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The notions of association and dependence of random variables, rearrangements, and het-
erogeneity via majorization ordering have proven to be most useful for deriving stochastic
inequalities. In this survey article we first show that these notions are closely related
to three basic inequalities in classical mathematical analysis: Chebyshev’s inequality, the
Hardy-Littlewood-P61ya rearrangement inequality and Schur functions. We then provide a brief
review of some of the recent results in this area. An overall objective is to illustrate that classical
mathematical inequalities of this type play a central role in the developments of stochastic
inequalities.
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1 INTRODUCTION

As noted by P61ya [21], "Inequalities play a role in most branches of
mathematics and have different applications". This is certainly true in the area
of probability and statistics. For example, the celebrated Chebyshev, Markov
and Kolmogorov inequalities are well-known and can be found in many
probability books. In the theory of estimation, the Cram6r-Rao inequality
and its generalizations provide lower bounds on the variances of a large class

*Research supported in part by NSA Grant No. MDA904-94-H-2032.

85
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of estimators. In statistical hypotheses testing, the Neyman-Pearson Lemma
directly involves inequalities.

It appears that the developments ofmany ofthe stochastic inequalities orig-
inated from the concepts of certain fundamental inequalities in mathematics.
As a result, mathematical inequalities of this type have made a strong impact
on stochastic inequalities. In this survey paper, we discuss the influence of
three basic inequalities in classical mathematical analysis, andshow how
certain stochastic inequalities are closely related to those classical results.
Specifically, we explain how and why the concepts of (1) Chebyshev’s (other)
inequality, (2) the Hardy-Littlewood-P61ya (HLP) rearrangement inequality
and (3) the Schur functions are related to, respectively, (It) inequalities via
association and dependence of random variables, (2t) stochastic inequalities
via arrangement increasing functions, and (3t) stochastic inequalities via

majorization. Those results are described and discussed in Sections 2, 3 and
4, respectively. For reader’s convenience, each of the three classical results
is restated at the beginning of a section. Some related stochastic inequalities,
which have been obtained during the past two decades, are then stated with
selected applications in Section 5. For simplicity we assume that all functions
and subsets involved are Borel-measurable and integrable. Nondecreasing
(nonincreasing) functions will be called increasing (decreasing). Further, we
note that the results described in this paper are for illustrative purposes only,
hence they are neither complete nor exclusive. For additional results on these
topics, the reader is referred to the bibliographies contained in the references
listed at the end of this paper. The proofs of some of the results can also be
found there.

2 CHEBYSHEV’S INEQUALITY, ASSOCIATION, AND
STOCHASTIC DEPENDENCE

We first state a classical result of Chebyshev; a convenient reference for this
result is Hardy et al. ([9], p. 43). For notational consistency, the statement
given here is in a modified version and is not in its original form.

TIJEORM 2.1 Let G1, G2 [0, 1] - IR be two real-valued functions. If
they are both increasing, then the inequality

fo Ifo lifO 1G (u)G2(u)du > G (u)du G2(u)du (2.1)

holds.
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Note that in Theorem 2.1 if the word "increasing" is replaced by
"decreasing" then, by replacing Gj with -Gj (j 1, 2) in (2.1), the same
conclusion also holds. When compared with his inequality that provides
bounds for the tail probabilities of a distribution via the first two moments,
this result seems to be less well-known. Thus Theorem 2.1 is sometimes
referred to as "Chebyshev’s other inequality" in the literature. If we interpret
the integrals as expectations of random variables, then this result yields
a corresponding stochastic inequality in the following sense: Consider a
random variable X with distribution function F(x), and let (gl (X), g2(X)) be
a two-dimensional random vector such that gl, g2 are real-valued functions.
By letting u F(x) and Gj gj F-1 (j 1, 2) in (2.1), we immediately
obtain

THEOREM 2.1 t. Ifgl, g2 are both increasing or both decreasing, then

E[gl (X)g2(X)] >_ [E(gl (X))][E(g2(X))]

holds; or equivalently,

Corr (gl (X), g2(X)) >_ 0,

where E(.) denotes expectation and "Corr" stands for the correlation

coefficient.

Intuitively speaking, Theorem 2.1 states that if gl and g2 are both
increasing or both decreasing, then gl(X) and g2(X) tend to take larger
values together and smaller values together. Thus their correlation coefficient
is nonnegative. The theorem then involves positive dependence of random
variables which are monotone functions of a common random variable.
A question of interest is whether it can be generalized to monotone functions
of several random variables. This question can be answered by studying
the following concept of association of random variables, which was first
considered by Esary, et al. [8]"

DEFINITION 2.2. For n > 1 the random variables X1 Xn are said to
be associated, or the set of random variables {X1 Xn} is said to be
associated, if for all given real-valued functions gl, g2 that are increasing in
each component when the other components are held fixed, the inequality

E gj(X) > E(gj(X))
=1 j=l
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holds, or equivalently,

Corr (g (X), g2(X)) > 0, (2.2)

where X X Xn).
Esary, et al. [8] proved the following theorem:

THO 2.3. (a) A set consisting of a single random variable is a set

of associated random variables. (b) Independent random variables are

associated random variables. (c) A subset of a set of associated random
variablesforms a set ofassociated random variables. (d) Increasingfunctions
ofassociated random variables are associated random variables.

From a historical viewpoint, the Esary-Proschan-Walkup paper was
motivated by a research problem in application and was not a direct outgrowth
of the Chebyshev inequality. But, nevertheless, the notion is clearly a

generalization of that in Theorem 2.1. In fact, Theorem 2.3(a) is equivalent
to Theorem 2.1.
A repeated application of Theorem 2.3 yields the following multivariate

probability inequality. Note that, in particular, the result applies to indepen-
dent random variables.

FACT 2.4. For k >_ 2 let gl gk IRn -+ IR be increasing. IfX1 Xn
are associated random variables, then

P (gj(X) >_ .j) > P (gj(X) _> )j) P (gj(X) >_ .j)
kj--1

k

>-- I-I P [gJ (X) >_ ;j] (2.3)
j=l

holdsfor all U < k and arbitrary butfixed real numbers ;1,
Fact 2.4 has a special application to stochastic processes with independent

increments:

FACT 2.5. Let S {Yt T} be a stochastic process of independent
increments, where the parameter space T is either discrete or continuous.
For k >_ 2 let gl gk IRn - IR be increasing functions. Then

for arbitrary but fixed tl < < tn in T the set of random variables
{gl (Yt Yt,) gk(Yti Yr,)} is associated. Thus, when substitut-
ing (Ytl Yt,) for X in (2.3), the inequalities holdfor all U < k and all
,1 ,k.



STOCHASTIC AND CLASSICAL INEQUALITIES 89

Fact 2.5 has certain applications in boundary-crossing type of problems,
and it represents a generalization of some earlier results. For example,
Robbins [23] previously obtained the last inequality in (2.3) for k n and

gj (Ytl Ytn) Ytj (j 1 k) via a direct verification. His result now
follows from Fact 2.5 as a special case.
The notion of association and monotone transformations of random

variables arise in many problems in probability and statistics. For an extensive
application in reliability theory, especially on reliability bounds for coherent
systems, see Barlow and Proschan 1, Chapter 2]. In multivariate statistical
analysis, Fact 2.4 is often applied to reduce the dimensionality of the
joint distribution of random variables. In this area there are other related
notions for defining positive dependence of random variables. A notion that
is stronger than association is the multivariate totally-positive-of-order-2
(MTP2) property of the joint probability density function (p.d.f.). For a

comprehensive treatment ofTP2 functions and related results, see Karlin 14].
For a description of the orderings of the notions of positive dependence,
see Barlow and Proschan [1, Chapter 5] and Tong [28, Chapter 5]. It is
known that for the multivariate normal distribution all of these notions are
equivalent. As a result, many special results for this distribution have been
obtained. For example, Pitt’s [20] result states that if X (X1 Xn) is
distributed according to a multivariate normal distribution, then X1 Xn
are associated if and only if all of the simple correlation coefficients are
nonnegative.

3 THE HLP REARRANGEMENT INEQUALITY AND
ARRANGEMENT INCREASING (AI) FUNCTIONS

The HLP rearrangement inequality, due to Hardy et al. [9, Chapter 10], is
an algebraic inequality for inner products. For n > 2 let a (al an)
and b (b bn) be two real vectors. Their inner product is defined to
be abr nYi=I aibi. The problem of interest is to find the maximum and
minimum through all permutations of the components of a and b. The HLP
rearrangement inequality states that

THEOREM 3.1. Let (a[1] a[n]) and (a() a(n)) be two vectors ob-
tained from rearranging the components of a such that a[] > > a[n]
and a( <_ <_ a(n), and let (bill,..., bin]), (b(1) b(n)) be defined
similarly. Thenfor all a, b the inequalities
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n n

a(i)b[i] < aibi <_ a(i)b(i)
i=1 i=1 i=1

hold. Thus, the inner product of a, b is minimized (maximized) over all
possible permutations when their components are completely reversely
ordered (similarly ordered).

Without loss of generality, let us assume that al < a2 < < an already
holds. We shall denote such a vector by the symbol a ’. If the components of
b are not in an ascending order, then there exist two integers r < s such that

br > bs. Let bl denote the vector obtained from b by interchanging br and bs
in b. We use the symbol b P< bl to mean that br and bs are now in an ascending
order in the new vector bl. If b* (b b) is another vector such that

P P
there exists N vectors bl bN satisfying b P< bl <... < bN P< b*,
then we can change b into b*, in a finite number of rearrangements by
interchanging two components at a time in this fashion. In this case we

write b P<P b*. Adopting such an approach, Sobel [26] obtained the following
generalization of Theorem 3.1:

THEOREM 3.1 t. Let a, b and b* be n-dimensional real vectors. If b P<P b*,
then (a ’)bT < (a ’)(b*) T.

In a 1977 paper, Hollander, Proschan and Sethuraman studied functions
that are decreasing in transposition. Subsequently, such functions are called
"arrangement increasing" in the Marshall-Olkin 17, Section 6.F) book. The
definition of such a function is given below:

DEFINITION 3.2. b(a, b) IRn IRn -- IR is said to be an arrangement
increasing (AI) function of (a, b) if (i) b (a, b) b (’(a), ’(b)) for
every vector " (yr Zrn) which is a permutation of (1 n),
where yr(al an) (arl ar); (ii) b P<P b* implies b(a ’, b) <

q(a , b*).

With this definition, Theorem 3.1 essentially says that b(a, b) abT is an
AI function. When applied to probability and statistics, the problem ofinterest
is to develop some basic results for showing that certain functions are AI, thus
to obtain probability inequalities via rearrangements. Hollander et al. [10]
proved a fundamental preservation theorem and gave many such results. In
particular, they proved a theorem that involves the ranks and the parameters
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of random variables from several populations. Let .T" {f (x, 0) 0 6 f2}
denote a family of univariate p.d.f.’s while fl C IR is the parameter space.
f" is said to possess the monotone likelihood ratio (MLR) property if, for all

01 < 02 in fl the ratio f (x, 02)/f (x, 01) is an increasing function of x. This

property represents a notion of stochastic ordering ofrandom variables in the
sense that Eog(X) is increasing in 0 for all increasing functions g. Thus a

random variable X associated with a larger 0 is stochastically larger in this

sense. Now, let X1 Xn be n independent random variables with p.d.f.’s

f(x, 01),..., f(x, On), respectively. For 1 n let Ri denote the rank
of Xi in the combined sample (X1 Xn). Then, intuitively speaking, the
rank of a random variable with a larger 0 value tends to be higher. This is

affirmed in the following theorem due to Hollander et al. [10]:

TrtEOREM 3.3. If.T" has the MLRproperty and X1 Xn are independent,
then

4(0, r) Po[R r Rn rn]

is an Alfunction ofO (01 On) and r (rl rn).

Theorem 3.3 has many useful applications in rank order statistics and

nonparametrics. For details, see Hollander et al. [10] and the related
references. Other stochastic applications of arrangement functions include
statistical inference problems based on order statistics. In particular, the
ranking and selection problems concern the selection of the populations
associated with the larger parameters. By applying Theorem 3.1, it can be
shown algebraically that if the family of p.d.f.’s, .T’, is an exponential family,
then the corresponding likelihood function is an AI function of (0, x); thus it
is maximized when the parameters 0 On and the observationsx Xn
are similarly ordered. This property was applied extensively by Bechhofer,
Kiefer and Sobel in their 1968 monograph.

4 MAJORIZATION, SCHUR FUNCTIONS, AND STOCHASTIC
INEQUALITIES

The notion of majorization concerns the heterogeneity of the elements of a

real vector. Let a (al an), b (bl bn) be two real vectors and
the a[i]’s, b[i]’s be defined as in Theorem 3.1.

i=1 a[i] >_DEFINITION 4.1. a is said to majorize b, in symbols a >- b, if m

b[i] holds for rn 1, n 1 and equality holds for rn n.
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This definition provides a partial ordering of the "heterogeneity" of the
components of a and b. In particular, it is easy to see that (i) a >- (h )
holds for all h where h is the arithmetic mean, (ii) if ai > 0 (i 1 n),
then (i=ln ai ,0 0) >- a. It is known that:

THEOREM 4.2. (a) a >- b holds iff n n1-Ii= h (ai) >_ IIi= h(bi) holds for all
continuous convexfunctions h. (b) a >- b holds iff b aP for some n n

doubly stochastic matrix P.

Definition 4.1 is closely related to the following definition of Schur-convex
and Schur-concave functions:

DEFINITION 4.3. IRn -- IR is said to be a Schur-convex (Schur-concave)
function if a >- b implies (a) >_ (b) ((a) <_ (b)).

The basic ideas of majorization and Schur functions have played a role in
classical mathematical analysis. In their monograph, Marshall and Olkin 17]
gave a comprehensive and complete treatment of this topic, including its
historical developments, basic theory and related inequalities and various

applications that were known before 1979.
In the rest of this section we provide a review of some existing stochastic

inequalities derived via majorization. An earlier result, due to Marshall and
Olkin 16], can be stated in the form of an integral inequality:

THEOREM 4.4. If f and g are Schur-concavefunctions defined on IRn, then
thefunction defined on IRn by

[f(O) flRn g(O x)f(x)dx

is a Schur-concavefunction.

By using the property that (0 x) >- (0" x*) iff (x 0) >- (x* 0"),
and by letting g be the indicator function of a Schur-concave subset in IRn,
Theorem 4.4 implies the following result given in Marshall and Olkin 16]:

FACT 4.5. If the p.d.f, f(x) of an n-dimensional random vector X
(X1 Xn) is Schur-concave, then the distribution function F(a)
P[X1 < al Xn < an] is a Schur-concavefunction ofa (al an).

Proschan and Sethuraman [22] applied the results in majorization theory
to study stochastic majorization and provided the following definition:
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DEFINITION 4.6. A random vector X (X1,..., Xn) is said to stochasti-
cally majorize V (Y1 Yn) if E((X)) >_ (<)E(gt(V)) holds for all
Schur-convex (Schur-concave) functions .
They then obtained several useful theorems via this stochastic majorization

ordering. One such result deals with the probability contents of a Schur-
concave set for nonnegative random variables with TP2 and semigroup
properties. A convenient reference of that theorem and its applications is
Marshall and Olkin [17, p. 101). Hollander et al. [10] also showed that if

t IRn )< IRn IR is of the form (a, b) g(a b) for some function
g IRn IR, then q is AI iff g(x) is a Schur-concave function of x.
This result yields rearrangement inequalities via majorization for location
parameter families in statistics.

5 SOME RECENT DEVELOPMENTS

There are many recent results in stochastic inequalities that have been derived

through association of random variables, AI functions and majorization
theory. Due to space limitations, we describe only a few of them in this
section. Interested readers may find additional results from the bibliographies
contained in the references given in this paper.

5.1 Positive Association and Negative Association

The random variables that satisfy Definition 2.2 tend to take larger values
together and smaller values together. Thus they may be called "positively
associated". Many useful inequalities derived via this notion have become
available after the publication of the Esary et al. [8] paper, and some of
them are originated from applications. A comprehensive reference on their
applications in reliability theory can be found in the Barlow-Proschan [1]
book. More recent applications in this area can be found in the review
article by Boland et al. [6]. Some of the recent results and their selected
applications in biology and medicine, business and economics, operations
research (including queubing theory), and statistical inference can be found
in Block et al. [3], Shaked and Tong [25] and Shaked and Shanthikumar [24].
The concept of negative association was introduced by Block et al. [4],

Joag-Dev and Proschan [11 and others. There have been different forms of
the definition of negative association and a convenient one is the following
(Joag-Dev and Proschan 11 ]):
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DEFINITION 5.1. Random variables X1,..., Xn are said to be negatively
associated iffor all disjoint subsets C1 {rl, rm} and C2 {Sl Sm,}
of 1 n and all increasing functions g ]Rm -+ IR and g2 IRm’ -- IR
the inequality

E [gl (Srl Srm) g2 (Xs1 Xsm,)]
E [gl (Srl Xrm)] E [g2 (Xs, Ssrn,)]

holds.
It follows immediately from Definition 5.1 that if X1,..., Xn are

negatively associated, then

P {Xri >_ Zi}, {Xs >_ il <-
i=1

P A{Xri il e AIXsi (i
i=1 i=1

for all i and t Certain applications of negative association of random
variables to specific distributions have been studied in the literature. For
example, Block et al. [4] proved that if the joint distribution of X1 Xn
is multinomial, then they are negatively associated.

5.2 Stochastic Arrangement Increasing and Multivariate
Arrangement Increasing Functions

Certain generalizations of the notion of arrangement increasing functions
have been made recently for deriving new multivariate probability inequal-
ities. For example, Boland et al. [6] applied the fundamental preservation
theorem in Hollander et al. 10] to obtain the following result:

THEOREM 5.2. Assume that (X1 Xn) is a random vector with a p.d.f.
that is permutation invariant. Let h 1, h2 be Alfunctions on ]Rn X IRn, and
let gl, g2 IR --+ ]R be increasing. Then

q(a, b) E[gl (hi (a, X))g2(h2(X, b))]

is an Alfunction of (a, b) e ]Rn X IRn, where the expectation is taken over

the distribution ofX.
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By applying this result to permutation invariant distributions and to
families of probability distributions with AI density functions, many new
results were given in Boland et al. [6]. For example, Theorem 5.2 immediately
implies that if f(x) is permutation invariant, then

P[al <_ X1 <_ bl an <_ Xn < bn]

is an AI function of (a, b). (This is an earlier unpublished result of Boland.)
For a convenient reference of these results, see Chapter 16 of Pe6arc et

al. 19].
Another set of new results on this topic were given by Boland and

Proschan [5] through multivariate generalization of AI functions. They
provided a useful definition of multivariate AI functions of the form 4
]Rn )< IRn x x IRn IR, proved a main theorem, showed that many
existing classical results are special cases of the main theorem, and then
applied it to derive new results in multivariate probability inequalities. For
details, see Boland and Proschan [5] or Chapter 17 of Pearc et al. [19].

5.3 Some Recent Results and Generalizations of Majorization-
Related Inequalities

In the area of majorization-related stochastic inequalities, many new results
have become available since the publication ofthe Marshall-Olkin 17] book.
The following is a description of some of them:

5.3 (A) Generalized Majorization and Multivariate Majorization

There exist several generalizations of the notion of majorization, including
multivariate majorization, majorization orderings for continuous functions,
and other related orderings. Three types of multivariate majorization were
already treated in Chapt6r 15 ofMarshall and Olkin 17], and useful stochastic
inequalities have been obtained via their applications. A generalization
of majorization ordering via integrals of continuous functions and other
multivariate majorization ideas were treated recently by Joe [12], Joe
and Verducci [13], and others. Selected applications to the comparison of
stochastic heterogeneity of probability distributions were also given.
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(B) Additional Majorization-Related Multivariate Probability
Inequalities

Many additional multivariate inequalities have been obtained via majoriza-
tion ordering. For example, motivated by Fact 4.5 Tong [29] proved that:

FACT 5.3. If the p.d.f f(x) of X (Xl Xn) is Schur-concave,
then (a) the distribution function of ]XI (IXll, IXnl), P[IXI] _<
a Xn <- an], is a Schur-concave function of a (a an);
(b) the probability P [7=1 (Xi/ai)2 <- )] is a Schur-concave-function of
(a21,..., a2n) for everyfixed Z > O.

Tong [29] also conjectured that if the conditions on f(x) in Fact 5.3
are satisfied, then for all positive even integers m > 2 the probability

P[7=l(Xi/ai)m< .] is a Schur-concave function of (a’/m-1)
m/(m-1))an for all ) > 0. In a 1983 paper Karlin and Rinott proved that this

conjecture is true. Karlin and Rinott [15] and Tong [30] also independently
obtained a multivariate probability inequality for n-dimensional rectangles
via multivariate majorization. For a description of that and other related
results, see the survey articles Tong [31] and Tong [33]. We note that all
of these results yield integral inequalities in IRn.

5.3 (C) A Positive Dependence Ordering via Majorization
Ordering of Dimension Vectors

In a 1977 paper, Tong applied Muirhead’s inequality (see Marshall and Olkin
[17, p. 87] to prove the following result:

THEOREM 5.4. Let X1 Xn be nonnegative random variables. If their

joint p.d.f is absolutely continuous with respect to either Lebesgue measure

or the counting measure, and is permutation invariant, then E Hi%l (Xi)ai

is a Schur-convexfunction ofa (al, an) EX =-- 1).

A simple application of Theorem 5.4 yields the following moment

inequality:

FACT 5.5. If X is a nonnegative random variable, either continuous or

discrete, then Hin=a lZai is a Schur-convexfunction of a, where tXai EXai

and lzo =- 1.
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Tong [32] applied these results to a large class of distributions for
obtaining a partial ordering of positive dependence of random variables via
a majorization ordering of the dimension vectors. Detailed applications to
certain families of probability distributions and stochastic processes were
given. In a recent paper, Olkin and Tong [18] applied these results to study
the effects of positive dependence in reliability theory and shock models
when the random variables are exponentially distributed.
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