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Several problems for the differential equation

Lu=g(r,u) with Lpu=r-(rlu’lP-2u’)
are considered. For ot N- 1, the operatorL is the radially symmetric p-Laplacian in JR". For

various uniqueness conditionsthe initial value problem with given data u(ro) uo u’ (ro) u
and counterexamples to uniqueness are given. For the case where g is increasing in u, a sharp
comparison theorem is established; it leads to maximal solutions, nonuniqueness and uniqueness
results, among others. Using these results, a strong comparison principle for the boundary value
problem and a number of properties of blow-up solutions are proved under weak assumptions
on the nonlinearity g(r, u).
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1 INTRODUCTION

This work is devoted to the study of the nonlinear second order operator

Lu r-U(rUlu’lP-2u’)’= lu’l p-2 (p- 1)u" +-u’ (1)
r

and to initial and boundary value problems for equations of the form

Lpu f(u) and Lpu g(r, u).

It is always assumed that p > 1 and o > 0. For a function u depending
N-1 is the p-Laplacian ApUonly on r Ix I, x IRN, the operator Lp

div(IVulP-2Vu) in IRN; in particular, LN2-1u u’f + (N 1)u’/r is the
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48 W. REICHEL and W. WALTER

radial Laplacian (we use the same letter u as a function of x 6 ..N and as a
function of r Ix[ 6 IR). In the linear case p 2 we simply write L in
place of L. With this notation,

ot u p-2Lpu (p- 1)1 L u, where ot/(p- 1).

A description of the contents of the paper follows. In the theorems the
nonlinearity is always of the form g(r, u), but in this overview we formulate
some of the results only for the special case f(u).
The first significant new result is given in Theorem 2. It states that the

initial value problem

Lu f(u), u(ro) uo, u!(ro) u0 (2)

is uniquely solvable if f is merely continuous, at least in the case u 0,
0. The consequencesr0 > 0 and also in some cases where r0 0, u0

can be summed up in the statement that the usual assumption that f
belongs to C can often be replaced by continuity of f. Uniqueness for the
general initial value problem (3) is a subtle problem. This becomes already

(r)u e- h(r). Inmanifest in the simple "p-linear" equation Lpu + k (- 1)

the homogeneous case h 0 the initial value problem is always uniquely
solvable (cf. [13]), whereas in the inhomogeneous case this is not true, see
Section 2. An extensive list of uniqueness conditions is given in Section 2,
together with examples of non-uniqueness. Theorem 3 is a refined version
of a comparison theorem for problem (3), where g(r, u) is increasing in
u. It gives rise to maximal and minimal solutions, equipped with classical
properties. Section 3 contains a strong comparison theorem for the boundary
value problem without the usual hypothesis of non-vanishing gradients; e.g.,
if 1 < p < 2 and g(r, u) is locally Lipschitzian and (weakly) increasing in
u, then strong comparison holds. In Section 4 blow-up problems of the form

(r, u), (r) --+ --+ RLpu g u o as r

are discussed. Using Corollary (e) of Theorem 3, it can be shown that the
asymptote of a blow-up solution of (3) depends continuously and strictly

This has immediate consequences on the uniquenessmonotone on u0 and u0.
of radial blow-up solutions of Apu f(u) in a ball in IRN. These results are
obtained under weak assumptions on f and g; in particular, differentiability
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is not required. Both for the strong comparison theorem and the blow-up
problem extensive use is made of earlier results on the initial value problem.
Our results apply also to radial and convex Ca-solutions ofMonge-Ampbre

equations det D2u g’(Ixl, u), since they satisfy utt(u’/r)N-1 (r, u),
i.e.,

LON g(r, u), u’(0) 0 with g(r, s) rN-l fi, (r, s).

NOTATION For simplicity, we write the odd power function in the form
s (q) ]slq-ls [slqsign s (q real); it has the properties

s(q)t(q) (St)(q), 1Is (q) (1/s)(q), (--S) (q) _s(q),

[slq, s(qz) s(q,+q2) Ls(q qlslq_
d

ds ds
Islq qs(q-1)

The inverse function of S (q) is S (l/q)

Monotonicity is used in the weak sense, i.e., f is increasing if u < v

implies f(u) < f(v), and strictly increasing if u < v implies f(u) < f(v).
For a solution u in an interval J C [0, cx) we require that u and rut(p-1)

belong to CI(j); this implies that u" is continuous as long as u 0.

2 EXISTENCE, UNIQUENESS, CONTINUOUS DEPENDENCE

For the reader’s convenience we state and prove an existence theorem of
Peano type for the initial value problem

(r,u), u(ro)--uo, u’(ro)Lpu g uo. (3)

TheOREM 1 (Existence). Assume that g(r, s) is continuous and bounded in

the strip S J x IR, where J [0, b] in the case ro 0 and J [a, b] in

the case 0 < a < ro <_ b. Then the initial value problem (3) has- under the
0 in the case ro 0- a solution existing in J.provision that uo

COROLLARY Assume that g is continuous in G, where G is a relatively open
subset of [0, oe) x IR, and that (ro, uo) G. Then problem (3) has a local
solution u(r) in some interval. It can be extended (as a solution) to a maximal
interval of existence [0, fl+) or (fl_, fl+) with 0 <_ fl_ < fl+ <_ oe, where
the second case applies only if ro > O; the extended solution tends to the
boundary ofG as r --+ fl_ and r --+ fl+.
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Proof It follows from (3) that

ru’(r)(p-l) --rup-l) pg(p, u(p)) dp. (3’)

Hence problem (3) is equivalent to the fixed point equation u Su, where

frf { (rO)utO(p-1) frl (p)a(Su)(r) uo + + 7 g(p, u(p)) dp at.

We apply Schauder’s fixed point theorem in the Banach space X C(J).
Obviously, S maps X into itself and is continuous in the maximum norm, i.e.,

u --+ u uniformly in J implies Su -- Su uniformly in J. Furthermore,
since g and the functions (ro/t) and (p/t) are bounded, [(Su)[ < K for
u 6 X and r 6 J. Hence S(X) is a relatively compact subset of X, and
Schauder’s theorem shows that a fixed point exists. The corollar3, is derived
in a standard way from Theorem 1.

THEOREM 2 (Uniqueness). Assume that G C S [0, o) x IR is relatively
open in S and g(r, s) is continuous in G and locally Lipschitzian with respect
to s or r. If (ro, uo) G and ro > O, Uo O, then problem (3) has a unique
local solution. The extension u(r) remains unique as long as u(r) O.

Proof If g(r, s) is locally Lipschitzian in s, notice that as long as u # 0
the differential equation can be written in the form u" ,(r, u, u) where
,(r, s, s) is locally Lipschitzian in s, s in G x (IR \ {0}). Uniqueness
then follows form a well known classical theorem. Now let g be locally
Lipschitzian in r. A solution u satisfies u (r0) # 0; therefore it has an inverse
function r(u) of class C2 in a neighborhood of u0. It follows from

ur--1, ur2+ur---0 and r >0,

where r’ dr(u)/du, u u’(r(u)) that r(u) is a solution of the initial
value problem

(p- 1)r"= r’2- r’(p+l) g(r(u), u), r(uo) ro, r’(uo) 1/Uo
Since the right hand side of the differential equation is locally Lipschitzian
in r as long as Ir[ > 0, the theorem follows.

It is well known that existence and uniqueness imply continuous depen-
dence on the initial data. We formulate this result for problem (3), using the
notation u(r; ro, uo, Uo) for a solution of (3).
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COROLLARY Let g be as in Theorem 2 and let u(r) u(r; ro, uo, Uo) be a
solution in a compact interval I [a, b], where 0 < a < ro <_ b and u 56 0
in I. Then, given e > O, there exists 3 > 0 such thatfor [ro fo[ < 3, fo E I,
luo ol < 3, lUo o1 < 3 the solution fi(r) u(r; o, tTo, tT) exists in I
and is uniquely determined, and lu(r) fi(r)l < e, lu’(r) fi’(r)l < e and
fit Oin I.

For proof, one changes g (r, s) outside a neighbourhood N of the solution
u in such a way that g becomes bounded and continuous in I x IR; one may
take N {(r, s) r E I, Is u(r)l _< ’} C G. Then the set of all solutions
u(r; f0, iT0, fi), where the parameters satisfy the above inequalities with
3 1, is a relatively compact subset ofX C(I) (every solution exists in I).
For every sequence (r, u, Uok) -, (ro, u0, u) the corresponding sequence
(uk) of solutions has a uniformly convergent subsequence with limit u, and
it follows from (3t) that the sequence of derivatives converges uniformly to
ut. Let . (0, rio, tT) and ) (r0, u0, u). Then (u(r; .)), u’(r; .)) -,

(u(r), ut(r)) uniformly in I as ) .. The rest is easy.

In the next theorem we use the notation v(a+) < w(a+) (or v < w at

a+) if there exists e > 0 such that v < w in (a, a + e). For v, w C 1, this
relation holds if v(a) < w(a) or if v(a) w(a) and vt(a) < wt(a).

THEOREM 3 (Comparison). Let I [a, b] and Io (a, b] (0 < a < b).
Assume v, w C (I) with Vt(p-1) tOt(p-1) C (I0) satisfy

v(a+) < w(a+), v’(a) <_ wt(a), Lpv-g(r, v) < Lpw-g(r, w) in Io,

where g(r, s) is increasing in s. Then

vt<_w in I, which implies v<w in Io.

If (i) g is strictly increasing in s or (ii) v < w’ at a+ or (iii) the differential
inequality is strict at a+, then v < w in Io.

The theorem remains true in the case I [b, a] (0 < b < a) is an
interval to the left of a if the inequalities involving vt, w are reversed and
Io is the interval [b, a)" The differential inequality and v(a-) < w(a-),
vt(a) >_ wt(a) imply v > w and v < w in Io, and the cases (ii), (iii)have
to be changed accordingly.

Proof Let v < w in I [a, c], where c is maximal. Then

[ra(w’p-1) vt(p-1))] >_ r[g(r, w) g(r, v)] > 0 in It. (*)
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It follows that w v >_ 0 in I which implies that w v is positive and
increasing in (a, c]. This shows that c b. In each of the cases (i)-(iii) the
first term in (.) is positive at a+, which gives w > v in I0. []

Remark It is clear that in the case of nonuniqueness of problem (3) the
Comparison Theorem cannot hold if in all inequalities of the assumption
equality is permitted. But it is remarkable that a strict inequality in one place
(v < to at a+) suffices without any conditions on g except monotonicity.

COROLLARIES In the following propositions (a)-(h) it is always assumed
that g(r, s) is continuous and increasing in s on a set G c S I x IR
which is relatively open in S, and that u, v, w (with graphs belonging to G)
satisfy the smoothness assumptions of the theorem; as before, I [a, b] and
I0 (a, b]. The initial value problem (3a) is the problem (3) with r0 a.

Similar propositions hold also to the left of a > 0, where I [b, a] and

I0 [b, a); an explicit formulation is only given in those cases where the
necessary changes are not obvious.

(a) Upper and lower solutions. If to satisfies the inequality Lw > g(r, w)
in I0, then w is called an upper solution (or supersolution) to the differential
equation Lu g(r, u); it is an upper solution to the initial value problem

These inequalities imply that(3a) if, in addition, w(a+) > uo, wt(a) > uo.
to > u and w > u in I0, where u u(r; a, uo, Uo). A lower solution

(subsolution) v is defined similarly, with inequalities reversed.

(b) Maximal and minimal solutions. Problem (3a) has a maximal solution
t7 fi(r; a, u0, Ul) in a maximal interval of existence [a, ?) (? < b) or
[a, b] and a minimal solution u_ u_(r; a, u0, u) in a maximal interval

[a, c) (c < b) or [a, b]. For every other solution u of (3a) the inequalities
u_ < u < fi, u < u < fit hold in the interval ofexistence ofboth t7 and u. The
maximal solution fi can be obtained as the limit of the sequence of solutions
u(r) u(r; a, uo + 1 / k, Uo), which is strictly decreasing (this follows from
Theorem 3). A similar proposition holds for the minimal solution.

(c) Comparison with maximal and minimal solutions. If to satisfies

Lpw > g(r, w), w(a) _> uo, w’ (a) > u0,’

then w >_ u__ and w > ut, where u u_(r; a, uo, Uo). In particular, ifproblem
(3a) has a unique solution u u(r; a, uo, Uo), then w > u, w > ut. In this
case w (with the above properties) is also called an upper solution for the
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initial value problem. There are again corresponding statements for lower
solutions v of (3a) and "to the left".

This follows from (b) and Theorem 3, applied to w and u(r; a, uo :
1/k, uo).
We now describe two techniques which generate upper and lower solutions

from a solution. The first one applies in the case where g(r, s) is increasing
in r, while the second one requires some kind of Lipschitz continuity in r.

(d) Shift of solutions. Assume that u satisfies the smoothness assumptions in

an interval I [a, b] (a >_ O) and u > 0 in I0 (a, b]. Then thefunction
u(r) := u(r + 3) is defined in I I 3, and

(Lu)(r) > (Lu)(r +3) for > 0 and

(Lua)(r) < (L)u(r + 3) for < 0 (r 6 I0 q h). (4)

(r, u) and u’If u is a solution of Lpu g > 0 in I, where g is increasing in

(s and) r, then u is a super- or subsolution to the differential equation in the
case > 0 or < 0, resp.
(e) Supersolutions by substitution. Let (r) be of class C2 and w(r)
u((r)). Then

w’ u’’ and w" u"’2 + u’"
with tp’ tp’(r), u’ u’((r)) This implies

( )Lpw (p- 1)[utb’lp-2 u"cp’2 + u’cp" + --u’q’

with or’ ct/(p 1) and

(5)

Dw "= Lw- (Lu)(qb(r)) (p- 1)]u’lp-2

(u,,(lcp, lp_l)_Fu,.dp,,p_2dp,,_Fot,u,(dp’(p-1)r (r)
(6)

This foula will be used in the generation of a supersolution from a solution
(r, u)"u of Lpu g

Lw g(r, w) Dw g(r, w) g((r), w). (7)
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The same equivalence holds for < (in both places) and for strict

inequalities.

(f) Uniqueness under the condition uo (a) 0 (a > 0). The solution

u(r; a, uo, O) of(3a) is unique in a neighbourhood ofa ifg(a, uo) > O, and,
in addition,

(i) g Lip- (r) for uniqueness to the right,

(ii) g Lip+ (r) for uniqueness to the left (a > 0).

A function (r) belongs to Lip+ or Lip- if the difference quotient
[(r2) aP(rl)]/(r2 rl) is bounded above or below, resp. Obviously,
increasing or decreasing functions belong to Lip- or Lip+, resp., and
Lip Lip+ f Lip-.

(g) Uniqueness of solutions with one sign. We consider a solution
> 0(< O) and, in case both initial valuesu(r; a, uo, Uo) of (3a) with uo, u0

vanish, g(a, O) > 0(< 0). The solution is unique in a neighbourhood ofa if
furthermore g(r, s)/sp-1 is decreasing (increasing) in s for s > 0 (s < O) if
u > 0 (u < O) in (a, a + E]. For uniqueness in an interval to the left ofa the
proposition remains valid if the inequalityfor Uo is reversed.

O. Assume that g (r, s) is increasing(h) Maximal solutions in the case u0
in r (e.g., g(r, s) f(s)) and that g(r, uo) Ofor a < r < b. Then u =- uo
is a solution. Assume that there exists a subsolution which is > uo in (a, b].
Then, for a < ro < b, the maximal solution iT(r; ro, uo, 0) and no other
solution is > uo for r > ro. Under these assumptions, all solutions of (3a)
are given by

u(r)--uo in [a, ro], u(r)=-ff(r;ro, uo, O) in [r0, b] (a < ro <b).

They fill the area between the curves s uo and s fi(r; a, uo, 0) in

the r, s-space. When I is an interval [b, a] to the left of a, then g must be
decreasing in r, and ro satisfies b < ro < a.

EXAMPLE Ifg (r, S) >_ Ksq for s _> 0 and 0 < q < p- 1, then the statement
--Oanda > O. For/z > (q+l)/(p-q-1)in (h) applies for u0 u0

the function (r a)/z+l is a subsolution to the right of a and the function

(a r)/z+l is a subsolution to the left of a (in casea > O) for the initial value
0 in a small one-sided neighbourhood ofproblem Lpu Kuq uo u0

a. The functions are positive to the right or left of a, resp.
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Remarks 1. The statement (f)(i) fails to be true under the weaker assump-
tion that g(r, uo) is positive only in I0 (a, b]. The initial value problem

u" 12,/ u + r4 u(0) u’(0) 0

with the solutions u -r4 and u (1 + ,/)r4 is a counterexample.
2. It is not clear whether the statement in (h) about the characterization of
the maximal solution as the unique positive solution remains true if the
monotonicity of g(r, s) in r is replaced by a local Lipschitz condition in
r. A simple counterexample to the assertion in (h) is

6r for s > r3

u’=g(r,u), where g(r,s)= 6sir2 for 0<s <r3

0 fors <0.

Solutions are u(r) .r3, 0 _< ) _< 1", the function g is continuous in
[0, o) IR, but not Lipschitzian in r.

3. The example u" 12u(1/2) with the three solutions u (r) r4, 0 and
-r4 shows that under the assumptions in (h) the solutions u(r) uo is in

general not the minimal solution.

Proof (a)-(e) are simple. (f)(i) We consider the case a 0 and use
the notation vl(r) v2(r) if Vl/V2 1 as r 0. We use (e) with

4(r) r + e(3 + r), where , 3 > 0. Let g(0, uo) ’ > 0. Then, for every
u’(p-1) a--i+l" Since Lu ,, itsolution u, (rau(e-1)) ray, hence 7

follows from (1) that (p 1)lulp-2u" --Y--" hence there is c > 0 sucha+l
that

(p- 1)[ulP-2u> Y
": , in [0, c].

2(o + 1)

The expression Dw in (6) consists of three terms, D1, D2, D3 where D2 0
because 4" 0, and D3 > 0 because q 1 + e > 1 and b(r) > r. The
first term allows now the estimate

Dw>Dw>Vl[(l+e)p-l] >qpe as long as q(r)<c.

Let -L < 0 be a lower bound for the difference quotients of g(r, s) in a

neighborhood of (0, u0). Then the fight side of (7) is bounded above by
L((r) r) Le(3 + r) < 2eL3 if r is restricted to 0 < r < 3. This shows
that for 0 < e < 1 the function to is an upper solution in [0, 3] if the constant
3 > 0 satisfies

?,p>_2L3 and 33_<c;
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furthermore, w satisfies w(0) u(eS) > u(0) and w’(0) u’(eS)(1 -be) >
0 u’(0).

If v is another solution, then w > v and, by letting e --+ 0, u _> v in [0, 8].
As before, it follows by a symmetric argument that u v in an interval
[0, ].

In the case where a > 0 we have (p 1)lul-" , and we may use

b(r) r + e(8 + (r a)) for the proof which is similar.

(f)(ii) For uniqueness to the left one uses the same technique with (r)
r e(1 + 8(a r) + (a r)e). One chooses first 8 > 0 so large that

D1 > 2Le (L _> 0 is now an upper bound for the difference quotients of g),
then so large that De + D3 > 0 in a small left neighbourhood of a where
r -dp(r) < 2e.

(g) If uo # 0 or u 0 then u has one sign in (a, a + e]. If both uo, u0
vanish, it follows from g(a, 0) 0 and (3’) that u has one sign in (a, a +
Let u, v be two solutions on I [a, a -b e] for sufficiently small e. If uo, u0
do not both vanish, then u/v is bounded below on I by a positive constant.

0 then it follows from (3") and the mean value theorem forIf u0 u0
integrals that

u(r) g(Pl, bt(Pl)) 1/(p-l) f J(s)1ds

v(r) g(P2, v(P2))1 ff J(s)1ds
--+1 as r-+a,

where J(s) f (p/s) dp and 01, p2 E [a, r]. In case u, v are positive in
(a, a -b el, there exists a large )0 > 1 with )u > v in I for all ) >_ )0. Let
)* inf{) > 1 )u > v in I} and suppose for contradiction that )* > 1.
Then, by assumption, g (r, ;*u) < )* P- g (r, U) on I and hence

Lp(L*u)-g(r,)*u) > L* P-l(Lu-g(r,u)) --0= Lv-g(r, v) in I.

Since g(r, s) is increasing in s and )*u > v at a-b, the comparison theorem
shows that )*u > v in (a, a - e], contradicting the minimality of .*. Hence
)* 1 and u > v for any two solutions u, v of (3a). In case u, v are negative
in (a, a -b e], the proof is similar with )* inf{X > 1 )u < v in I}.
Notice that now by assumption g(r,)*u) > )* P- g (r, u) on I.

(h) If a solution u(r) is > u0 in I0, then us (8 > 0) satisfies us(a) > uo,

us(a)t > Uot 0. As before, this implies us > v for 8 > 0 and every
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solution v. Hence u > v, i.e., u is the maximal solution tT(r; a, u0, 0) =:
This solution produces, according to (d), a subsolution v(r) ft(r-(ro-a)).
Hence tT(r; r0, u0, 0) > v(r) > uo for r > r0. According to the reasoning
at the beginning of the proof, applied to r0 a, every other solution > u0

equals the maximal solution.

A Summary on Uniqueness

THEOREM 4 Under each of the following conditions, uniqueness for the
initial value problem (a > O)

Lu g(r, u), u(a) uo, u’(a) u0

is guaranteed in a neighbourhood ofa.

It is assumed that the functions g (r, s), h (r, s), defined in a neighbourhood
U(a, u0) C [0, o)lR, andk(r),definedinaneigbourhood U(a) C [0, cx),
are continuous. We write g (r, s) 6 Lip(s) if g (r, s) is locally Lipschitzian
in s on U(a, u0); g (r, s) 6 Lip(r) is defined analogously. The spaces of
locally q-H61der continuous functions are denoted by Lipq (s) (0 < q < 1).
For one-sided Lipschitz conditions we use the terms Lip+ or Lip- (see
Corollary (f)) if the difference quotients are (locally) bounded above or below,
resp.

Initial condition validfor Properties ofg(r, s)

(a) u % 0 (i) p > g Lip (r)
(hence a > O) (ii) p > g Lip (s)

(iii) <p_<2 g(r,s) Lipq(s),O<q_<

(/) u 0 (i) p > g(a, u0) > 0, g incr. s, g Lip -(r)
(ii) p > g(a, uo) < O, g incr. s, g 6 Lip + (r)
(iii) < p < 2 g 6 Lip (s)
(iv) < p < 2 g >_ O, g(r, s) Lip p-l(s)
(v) p > 2 g(a, Uo) O, g Lip (s)
(vi) p > 2 g(r, s) h(r, s)p-1 + k,(r),

h,k >O, h 6 Lip(s)

(’) Uo, Uo ]R p > g(r, s) k(r)s (p-I

0 if a 0 (p-linear case)u

(3) Uo u 0 (i) p > [g(r, s)[ _< Kls[p-1

(ii) p > g(r, s)s < 0 for =/= O, g(r, O) O,
[g(r, s)[ < K[g(r, s)[

In (/)(iv), (vi) the sign condition on g(r, s) and h(r, s), k(r) may be reversed.
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Reading guide. The properties of g as stated apply to the uniqueness to the
fight; swap Lip- and Lip+ in (fl)(i), (ii) for uniqueness to the left (the other
cases remain unchanged).

Remark The cases (ot)(ii) and (fl)(iii) and (v) have recently appeared in a
paper ofFranchi, Lanconelli and Serrin [5]. For ot 0, DelPino, Manfisevich
and Munia [3] have given uniqueness conditions contained in the above list
under the overall growth condition [g(r, s)[ < Kls[p-1.

In order to treat initial value problems where the fight hand side vanishes
at r a we need the following:

COROLLARY If g(r, s) l(r)(r, s), where (r, s) satisfies (fl)(i), (ii) or

(v), then the corresponding initial value problem is uniquely solvable to the
right ofa (to the left ofa for a > 0), if is continuous in a neighbourhood

ofa, l(r) > Ofor r > a (r < a) and if in the cases (/)(i), (ii) is increasing
(decreasing).

Remark In all other cases a factor (r) is already allowed in the above list.

Proof of Theorem 4. Since we only prove local uniqueness, we may
assume boundedness of g. The proofs are only given for uniqueness to the
fight. The changes for uniqueness to the left in case a > 0 are obvious.

(or). Conditions (i), (ii) give uniqueness by Theorem 2. Case (iii) is easily
reduced to the case where u0 0. The operator S in (3it) has then the form

F

(Su)(r) A(t; u)(---) dt

where A(t; u) (a/t)up-l) + fta (p/t)g(p, u(p))dp --> u(p-l) 0 as
a. We proceed like in McKenna, Reichel, Walter [9] and investigate

the operator S on the complete metric space C([a, r0]) with the metric
d(u, v) max lu (q v(ql. W.l.o.g. we may assume u > 0 and hence

A(t; u) > Uop-1/2 > 0 for close to a; otherwise we consider -S. By the
positivity of A(t; u), we obtain the following estimate for close to a. We
write (Su) (q) [[U[[ and (Sv) (q) [[V[[, where [[. is the L1/q-norm on

[a, r], U A(t; u);q-3- and V A(t; v);q--r-l"
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](Su)(q)- (Sv)(q)l(r) IIUII- IIVIII IIU- VII

fa
r q

IA(t; u) A(t; v) [1/q dt

fa
q

< KL(ro- a) [u(t) (q) v(t)(q)[ 1/q dt

< KL(ro -a)q+l d(u, v),

where L is the q-H61der constant of g(r, s) and K is a Lipschitz constant
for S---r- near Uo(p- 1. Hence for r0 sufficiently close to a, the operator S is a
contraction on (C([a, r0]), d) and has a unique fixed point.

(/). Condition (/)(i) guarantees uniqueness by Corollary (f)(i) and (ii).
For (/)(ii) one needs to observe that the function fi(r) -u(r) satisfies

Lfi (r, fi) with (r, s) -g(r, -s); for (/)(i) is applicable.
Uniqueness under (iii) follows from the observation that s(1/(p-1 is

differentiable on IR if 1 < p < 2. The proof is then similar to (ot)(iii)
by estimating

[__lh K
[a(t; u)-J a(t; v)p-lJ < [A(t; u) A(t; v)[,

p-1

where K ((r0 a) max Ig(r, s)[) (2-p)/(p-1), and using the Lipschitz
continuity of g(r, s) in s. Conditions (iv) and (vi) are taken from McKenna,
Reichel and Walter [9] and are based on suitable contraction mapping
arguments.

For the proof of (v) we assume g(a, u0) > 0 and observe that the
expression

A(t; u) g(p, u(p)) dp

g(trl, u(tT1)) a+l aa+l
a _<O" <t

o+l
is positive for a < < r0 if r0 is close to a by the assumption. Hence by
(t+1 aa+l)/t > a and by the mean-value theorem we get

[A (t; u)(---) A (t; v) (7-)1 <
2-p

l ((t-a) g(a, uo)) p-’-r

p 1 ot + 1 2
IA(t; u) A(t; v)l
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which results in

2-p

( g(__a, uO) ) L
(ro a)p/(p-1) max lu vl[(Su)(r) (Sv)(r)l <

\2(or i a<r<ro

for a < r < r0 and r0 sufficiently close to a; here L is the Lipschitz constant
of g. Again S is a contraction operator on C([a, r0]), equipped with the
maximum-norm.
The invertability of the sign condition imposed on g in (iv), (vi) is evident,

since -S is a contraction if and only if S is a contraction.

(?,). This condition was found by Walter [13] and is proved in the context
of Sturm-Liouville problems by Prtifer’s transformation.

(3). Under condition (i) it follows from (3") that a solution u satisfies

lu(r)l <_ K -- far(t a) dt amaX<r<ro lul

and hence u 0 on a sufficiently small interval [a e, a + e] (a > 0)
or [0, e] (a 0). For the proof of (ii) we define G(r, s) fg g(r, r) dcr,
which is non-positive by assumption, and find

u’Lu ut(P-1)((p- 1)u" +-u’)

(lU IP) -1- --lU p

(G(r, u))’ Gr(r, u),

with , (p 1)/p. Substituting v lu’l p we obtain the linear first order
equation

a
),?’ (v’ nt- v) (G(r, u) Gr (r, u), v(a) --0,

with fi c/t,. Solving this equation for v > 0 and integrating the first term

by parts, we get

far( ) tfi
,v(r) G(t, u(t))’ Gr(t, u(t) - dt

fa
r tt--1 faG(r, u(r)) & G(t, u(t)) r--ft- dt Gr(t, u(t))--r-g dt.
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If u 0 in a neighbourhood of a, we may choose the sequence rn --+ a such
that G(rn, u(rn)) min[a,r,] G(t, u(t)) < 0. Then we get

rn -1

?’V(rn) <_ IG(rn, U(rn))l(--l+6t r dt+(rn-a)K) < 0 for n large,

in contradiction to v > 0. Hence v lu p - 0 in a neighbourhood of a. []

Proof of the corollary. We only indicate where the differences to the
original proofs are. Suppose ,(r, s) satisfies (/3)0) and l(r) is increasing.

(r, u), 0 whereWe prove uniqueness to the fight for Lpu g uo
g(r, s) l(r),(r, s). Let us go back to the proof of Corollary 3(f)(i) with
a 0 and ,(a, u0) > 0. The estimate for Dw now becomes

Dw > ype l((r)) as long as (r) < c.

If -L is a lower bound for the difference quotients of ,(r, s) in a

neighbourhood of (0, u0), then we have the estimate (notice q (r) > r)

g(r, w) g((r), w) < l(dp(r))(,(r, w) ,(gp(r), w)) < l((r))2eLa.

In order to get Dw > g(r, w) g((r), w), the function/((r)) > 0 drops
out and the proof goes as before. For uniqueness to the left the estimate
Dw >_ g(r, w) g((r), w) is obtained by using the decreasing character of
l(r) together with (r) < r. If ,(r, s) satisfies (fl)(ii), the proof is obtained

by considering solutions v -u of Lpv -l(r), (r, -v) where now

-,(r,-s) satisfies (/3)0).
Suppose now that ,(r, s) satisfies (fl)(v) with g(a, u0) > 0. As in the

proof of (v) the positivity of A(t; u) fta (p/ t)ag(p, u(p)dp for a < < r0
follows from the positivity ,(a, u0) and of/(p) for p > a. Hence the estimate

A(t;u) >
,(a, uo)fa (p)o2 7 l(p) dp

holds for a < < ro with ro close to a. Denoting I(t) fta(P/t)l(p)dp
we get by the mean-value theorem

IA(t; u)(’----)-A(t; v)(’--)l < l (I (t)
(a’ uo) ) v-1

p 1
IA(t; u)-A(t; v)l.
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With the Lipschitz property of ,(r, s) this results in

2-p

I(Sbl)(r)--(SP)(r)l<((a’blO))p-I-
2

L(ro a) max I (t) max lu vl.
[a,r0] [a,r0]

This gives the contraction property for S on [a, r0] for r0 close to a.

Remark If, for given initial conditions, g(r, s) satisfies one of the above

uniqueness conditions and is furthermore increasing in s, then comparison
between an upper and a lower solution holds even if equality is permitted in

the initial values; cf. Corollary (c) to Theorem 3.

We furnish our results with two

Counterexamples. For q > 0 the problem

Lu u(q) 1, u(O) 1, u’(O) 0

has the trivial solution u _= 1. For 1 < p < 2 this is the only solution
by (fl)(iii). For p > 2 the function v(r) 1 + er1+ is a subsolution if

F > 2/(p 2) and e > 0 is sufficiently small. Hence the initial value
problem has at least two solutions, since the maximal solution t7 (r; 0, 1, 0)
is> lforr>0.

This counterexample shows, that uniqueness may fail if in (fl)(i), (ii) and
(v) only the condition g(a, u0) > 0, < 0 and 0, resp., is violated and if
in (fl)(vi) only the condition k(r) > 0 is dropped. Furthermore it shows that
the equivalent of (fl)(iii) does not hold for p > 2. Finally it shows, that in

(F) the homogeneity is essential.
If the Lipschitz continuity of g(r, s) in (fl)(iii), of h(r, s) in (fl)(vi) or the

p- 1-H6lder continuity of g(r, s) in (/3)(iv) is dropped, then uniqueness may
fail, as shown by the example following Corollary (h), where

Zu u(q) u(a) O, u’(a) 0

has nontrivial solutions for 0 < q < p 1 to the right and left (if a > 0).
This example also shows that in (8)(i) the growth exponent p 1 cannot be
decreased and in (8)(ii) uniqueness fails if the sign condition g(r, s)s < 0
for s 5 0 is reversed. Notice that (8)(ii) gives uniqueness for

a (q)Lpu -u u(a) O, u’(a) O.
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3 A STRONG COMPARISON PRINCIPLE

For an interval 1 [a, b] (0 < a < b) we define 11 (a, b) if a > 0
and 11 [0, b) if a 0. We consider pairs of functions v, w 6 C1(I),
ra v,p- 1), r u,(p- 1) C (11), which satisfy

a (r,w) in (a,b), (8)Lpv- g(r, v) >_ Lpw- g

v(b) < to(b) and v(a) < w(a) if a > 0, v’(0) w’(0) 0 if a 0.
(9)

If g(r, s) is (weakly) increasing in s, then the well known comparison
principle states that v < w in [a, hi; el. Tolksdoff [11], Walter [12]. Here
we address the question, under what conditions the weak comparison v < to

(WCP) can be strengthened to the strong comparison v < to or v to (SCP).

Remark For a > 0 we want the strong comparison v < to to hold on (a, b)
whereas for a 0 it is required to hold on [0, b). Note that for ot N 1 the
interval (a, b) represents an open annulus and [0, b) an open ball in N-space.

We formulate the corresponding Hopfversion (H) of(SCP) at the boundary
points b and a (for a > 0):

v < w in I1 and v(b)=w(b) implies v’(b)> w’(b).

v < w in I1 and v(a)= w(a) implies v’(a) < w’(a). (Ha)

In Walter [12], essentially the following counterexample for p > 2 is

given, which shows that (SCP) and (H) can fail, even ifthe increasing function
g(r, s) is Lipschitzian as a function of st-l Consider the equation

Lu u(q) 1

for q > 0. We have seen in the counterexamples in Section 2 that the initial
value problem for the above equation with u0 1, u 0 has two solutions
u 1 and iT(r; 0, 1, 0) > 1 for r > 0. By Corollary 3(h), the maximal
solutiont2(r;a,l,0) is > 1 forr > a (a > 0). If we take v 1 and
w (r; a, 1, 0), this example shows that both (SCP) and (Ha) fail. The

following condition from Tolksdorf 11 or Walter 12] is known to guarantee
(SCP) [and (H)]

Case a > 0 v’ 0 or w’ 5 0 in (a, b) [in [a, b]], g(r, s) is increasing
and locally Lipschitzian in s.
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The main weakness of this result is the assumption on the non-vanishing
of the derivatives, which is in general not controllable. Our approach is based
on the following simple idea: Since we have the weak comparison w > v
in I, the strong comparison to > v in 11 fails only if there exists a touching
point r0 I1 with w(ro) v(ro) and w’(r0) v’(r0). If we furthermore
suppose for contradiction that w v, then we may take r0 to be a point of
a strict one-sided local zero-minimum of w v. We determine a continuous
function q (r) which satisfies

a ’ (r,w) in I1 (8’)Lev g(r, v) > q(r) > Lew g

and consider the initial value problem

Lu g(r, u) + q(r), u(ro) v(ro) w(ro), u’(ro) v’(ro) w’(ro).
(10)

The function v is a supersolution and the function w is a subsolution to

this problem. Assuming that (10) has a unique solution in a neighbourhood
U of r0, we obtain from Theorem 3, Corollary (c) that w < u < v, which
leads to v w in U, a contradiction. Summing up, we have

TIEOrM 5 Suppose v, w satisfy (8)-(9) andg(r, s) is continuous in (r, s)
[a, b] IR and increasing in s IR. Then (SCP) holds if all problems (10)
with ro I1 are uniquely solvable. In particular (SCP) holds if thefunction, (r, s) g(r, s) +q (r) satisfiesfor initial values uo v(ro) and uo (ro)
a uniqueness condition of Theorem 4.

The assertions (Ha), (Hb) are proved by the same argument where a strict
one-sided zero-minimum of w v at r0 a or r0 b with v’ (r0) w’ (r0)
is led to a contradiction. We need q to be defined and continuous in [a, a +]
or [b , b], resp.

For illustration, we give some explicit assumptions which imply (SCP) and
(H). We use the notation Pu Lu g(r, u); naturally, g(r, s) is increasing
in s.

(a) 1 < p < 2, g 6 Lip(s) (no condition on q).
(b) The p-linear case, g(r, s) k(r)s (p-l), k > O. Take q(r) 0, i.e.,

Pv > 0 > Pw (for q -1, we have a counterexample)
(c) g(r, w(r)) + q(r) # 0 in I1, g and q Lip(r).
(d) 1 < p < 2, g(r, w(r)) + q(r) > 0 or < 0 in I1, g(r, s) Lipp-1 (s).
(e) p > 2, g(r, w(r)) + q(r) 5 0 in 11, g 6 Lip(s).
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(f) p > 2, g(r, s) h(r, S)p-1 +k(r),h Lip(s),h andk+q non-negative
in 11.

(g) If v’ 5 0 or w’ 7 0 in I1 (a > 0), then it suffices that g satisfies (or)
(note that (c)(ii) is the condition of Tolksdorf and Walter stated above).

4 BLOW-UP SOLUTIONS

Our next theorem deals with blow-up solutions for the equation

Lu g(r, u), u(r) -- cxz as r --+ R, (11)

in particular Lu f(u). We introduce an assumption (A) consisting of five

parts:

(A1) f (s) is continuous, nonnegative and increasing in [so, cx).
(A2) The generalized Keller condition. The function F(s) fsSo f(t)dt

satisfies
ds

F(s)I/p
< o. (12)

(A3) g(r, s) is continuous, nonnegative and increasing in s in the set

I x [so, x), I [a, b] with a > 0.
(A4) There exist f(s) satisfying (A1)(A2) and positive constants cl, c:

such that

clf(s) < g(r,s) < c2f(s) in I x (sl, cxz), where Sl > so.

(A5) g satisfies a condition of Lipschitz type

Ig(rl, s) g(r2, s)l _< Llrl r2lg(rl, s) in I x [so, o).

Remarks 1. Condition (A2) has been given by Keller [6] in the classical
case p 2; it is a necessary condition for blow-up. Under more

restrictive assumptions, but for general N-dimensional domains, the blow-up
problem has recently been studied by Bandle and Marcus 1, 2], Lazer and
McKenna [7, 8] for p 2 and by Diaz and Letelier [4] for general p > 1.
McKenna, Reichel and Walter [9] have treated the radial case for f(u) ]u]q

and general p > 1.
2. It follows from (A) that lim f(s)/sp-1 c and lim g(r, s)/sp-1 oe
for s cx uniformly in I. For proof one may adapt Lemma A and B in
Bandle, Marcus [2].
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3. The function g(r, s) h(r)f(s) satisfies (A) if f satisfies (A1) (A2) and
h is continuous and positive and Ih(rl) h(r2)l < Llrl r21.
4. Condition (A) is satisfied for f(s) sq and, more general, for f(s)
sq k(s), ifk is continuous, positive and increasing and q > p 1. It also holds
for g(r, s) ,ksq + k(r, s) if k is such that (A) holds and k(r, s)s-q --+ 0 as
s o uniformly in I.

LEMMA If f satisfies (A1) (A2), then

f(s)

F(s)
--+o as s---o.

Proof In an interval J [Sl, o) the function (s) F(s) lip has the
following properties:

ds
E cl(J), > O, 1/r > O, 1/rp convex and

O(s)
<

We have to prove that p’(s) --, oo as s ---, cxa. Assume first that !/ E C2(j).
Then convexity of 7,p implies (app)" > 0 or !/taP" + (p- 1)’2 >_ 0, which
implies

By integration, one obtains

1 1 fa
b ds

< (p- 1) (Sl < a < b). (*)"(b) ’(a) (s)

If p’ were bounded, then ap would grow at most linearly with the effect
that f(1/Tt)ds x. Hence sup ’ cx. Let M be positive and let a J
be such that

ds 1 ,<-- and (a) > M.
ap(s) M

Then it follows from the inequality (.) that

1 1 p-1 1 p-1
< <

’(s) ’(a) M M M
P in [a,o).
M
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This inequality shows that lims ap’(s) cx. Now assume that is only
of class C1. We approximate F pP by smooth functions Fc, using the
mollifier technique:

F(s) J’IR F(s + ott)(t) dt,

where q > 0, supp q [-1, 1], q 6 C(IR) and fiR dp(t) dt 1. Since F
belongs to C differentiation gives

F(s) fiR F’(s + ott)dp(t) dr.

Due to convexity, F (s) is increasing, and this property is inherited by F.
Hence the inequality (.) holds for the functions 7z(s) := F(s) 1/p. In
the limit as ot 0+, we get Fa --+ F, F f, hence 7z --+ 7z and

(P)’ (pP)’, which leads easily to ’. This shows that (.) holds
under the assumption of the Lemma, which now follows as before.

The first part of the proof was contributed by Prof. M. Plum, which is

gratefully acknowledged.

THEorI 6 Suppose that, for 1, 2, Ui is a solution of (11) in [a, bi C
I (a > O) and U (bi) x. If (A) holds and

ul(a+) < u2(a+) and u(a) < u2(a),

then bl > b2.

Proof If follows from the comparison theorem that the inequalities U <

u2, uit < u2 hold in (a, b2) and that bl >_ b2; furthermore, since u2 u + c

would imply that g is constant in s, we have u < u at a point ro and then
also in [ro, b2).

For the proof by contradiction, we assume that a < bl b2 < b, and that
hold in [a bl). Thea > b/p and that strict inequalities u < u2, u < u2

proof is based on the following idea. We consider the function

v(r) Ul (q(r)), where q(r) (1 E)r

and show that for small E > 0 the function v is a subsolution to the
differential equation (11). Because of the strict inequalities at r a, we

(a). Hence v < u2 and v(b’) cx wherehave v(a) < u2(a), v’(a) < u2
q (b) bl and therefore b2 < b < bl, which is the desired contradiction.
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We want to use (7) and consider the expression

,, N(r) }Dv (p 1)]u] ]p-2 Ul ((1 E)p 1) + ot’ul rg)(r)
with

N(r) (1 E)P-I[(1 E)r + bE] r.

For E small, (1 E)p 1 pE and (1 E)p-a 1 (p 1)E, hence

N(r) , -pEr + (1 (p 1)E)bE < E(b- pr) < 0

because r > a > b/p. Thus the second term of Dv is negative. Next we
is positive, so u has antt is positive for u large. The derivative ushow that u

(r(u)) satisfiesinverse function r(u) with r 1/ut. The function z(u) u

(with u as independent variable and r r(u))

tt

zt(u
u g(r,u) c2f(u)

< z(uo) ’o,u (p- 1)Zp-1 r (p- 1)Zp-I’

where u0 ul(a), u0 u(a). Solving the corresponding initial value
problem for y (u),

yt c2f(u)
(p_ 1)yP_

y(uo) Uo,
we obtain

/ 1/p

y(u)
\p-

,,PC2 (F(u) F(uo)) -+- Uop)
which implies

> z(u),

g(r,u) ot clf(u)
z >

(p_ 1)yp-1 r (p- 1)yp-1 a

By the lemma, f(u)/yp-1 -+ o as u -+ o, which implies u]t/u
as r -- hi. Hence we may assume (by moving the point a to the right, if
necessary) that utt is positive and therefore Dv < 0 in [a, bl). According to
(7) we have to show that

Dv < g(r, v) g(cD(r), v).
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This is obviously true if g(r, s) is decreasing in r. In this case, which covers
the case where g(r, s) f(s), the theorem is proved. In the general case, we
take small and u large, which implies (1 )P 1 -p and ut/utt O,
hence

1 ,iP_Zu,, 1
(Lu)(4)(r))peDv _< --pe(p2 1)lul < --< -L(b a)g(d)(r), v) < g(r, v) g(cD(r), v).

It was used that 4(r) r _< b -a and L(b-a) < p/3 (a and b can be chosen
close to bl). These inequalities show that v is indeed a lower solution.

COrOLI.ArY We consider solutions u (r; ro, uo, u) of(3) under the assump-
tion (A).

(a) Case ro O. Assume that the maximal solution ti(r; 0, uo, 0) (uo > so)
blows up at r bo. Then the initial value problem (3) has, for uo < ) <
and Uo O, a unique solution u (r; 0, ,k, 0) which blows up at bz. Thefunction
bz is continuous and strictly decreasing in ) (uo, cxz) and bz --, 0 as
,k --+ c,bx --+ bo ask --, uo.

(b) Case ro a > O. Assume that the maximal solution ti(r; a, uo, u)
(uo > so, u >_ O) blows up at bo. Then the solution u(r; a, ,k, IX) is unique

() IX) (uo, Uo), and it blows up at a point bx. Thefor ) > uo, lx > uo,

function bx, is continuous and strictly decreasing in ) and Ix, and it tends to

a as k --+ cxz or Ix --+ cx and to bo as (), Ix) --+ (uo, Uo).
(c) Uniqueness ofblow-up solution. Under the assumption of (a) the

blow-up problem Lu g(r, u) in J (0, R), u’(O) O, u(R)
hasfor given R (0, bo) one and only one solution.

If g(r, uo) O, g(r, s) > Ofor s > uo, r > 0 and if the maximal solution
iT(r; 0, u0, 0) is u =- uo, then the blow-up problem has for every R > 0 a

unique solution.

(d) The statements in (a)-(c) remain true if g(r, s) l(r)(r, s), where
(r, s) satisfies (A) and the assumptions in (a)-(c), is continuous, increasing
and (ro+) > O.

Remark In contrast to earlier work [1, 2, 4, 7, 8] on the general N-
dimensionalblow-up problem, the above uniqueness result is obtained merely
by monotonicity, Keller’s condition and (in the nonautonomous case) by a

Lipschitz condition with respect to r. Without this last condition (A5), the
theorem fails. For a counterexample take ablow-up solution u ofLu f(u)
and define g by
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f(s)
g(r, s) f (s -1)

const, in s

for s < u(r),
for s > u(r) + 1,
between u (r) and u (r) + 1.

The functions w(r) u(r) + ;k, 0 < ) < 1 are blow-up solutions of
ot eLpw g(r, w). Ifone takes, e.g., f(s) then (A1)-(A4) hold, and (A5)

is violated.

Proof The assumption that f 0 in [u0, u0 / e] implies t7 u0 because
of (A4). Hence f(s) > 0 for s > u0. (a) We write u(r, )) for u(r; O, ;k, 0).
Uniqueness follows from Corollary 3.(f) since g(0, ;k) > 0 for L > so, and
strict monotonicity of bz from Theorem 6. As ) $ ;k0 > u0, the solution
u(r, )) tends to u(r, )0) uniformly in compact subsets of [0, bz0), which
together withb < b implies b; - bz0. This remains true for ;0 u0 since

iT(r; 0, u0, 0) is the maximal solution. Since g(r, s) > clf(s) for s > Sl,

u(r, .) is for . > Sl a supersolution for the problem with the right hand side

Cl f(s). Since according to Lemma 1.(c) in [9] the solutions to of the latter
0 (or + 1)clf(v),0 are supersolutions to Lpvproblem with w0 ), w0

O, and since the asymptote of v(r, )) can be computed and10 ), V0
tends -- 0 as ) -- cx (see [10], Satz 1.1), the same is true for the asymptotes
b of u (r, ).

(b) The proof is similar to the proof of (a) and will therefore be omitted.

(c) The first part follows readily from (a). In the second part we have
u(r, ) --+ uo as u0 uniformly on compact intervals. Since u(r, ;k) is

strictly increasing, u assumes large values, and for these g(r, s) > clf(s)
(see (a)), i.e., u(r, ;k) is a blow-up solution and bz -- xz as ;k -- u0.

(d) The proofs of (a)-(c) remain almost unchanged: the uniqueness of
the initial value problem now follows from the corollary to Theorem 4.
Furthermore one has to observe that the solutions to of Lp w C (r)f(to)

0 are, due to the monotonicity of (r), supersolutionswith too . and too
0to the problem Lpv (or + 1)cll (r)f (v) with v0 ;k, v0 0, for which

the asymptote can be computed explicitly, is strictly decreasing in . and has
the same asymptotic behaviour as in (a)-(c). B
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