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ABSTRACT

At time t 0 we have a Poisson random field on Rd. Each particle executes
a critical branching Wiener process starting from its position at time t- 0. Let
RT be the radius of the largest bail around the origin of Rd which does not
contain any particle at time T. Our goal is to characterize the properties of the
stochastic process {RT, T >_ 0}.
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1. Introduction

Consider the following

Model 1:
(i) a particle starts from the position 0 e Rd and executes a Wiener process W(t) E Rd;
(ii) arriving at time t 1 to the new location W(1), it dies;
(iii) at death, it is replaced by Y offspring, where

P{Y 0} P{Y 2} 1/2;

(iv) each offspring, starting from where its ancestor dies, executes a Wiener process (from its
starting point) and repeats the above given steps and so on. All Wiener processes and
offspring numbers are assumed independent of each other.

A more formal definition is given in Chapter 6 of [1], p. 91.

Let A C Rd be a Borel set and let A(A, t) (t- 0, 1,2,...) be the number of particles located in
A at time t. Then

B(t)--(d,t)
is the number of particles living at and {B(t), 0, 1, 2,...} is a branching process.

We also consider the following

Model 2: At time t- 0 we have a Poisson random field of parameter #, i.e., in a Borel set
A C d, we have k particles with probability
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r(A,k) (# A )k

where ]A] is the Lebesgue measure of A. It is also assumed that the numbers of particles in
disjoint Borel sets are independent r.v.’s. Each particle executes a critical branching Wiener
process (starting from its position at time 0) according to Model 1.

A more formal definition is given in Chapter S of [1], p. 129. Let A(A,t) be the number of
particles located in A at time t. Then clearly

and

P{A(A, O) k} r(A, k).
Let

RT = sup{R: A((0, R), T) = 0} (T 0, 1, 2,...),
i.e., RT is the radius of the largest ball around the origin of d which does not contain any
particle at time T.

We are interested in the limit behavior of RT as

In the case d 1, this problem is very simple. In fact we have,

Theorem A: (Theorem 8.2 p. 129 in [1]). Let d 1. Then for any c > 0 we have

A(C(0, T(log T) 1 ), T) 0 a.s.

for all but finitely many T,
A(C(0, cT), T) >_ 1 i.o.a.s.,

1T), T) 0
and

A(C(0, T(logT)1 + ), T) >_ 1 a.s.

for all but finitely many T.

We note that Theorem 8.2 of [1] is formulated in a slightly different way, but the above
Theorem A can be obtained directly by the method presented there.

Now we formulate our main result.

Theorem 1: We have
A((O, RI(T,d)),T >_ 1 a.s.

for all but finitely many T,
A((0, R2(T d)), T) 0 i.o. a.s.,

and

for all but finitely many T, where

RI(T,d

A((0, R3(T d)), T) > 1 i.o. a.s.

A((0, R4(T d)), T) 0 a.s.

T(log T)1 + e

K(TlogT)1/2

K(logT)I/(d-2)

ifd=l,

if d=2,

if d>_3,
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-IT if d- 1,

R2(T,d T1/2(g(T))- 1 if d 2,

K- :(log log logT)1/(d 2) /f d _> 3,

eT /fd- 1,

R3(T d) (log T) 1/2 +e if d 2,

K- 1( logT)- lid if d > 3,

T(log T)- : - if d 1,

n4(T,d T- 1/2(log T)- 1/2-e /f d 2,

T- lld(logT)- lld-e f d >_ 3,
g is large enough, g(T) is an arbitrary function with g(T)Tcx and is an arbitrary positive num-
ber.

Remark: Intuitively it is clear that if RI(T (T = 1, 2,...) is a function going to infinity fast
enough, then the ball around the origin, of radius RI(T will contain at least one living particle
at time T for any T large enough. Theorem 1 claims that in 2 we might choose RI(T)-
K(TlogT)1/2, while in R3 it is enough to choose RI(T -KlogT. We are also interested to
characterize those functions R3(T for which it is still true that the ball, around the origin, of
radius R3(T contains particles at time T for infinitely many T. Theorem 1 claims that in 2 we
might choose R3(T)-(logT) -1/2+ while in 3 we might have R3(T)- g-l(logT) -1/3.
The results on R2 and R4 tell us how exact are the results on R1 and R3. Unfortunately, it turns
out that we have a very big gap.

We also prove two theorems describing some properties of ,(.,. of Model 1, which will be
used in the proof of Theorem 1 and which seem to be interesting in themselves.

Let f(t) (t- 1,2,...) be a positive, real valued function with f(t)--,oc (as t---,c), let a E d
and let

(aT1/2, T1/2(f(T))- 1).
Then we have,

Theorem 2: In case d= l we have

1--lc(c)K]2
T _< S(,(C, T)I A(C, T) > 0)i + (1 ),{’ i f(T)

< 1 / (1 / )c().j(F). + K T
f2(T

for any K > O, > 0 if T is large enough, where

(2)1/2/ ( a2 1-sinx)dx.c(a) exp 2 1 + sin z
o

If we also assume that f(T) < T1/2 and K > 2 then

1/(1-e) (1-.)c(2) T
f(T)

<E(,(C T) IA(C T)>0)<I+(I+)--- 1+ f )+g T
f2(T)"
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In case d- 2 we have
(1- C 11-4-

<E(A(C,T) IA(C,T)>0)<l+1/2(l+c) T )logf(T)+K T
f2(T /2(T)

for any K > 0 if T is large enough.

If we also assume that f(T) <_ T1/2 and K >_ 2, then

_< E(A(C, T)I A(C T) > 0)

<1+ 1+ (1+) T ..logf(T)+K T
f2(T)"

In case d >_ 3 for any K > 0 if T is large engugh, we have

1 Wd T1 + (1- c) (1-) d- 2 (47)d/2 f2(r
K-(d-2)/2

<_ E(A(C, T)I A(C T) > 0)

where

< 1 + (1 + e).d
2 Wd T
-2 (4r)d/2 f2(T

K- (d- 2)/2
__
K T
/2(T)’

2 if d-l,

Wd 7r if d- 2,

d/:
r(d/2 + 1) /f d _> 3

is the volume of a ball in Rd of radius 1.

Consequences: In case d- 1,

C(C) < liminff[)(T E($(C,T) A(C,T) > 0)2

provided that

If d- 1 and

then

<_ limsupf(TT) E(A(C,T) l.(C,T > O) < c(a),

CK)o

1 + c(-3 < liminfE(A(C,T) (C, T) > 0)

_< limsupE(A(C, T) (C, T > 0) _< 1 + c(a).
T---,oo

If d- 1 and f(T) <_ T1/2, then
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)E(A( c(a)lim f E, T) A(E, T) > 0)
T-oo 2

Note that

In case d- 2 we have

1 < liminf
f2(T) T) I(,T) > 0)

T--.o T log f(T)E(A(c’

provided that

If d- 2 and

then

_<lim sup f2(yT).E(A(T Tlog T) (C, T) > 0)

_
1/2,

lim T logf(T)-o.
T--,fZ(T)

lira Y f(T) ,TofZ(T)lOg

1 + < liminfE((, T) (, T) > 0)

_< lim supE(A(, T)I (e T) > 0) _< 1 +-.T---o

If d- 2 and f(T) <_ T1/2, then

In case d >_ 3,

provided that

lim
f2(T) E(A(,T)I (,T) > 0) .T-ooTlogf(T)

2 Wd f2(T)
d- 2 (Sr)d/2

< liminfT._,o T E(A(,T) A(, T) > 0)

f2(T 4 Wd< limsup )E(A( T)[A(,T) > 0) < d 2 +2’
T-*o T

lim o.
ToofZ(T)

If d > 3 and

then

limT ,
TofZ(T)

2 Wd1 + d 2 (87r)d/2] < liminfE(A(e’ T) A(’T)T-.-oo > 0)

Theorem 3: Consider the case where

Then,

exp(
c(a) -< liminfP{(C,T)T> O IB(T) > O)
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< limsupP{A(, T) > O IB(T) > O}

If d 1 and

then

(27r)1/2

< ()l’:exp( a2/2)
c()

exp( < liminff)(7’ P{A(E T) > O[B(T) > O}1 _< c(a)/3 T-oo

< limsup f(TT) P{,k(C, T > O IB(T) > 0}
T---,o

then

< /3 2exp(- a2/2)
(2r)1/2 2 + c(a)13

d- 1 and f(T) <_ T1/2,

lim P{A(e,T) > O IB(T) > 0} e
T---,cx:

Now consider the case

Then
d 2,1im .T og f T cx:

T---,oofZ(T)

1/2e c2/2 < liminf(logf(T))P{A(,T) > O[B(T) > 0}

then

then

< limsup(log f(T))P{A(, T) > O IB(T) > 0}
T---*cx:

< e--2/2.

d 2 and lim T logf(T)-fl,
T--,fZ(T)

exp(- a2/2) f2(T)
4+2/3 -< liminfTo T P{(e,T) > O IB(T) > 0}

_< limsup f2(TT) P{(e,T) > O]B(T) > 0}
T

< exp( a2/2)
4+

d 2, lim
f2
T logf(T)- cxz and f(T) < T1/2

To (T)
lim (log f(T))P{(C, T) > 0 IB(T) > 0l xp
T--* -if"

Now consider the case

Th
d>3, lim ,_T. =oc.

ToofZ(T)

2dwd(d 2)e c2/2

8wd + 4(8r)d/2(d 2)

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)
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if

then

< liminf(f(T))d- 2P{A(C, T) > O IB(T) > 0}

<_ limsup(f(T))d- 2P{A(C,T) > O B(T) > 0}
T--+oo

d>3 and lim _T. =,
T_ooofZ(T)

2dwd(d 2)e c2/2

8wd + 2(d 2)(8r)d/2(1 +

< liminf
(f(T))d

T--,oo TP{A(e,T) > O IB(T) > 0}

< limsup (f(T))dP{A(C,T) > O]B(T) > 0}
7"400 T

(d 2)2dwde a2/2

2(d 2)(8r)d/2 + 4Wd" (1.7)

Let
Wl(t {Wll(t), W12(t),.. Wld(t)},
W(t) {W(t), W(t),..., Wa(t)},
wa(t) {wad(t), w(t),..., w(t)}

be independent Wiener processes and let

Wl(t
FI(t’s’T)

Wl(S + W(t- s)

ifO<_t<_s,

if s<_t <_T,

Let

Wl(t
r(t,s,T)

Wl(S + W3(t- s)

if0_<t_<s,

ifs<t<T.

7(x) 7T, s(x) P{F2(T, s, T) x FI(T, s, T) z}
be the conditional density function of F2 given F1 z.

where

and

Lemma 1:
7(x) (2rr2) -d/2exp (-- (x-v)2)2(72

v E(r(T, s, T) 1"1(T, s, T) z) -fsz
((r(T,,T)-.) r(T,,T) z) T 1-Proof is trivial.

Lemma2: Let A c Nd be a Borel set. Then



538 PL RlVlSZ

P{F2(T,s,T E A IFI(T,s,T A} A
(z)dz

A
where

(z) CT(Z) (2T)- d/2exp ( ---)z2
is the density function of rI (T, s, T).

Proof: Since
fP{r2 e Air1 z}(z)dz

P{r e Air1 e A}-
A

Lemma 2 follows.

Lemma 3: Let
gT_T_ K T (K>0)/2(T)and

T
P(T) P{r2 e elfI e

s--1

Then in the case d 1, for any e > O, there exists a TO To(e > 0 such that

f(T
T )P(T) <_ (1 + e)c(a)

if T > To, where
1/2

-/2

(2) / ( c2 l-sinx) dx.c(c) exp 2 1 + sin x
0

In the case d 2, for any e > O, there exists a To To(e > 0 such that

T log f(T)f2(T f2(T)
ifT>_To.

In the case d >_ 3, for any e > O, there exists a To To(e > 0 such that

(1-e)(1-1 Wd 2 T.g-(d-2)/2
K](47r)d/2 d- 2 f2(T

COd 2 T K- (d 2)/2<_ P(T) <_ (1 + e)(4r)d/2 d- 2 f2(T
ifT>_To.

Proof: By Lemma 2,

Let

Then,

T
E f

P(T)
s= I C C

f (z)az

T1/2x ctT1/2 + Uf(T)
z--

-(,).

u C(0, 1) and v C(0, 1)
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Hence,

and

xECandzEC.

P(T)- i+0 0- exp
s=l

Observe that

-v -s +(-v) T
0" ---O

-+-8 f(T)((T- s)(T + s))1/2

(x- v)2)
--s 1+ v + s f(T-----’

provided that

Since

we have

Td--(1 +O(f(1T))) (f(T))2d
exp

and

x-v 2 a2-s +(u_v)2 T2
0-2 ) + s f2(T)(T2_ s2)

T T2 1
0-2/2(T) (T2 s2)f2(T)

(u v)2
2

//exp ( (x-)2 Td exp(

T )dudv0-2f2(T)

2 T+

Hence

where



540 P/L RlVlSZ

=d(2)-d/:
gT -d/2

s2 )(f(T))d - 2 1 + s/T]

(f(T))d o

1-K(I(T)) -2

(1 u2) d/2exp (
\

c2 1 Udu.
2 l+u

In the case d- 1, 1

I-(#)1/2 T / u2 ( a21- )f(T) (1- 1/2exp
2 1+ du

0 r/2

_()1/2 T / exp ( 2 l-sinx)dx.f(T) 2 1 + sin x
0

Hence, for d- 1 and for any K > O, we have

( ( T )) T <P(T)<(I+O( T ))c(c) T1+0
f (1--)c(a)f(T) f f(T)"

Hence, Lemma 3 is proved for d- 1.

In the case d >_ 2,
1

I.,.Wd(2r>-d/2 T/ (v(2--v))-d/2exp ((f(T))d
K(I(T)) - 1

Wd(4r)-d/2/ v d/2dv
(f(T))d

K(I(T)) -2

Hence, in the case d- 2,
1 Tf:(T).lo (T)

and we have Lemma 3 for d- 2.

In the case d >_ 3, 2Wd -d/2 T 1I d 2(4r) (f(T))2 g(d 2)/2"

Lemma 4: Let X,Y be i.i.d.r.v.’s with

P{X k 0}-- P{Y k 0}-- 1,

P{X>O}-P{Y>O}-p (O_<p_<l).

Proof:

Then
1 EY+E(X[X>O).E(X + Y X + Y > O) 2- p

E(X + Y IX + Y > O) P(X + Y > O)

Lemma 4 is proved.

Lemma 5:

XdP

(x+Y>O)

2 p2EX_ 2_p_
2p- 2p p

2E(X X >0)

) 1 EY.P E(XIX > 0) E(XIX > 0)/ 2 p=1+2 p

E(A(C, T)[B(T)>O).. 2T--I C (2rT)-d/2exp(_a___)
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Proof: Clearly,

E(A(C,T) B(T)) B(T)(2:rT) -d/2 exp -- dx B(T) C (2rT)-d/2exp --.
Since

EB(T)- 1 and P{B(T) > 0} T’
we h&ve

EA(C,T)- EE(A(C,T) IB(T)) (2T)-d/21elexp (-)
and

E(A(C, T) IB(T) > 0)- P{B() > 0} f A(e, T)dP P{B() > 0}EA(c’ T)
{B(T) > 0}

and consequently we have Lemma 5.

Lemma 6: P{,(, T) > 0} < P{B(T) > 0} 2
T"

Proof is trivial.

3. Proofs of Theorems 2 and 3

Having the condition {,(C, T) > 0} we have two particles at time t 1 and we know that at
least one of them has at least one living offspring located in C at time T. Let ,ll(C,T-1),
respectively ,12(, T- 1) be the number of those offspring of the first respectively, second particle
which are located in at time T. Clearly,

Then by Lemma 4,

where

,(C, T) ,la(C, T- 1)+ ,12(C, T- 1).

E((C, T)] A(C, T) > 0)
1E(All(E,T- 1) IAll(e,T- 1) > 0)+ 2-’PlE,k12(C T 1), (3.1)

Pl P{11(e, T 1) > 0} P{12(C, T- 1) > 0}.
Consider that particle at time t 1 which has at least one offspring living at time T and

located in e. (In the case both particles have such an offspring, consider one of them.) This
particle has at time t 2 two offspring and we know that at least one of them has at least one

offspring located in e at time T. Let ,2a(e,T-2) respectively, (e,T-2) be the number of
those offspring of the first respectively, second particle which are located in at time T. Clearly,

Then by Lemma 4,

where

,11(C, T 1) 21(C, T 2) 4- )22(C, T 2).

E(.ll(C, T 1) ,ll(C,T- 1) > 0)

E(I(e,T- 2) I1( T- 2) > 0)+. 1 E,(e,T- 2),
z-p2

P2 P{’X21(e, T- 2) > 0} P{,X22(C, T- 2) > 0}.

(3.1) and (3.2), combined, imply

E((a, T) (a,T) > 0)= E(,I(, T- 2)I ,1(, T- 2) > 0)

1 EA12(C,T- 1)+ 1 EA22(C,T-2).+ 2 Pl 2- P2

(3.2)
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Continuing this procedure we obtain
T

1 E,ks2(C T s)E(,k(C, T)I ;(C, T) > 0)- 2- p

nT T-1

sl 1 .EAs2(C, T- s) + 1 I + II + 1,lp E,ks2(e,T_s) + E 2-p-----s2---s s=tCT+ 1

where

and

Clearly,

Ps- P{Asl(e, T- s) > 0} P{A(e, T- s) > 0}

tOT_T_ K T
f2(T)"

EAs2(e T s) P{Fa(T, s, T) E C rI(T, s, T) E

(3.3)

(3.4)

and

T-1
O<II < E

S=T+l

T-1

Eas(C,T- s) P(r e C lr e c}
s=tCT+l

< T- tT gfT,r.)_t -t

T T
1E E’ks2(6’ T s) < I < E Es2C’ T s).2
s=l s=l

(3.5)

(3.6)

Then by Lemma 3, (3.4) and (3.6) if d- 1, we have

(1- )(1_ -/,)c) f(T)T _<I _< (1 + )c(a).fT.)
(3.3), (3.5)and (3.7)imply

l+(1-e)(1-l-7)c(a) T <E($(C,T) I)(e,T)>0)2 f(T)-

(3.7)

for any K > 0.

Note that if

then by Lemma 6,

and

T T_<l+(l+)c(a)fZT,)+Kf2(T (3.8)

f(T) <_ T1/2 and s _< T’

2f2(T) 22 <<Ps < T- s KT --T
I < 1/2(1 +) Es2(,T- s (3.9)

if K>2. s=l

If we assume that d- 1, f(T) < T1/2 and K > 2, then by (3.3), (3.4), (3.5), (3.6) and (3.9),
we hs,ve

c(c)2 T E((C, T)I (C T) > 0)1 + -,) ;tl <

<1+(1+e) 1+ c(a)f(T). + K
Hence, we have Theorem 2 in the case d 1.

In the case d- 2, Lemma a, (a.4) and (a.6)imply

(3.10)
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(1- e)(1- hl__.) 1/4 f2(T)Tlog f(T)_<I _< 1/2(1 / e)f2T(T)logf(T). (3.11)

(3.3), (3.5)and (3.11)imply
1+ (1- c)(1---- f2T(T)logf(T)

for any K>0.

If we assume that d- 2, f(T) T/2 and K 2, then by (a.3), (3.4), (3.5), (3.6) and (3.9)
we have

+ (1 -) (1- T of(T) < ((C T) ( T) > 0)1
I:(T)

4 f2(T f(T) + Kf2(T).
Hence, we have Theorem 2 in the case d- 2.

In the case d 3, Lemma 3, (3.4) and (3.6) imply

(3.12)

Wd 2 K-(d-2)/2(1- c)(1-.)1/2 (4r)d/2d_ 2 f2(T

<I<(l+) wd 2 T K (d- 2)/2. (3.13)(4r)d/2 d- 2 f2(T
(3.3), (3.5)and (3.13)imply

1+(1_e)(l_)d1 Wd T K-(d-2)/2
-2 (4r)d/2 f2(T

< E(1(C, T)I 1(e T) > 0)

Wd 2 K-(d-2)/2 T< 1 + (1 + ),,.-7//2 d 2 f2(T + gf2(T)")

Hence, we have Theorem 2 in the case d >_ 3.

Theorem 3 is a simple outcome of the consequences of Theorem 2, Lemma 5 and the follow-
ing:

Lemma 7: E((C, T) B(T > O)P(A(C, T) > O IB(T) > 0} E((C, T)I (C, T) > 0)’
whose proof is trivial.

4. Proof of Theorem 1

Let B(A, T) be the number of those particles which are located in A C d at time t- 0 and
which have at least one offspring living at time T. The following lemma is trivial.

Lemma 8:

and

where,

P{B(A,T)-k} -.e-t’ (k 0,1, 2, .)

Eexp(- zB(A,T)) exp(u(e- z_ 1)),

(A T) T
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Introduce the following notations:
C(R) C(0, R),

C Ci(A, T) C(0, (i + 1)AT1/2) -C(O, iAT1/2),

Then we have

B(R) B(e(R), T),
B Bi(A T) B(e, T).

c(R) R,

(4.1)

(4.2)

(4.3)

(4.4)

) < exp( (1 e)2#dwdAdid 2)/2) (4.5)2# 1T(dexp T

exp(( + )22eoezXeia 1r(e /(e- 1)) xp( B) exp T

exp((1 )aeeie 1T(e )/(e 1)). (4.6)
Now we present the proof of Theorem 1 in eight steps.

Sep 1: Let d 2 and

R R(T) K(T log T)/.
Then by (4.2),

P{B(R1) 0} exp(- (1 e)2,Klog T). (4.7)
Consider a particle which is located in e(R1) at time 0 and which has a living offspring at
time T. Let g(0) be the location of the considered particle at 0 and let g(T) be the location
of an arbitrary, fixed offspring of the considered particle at time T. Then,

{ lu(r)- u(0) 1} xp -wlogr
Consequently

P{(e(),r) 0} xp( ( e)2,KlogT) + exp -wlogT
Hence, by Borel-Cantelli lemma,

(e(l, r) > 0, ..
for all but finitely many T provided that

K > max{21/2, (2) 1/2},
Step2: Letd=2and T/

where
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f(T)T, R2(T)T.

Consider,. B particles located in the ring C at time t 0 having offspring living at time T. Let
At)(A,T) (j- 1,2,...,Bi) be the number of those offspring of the jth particle which are located
in A at time T. Then, by (1.3),

exp ( i2A2--Y--)
(4.8)P(A.i)(C(R2), T) > 0} log f(T)and by (4.6)

P (Af)(C(R2), T) 0} EP (Af)(C(R2) T) 0}IB
j:l j:l

(E log

where

and

Hence,

Since, as

we h&ve

Which, in turn, implies

Step 3: Letd=2,

iA2exp
2

x exp - dx 1,
,=0

0

P{A(E(R2),T O] >_1-8#r
log f(T)

A(C(R2),T) = 0 i.o.a.s.

R3 R3(T logT)- 1/2 + e, ( > 0)

Tk-- ek, Pk-- Tlk/2,
R3(k R3(Tk).

Then by Lemma 8,

p{B((Pk+l)_(Pk)Tk+l)_O} Tk+12#Tr (P+I--P))

(4.9)

(4.10)

(4.11)

.2#rr(e- 1)) <=exp (-(l-e) 1. (4.12)

Consider a particle which is located in C(pk + 1)- ’(Pk) at time t 0 and which has a living
offspring at time Tk+. Note that by (4.12) with positive probability there exists such a

particle. Let A3(k) be the number of those offspring of the considered particle which are located
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in C(R3(k + 1)) at time Tk + 1" Then by (1.3),

1 -e -1/2P{A3(k > 0} >_ k -4- 1
e (4.13)

Since the events {,3(k) > 0) are independent we have

A(C(R3),T)>0 i.o a.s.

Step 4: Letd=2,
R4 R4(T T- 1/2(log T)- 1/2- e.

Then by (4.4),
EBi _< (1 + e)8#rA2i. (4.14)

Consider,. the particles located in the ring i at time t = 0 having offspring living at time T. Let
,t’)(A,T) (j- 1, 2,. Bi) be the number of those offspring of the jth particle which are located
in A at time T. Then by (1.4),

P{A-/)(C(R4), T) > 0} _< @xp 2 (4.15)
and

} }a l(e(),r) > o e a (e(),) > o1
j=l j=l

R

Hence,

}P{l(e(R4), T) > 0} P a(e(R4), T) > 0

2grR A2i exp 2

Consequently,

for all but finitely many T.

Step 5: Letd>3and

A(e(R4), T) 0 a.s.

/1 RI(T) K(log T)1/(d 2)

Define A./)(-, as in Step 2. Then by (1.6),

and

P{.Xi)(e(R1),T) > 0} > 2dwd(d--2)
8wd + 4(87r)d/2(d 2)

exp (--(i-4-1)2A2)(2T1/2R1

(i)(C(R1), T) 0} BiP {Ai)(C(R1),T) 0} EP
j--1 j----I

(4.16)

(4.17)

where

< E 1 M exp
(i + 1)2A2 R1 d 2

2 T1/2 exp(u(e- z_ 1)),

2dwd(d--2)
8wd + 4(87r)d/2(d 2)’
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2#dWdid_ 1Td/2Ad2# Ci 2wd((i + 1)d--id)Td/2Ad > TT

Hence,

-Zi_l_Mexp (- )((i + 1)2A2 R1
2 T1/2

P{A(e(R1),T 0} _< H exp(vi(e- zi
i=0

-1))

exp (-- 2#CdTd/2id-lM( RL )
d-2 (

0 T1/2
Adexp (i+1)2A2))2

< exp 2#dwdMKd_21ogTE id_lAdexp _(i + 1)2A2

2
Choose K such that

0

( )2#dwdMKd- 2E id 1Adexp (i + 1)2A2

2 >1.

Then, we have
0

A(e(R1), T) > 0 a.s.
for all but finitely many T.

Step 6: Let d>3and
R2_ R2(T K(logloglogT)l/(d-2).

Now follow the proof of Step 2, with the following modifications: instead of (4.8) by (1.6),
we have

(i2A2) (d-2)/2P{Ai)(e(R2) T) > 0} <_ 2d 2(d 2) exp 2 n2d 2T
instead of (4.9), we have

2#1il <2d + l#wdAdT(d- 2)/2id-1.v- ui =-------_
instead of (4.10), we have

e Z_e -1-2 (d-2)exp i2A2
\ ]22

instead of (4.11), we have

(P{A(e(R2) T) 0} _> exp 22d #Wd(d 2)R2d 2 d 1Adexp
Hence, if K is small enough, then = 0

1P{A(C(R2(Tk)), Tk) 0} >_ ,
where

Tk exp(exp k2).
Observe that the probability that at least one particle among the ones who are located in C(Tk)
at time t- 0 would live at time Tk + 1, is equal to

( T ) T =2wd#exp(_ek2(e2k+l_d)).1 exp 2Wd#Tk 2Wd#Tk+1 +1

Hence, there is no particle in C(Tk) living up to time Tk + 1"

Consequently, by Borel-Cantelli lemma we have

A(e(R2),T -0 i.o.a.s.

Step 7: Let d>_3,
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R3 R3(T M(logT)-l/d.

Now follow the proof of Step 3 with the following modifications: instead of (4.12), we have

P{B(C(Pk+I)--C(pk),Tk+I)--O} < --(1--e2#Wd(.,.k+- --0.
Tk+ 1

Consider the Bk B((pk + 1)--(pk),Tk + 1) particles located in (Pk + 1)-- (Pk) at time
t- 0 having offspring living at time Tk +1. Let k)(A,T)(j = 1,2,...,Bk) be the number of
those offspring of the jth particle which are located in A at time T. Then by (1.7) (with /?- 0),
we have

and

Wde 1/2 Tk + 1P{Ak)(c(R3),Tk + 1) > 0} (1 --e)2(2r)d/2Md (Tk + 1)d/21OgTk + 1

Wd
1/2 Rd(Tk + 1)

= (1

P{A(e(R3(Tk + 1))’ Tk + 1) 0) EP{A(e(R3(Tk + 1)), Tk + 1) O IBk)

_< E exp (- zBk) exp(v(e- z_ 1)),

where

and

Hence,
--z

v-- vk Tk+l
-112 nd3(Tk + l)zk wde-e 1-(1-e)2(2r)dl2Md Ta+)l2"

P{A(E(R3(Tk + 1)), Tk + 1) > 0}

2lA Wd(pdk +1 pkd)( 1 Wde- 1/2 Rd3(Tk + 1))
_

1--exp
Tk +1 --e)2(27r)d/2Md TI)-/ -if M is small enough. Consequently,

A(E(R3(T)),T) > 0 i.o.a.s.

StepS: Letd>_3and
R4 R4(T T- 1/d(logT)- /d-.

Now follow the proof of Step 4 with the following modifications: instead of (4.14) we have

EB

_
2d + tZwdAdid- 1T(d 2)/2,

instead of (4.15), by (1.7) we have

f
wdexp k, ----)RdT- (d 2)/2.P-tA))[R4), T) > 0} _< 4

instead of (4.16), we have

P i)((R4),T >0 < #W2d()d/2id- Adexp
2

,j 1
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instead of (4.17), we have

P{A((R4),T > 0} _< pwd nd4 id-lAdexp
i=0

Consequently,
(C(R), T) 0 .s.

for all but finitely many T.

i2A2)2
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