i.d, versions similarly to process (see (4.10) and (4.11)).

Assume that the underlying process (r/s) is stationary. Define the following r.v.’s (which are
stopping times for

V0 min{t" r/t 6 P, >_ 0},
Uk -min{t: r/t 6 .A%,t > Vk},k >_ O,

Vk min{t:r/t 6 zP, t > Uk_l}, k

_
1.

Let
() v, > 0.

Evidently, (r/(k),Uk)k > 0, is a Markov renewal process.
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Theorem 5.1:
Proposition 3.10
process r/’ with stationary distribution ’ satisfying r’(. (. )/r(dtt), and

Moreover,

Let (r/s) be an ergodic Markov process satisfying the assumptions of
and having stationary distribution r(.). Then there exists a regenerative

f
 v(oo)

)
0

0
r/t r/, if t < TO P(r/0e ")-p(’),

where To is a r.v. such that

p(T0_<tl(%0) _0)-P(T-<tl 0 (s (r/s)o < s < t) 1 -exp

Proof: Since (r/s) has a stationary distribution, r/(k), k > 1, has a stationary distribution as
well. Without loss of generality we can regard the stationary version of process (s) as defined on
-c < s < x and similarly we can define sequences Uk and Vk for negative values of k. By
stationarity of (r/s), the sequence ((r/s)Uk 1 < s (_ Uk, Uk) is a stationary marked process that is

all shifts ((r/S)UN(t) -1 +k < S<UN(t)+- k’ UN(t)+k--t) of time t are identically distributed for

all t, where N(t) rain{k" Uk > t}. It follows that sequence (r/s)u
k 1 < s <_ Uk, k >- 1 is stationary

and has the corresponding Palm distribution (see Franken, Khnig, Arndt and Schmidt [12]
(Theorem 1.3.1)). Hence, r/(k) is stationary. Denote its unique stationary distribution by p(. ).

Viewing (r/s) as a semi-regenerative process with semi-regeneration times Uk, k >_ 0 (see
Disney and Kiessler [8] and (inlar [2] (Chapter 10, Section 6)), we can represent r in the form

7"

E I I(r/P e ")dr
o

ET

In formula (5.9), (r/f) is a version of the Markov process (r/s) having the initial distribution p(.
and r is the length of a semi-regeneration cycle of this version, that is

where

is the first failure time for (r/f) and

min{t" r/tP 6 2, t > 0}

rr min{t: r/’ 6 aft,, t > r}
is the length of repair time (which is the time required for returning to the subset di%). It follows
that

E I I(r/ e ")dr
rr’= 0 (5 10)Eer

Let us decompose process (r/sp) into a regenerative Markov process (r/’) and a r.v. T" such
that

P(T"<_t](r/’))-l-exp (5.11)

This can be done due to Theorem 2.7 (see also (2.4)). Thus, ’r/,; is a version of the zero-delayed
process (r/s). Namely, they both have the same generator (see (2.22)) but different (in
general) initial distributions. It follows from (2.5) that

(r T

o 0
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Now, define a regenerative process r/’ using construction (4.11) but taking i.i.d, copies of r/" as r/i
(i >_ 1). Equip process r/’ with regeneration times of the first type (see (4.11) where these times
are shown explicitly and the construction of regeneration times given prior to Theorem 4.4).
Then stationary distribution p’ of process r/’ has the form

T
E f I(i’ .)dt

p,= 0

ET" (5.13)

By (5.10) through (5.13), we conclude that p’-- 7r’. This completes the proof of the theorem.

The construction of process (r/’s) is quite similar to the construction of (s)" Let S’ be the first
regeneration time of process r/’ (the analog of for ). Then, under assumptions of Theorem
5.1,

,v(eC 1 .E / a(r/)dt. (5.14)
E(S’) 3o

Denote by Sg the delay time of the version r/" (an analog of S for r/l). By arguments like those
used in deriving (4.21) and (4.22) from (4.20), we obtain from (5.14) that

where

1 1-E exp a(r/t)dtav(o ) N
0

D2 E/ exp a(r/u)du dtE" exp a(r/7)dt
0 0 0

(5.15)

((j’)) (J’)+ 1 Eexp c(r/t)dt E" exp o(r/’)du dr, (5.16)
0 0 0

and Sg is the delay time of the version r/" of process r/0 constructed in the proof of Theorem 5.1
(an analog of S for r/l).

Now, let us use formulas (4.12), (4.22), (5.15) and (5.16) to obtain an estimate of Pv"
this, we are in need of the following conditions.

For

Conditions C2a
1. Process (r/s) is an ergodic Feller process satisfying the assumptions of Theorem 2.7.
2. Conditions CO hold true.

Conditions C2b Both (r/s) and (r/s) are irreducible Markov processes on a finite state space.

If (r/s) meets Condition C2a.1, then, by Theorem 2.7, ((r/s),r) can be decomposed into

((r/s), (as)), with
as A(r/, 2)- a(r/).

Condition C2a.2 yields the possibility to use relations (4.21) and (5.15) for estimation of Pv"
If (r/s) is a Markov process on a finite state space, then (r/s) is a similar process. However,

the irreducibility of (r/s) does not yield the irreducibility of (r/s) and vice versa. This is the reason
to impose Condition C2b in order to use then Remarks 3.5 and 4.5 for estimating Pv without
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referring to Condition C0.4.

Suppose that either Conditions C2a or C2b are satisfied. By (4.21) and (5.15),

IO2- D1
PV D2

Denote

finfl--flD
S

1 E exp (- f a(rlt)dt)
0

S

Ef exp( f a(rlu)du)dt
0 0

(5.17)

1_ / oz(rllu)dtt, ,,_ J
0 0

We have from (4.22) and (5.16)

D2 D1
Similarly, flD

_< max(E1, E") + flmax(ES, ESg).

This yields

D2.
flD >- exp(- E").

PV <- exp(E")(max(E1, E") + flmax(ES, ESg)).
Note that in "typical" reliability problems, D is close to ES if the system is highly reliable.

s
Using the fact that fiN --< E (where f a(u)du is defined in (5.4)), we arrive at the bound

0

E
S

E f exp(- f a(rlu)du)dt
0 0

Using (4.21)and (4.22) (resp. (5.15)and (5.16)), we have similarly
s

1 Eexp(- f a(rlt)dt)
(oo) < o

flDEexp f
and

o

Av(cx) _< xp(E")(1 exp( E)).
Let us collect the estimates above as a proposition.

Proposition 5.2" Under Conditions C2a or C2b,

_< -xp(El)(1 exp( E))

 v(oo)- <_ exp(E") max(ES, ES)Emax(E1, E,") q-
S

Ef exp f a(,u)du)dt
0 0

where S is the first regeneration time of r,
s__

/ o/.(rOu)d.a, 1_ j o(rllu)dtt, ,,_ /
o o o

(5.18)
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processes ril and ri" are versions of process ri
, and S and S are their delay times. Moreover,

,(oo) _< -xp(El)(1-exp(- E)), (5.19)

,v(OO) _< fl-exp(E")(1-exp(- E)). (5.20)

It is remarkable that estimate (5.18) is expressed in terms of mean characteristics of processes
rio, riI, and ri". Because of this, it can be estimated rather easily for a wide class of processes,
either analytically or by simulation.

Remark 5.3: Since S is assumed to be 5-measurable, term /3D in (5.17) can be expressed,
with the help of (2.3), as the following mean characteristic:

/?D- E/ exp a(riu)du dt- E P(T
0 0 0

> t ))dt E(T A S).

5.3 Markov process with discrete state space

The bounds derived above can be simplified if one deals with particular random processes.
Let us show how they can be written for Markov processes with finite state space.

Let process (ris) be Markov with a finite state space and A be a finite matrix of its transition
rates (generator). Assume that rio 0 E alg (in reliability, state 0 is often regarded as the
"perfect" operating state). Then, by Theorem 2.7, process (ris) is Markov evolving on At, with
initial state 0 and matrix of transition rates

A(i, j) A(i, j) i, j all,.

Let us view successive entering times to state 0 as regeneration times. We know that processes
(r/Is) and (ri’) are both Markov with the same generator A but with different initial distributions.
In order to keep simple notations, we denote by (ris) any generic Markov process having generator
A and by En the conditional expectation given ri r. Let

0 0 0_0}r0 inf{ t" rit :/: rit, rit

be the first returning time of process (r/s) to state 0. Then

ro

max(El E") < sup En J c(riu)du and max(ES,ES) < sup Er0.
0 0

0

Since S is the first returning time of rio to the state 0, by similar arguments as those in Remarks
5.3 and (2.2), we arrive at the equality

/?D = Eo(r A r0), (5.21)
where ro is the first returning time of (ris) to the state 0.

Let us note that the right-hand side of (5.18) is also an upper bound for
(oo) I/Iv(OO). Bringing this together with the above estimates and Proposition 5.2, we arrive at
the following corollary.

Corollary 5.4: Given Condition C2b, let e, eo,5 5_0 and _D be such that
r0 r0

J J sup ErT0 --< 5’ 5_o_<E070,n0supE c(ri)du < e, E0 c(riu)du < e’ o
0 0
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Then

with

Moreover,

l+pv

(
max(A(cx) Av(CX)) < 1-----e(1- e *o), Ao < 6o"_rid

In [6], we will show how to calculate parameters , o, 6, 6_o and riD"
done explicitly, but generally they have to be estimated.
accurate. The following crude estimates are evident:

Sometimes it can be
These estimates may be more or less

- 6maxc(/), (5.22)
:0

.(o) (5.23)[Ao(O,O)

V’ A(0’ q)1 + (5.24)-5 A(O, 0) ZoA(I-7, ,)’

1 A(O, r/)
riD= [A(O O) + E, j., oA(6-O--, (5.25)

Value 6 can be estimated with the help of test functions and the following result (see Kalashnikov
[15] (Chapter 1, Corollary 1)).

Lemma 5.5: Let V be a non-negative function such that

AV(r) _< 1, Vr/- O. (5.26)

Envo < V(q), Vq :/: 0

and one can take
sup V(r/). (5.28)
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