Hermite Interpolation and an Inequality for Entire Functions of Exponential Type

GEORGI R. GROZEV^a and QAZI I. RAHMAN^{b,*}

^a Numetrix Ltd., 655 Bay Street, Suite 1200, Toronto, Ontario, Canada, M5G 2K4 E-mail: georgig@numetrix.com ^b Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec, Canada, H3C 3J7 E-mail: rahmanqi@ere.umontreal.ca

(Received 11 September 1996)

Let $c \in [0, 1)$, p > 0. It is shown that if f is an entire function of exponential type $cm\pi$ and $\sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p < \infty$, where $\{\lambda_n\}_{n\in\mathbb{Z}}$ is a sequence of real numbers satisfying $|\lambda_n - n| \leq \Delta < \infty$, $|\lambda_{n+u} - \lambda_n| \geq \delta > 0$ for $u \neq 0$, then $\int_{-\infty}^{\infty} |f(x)|^p dx < B \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p$, where B depends only on c, p, Δ and δ . A sampling theorem for irregularly spaced sample points is obtained as a corollary. Our proof of the main result contains ideas which help us to obtain an extension of a theorem of R.J. Duffin and A.C. Schaeffer concerning entire functions of exponential type bounded at the points of the above sequence $\{\lambda_n\}_{n\in\mathbb{Z}}$.

Keywords: Entire functions of exponential type; Hermite interpolation; L^p inequalities; nonuniform sampling theorems; Carlson's theorem.

1991 Mathematics Subject Classification: 30D20, 30D10, 30D15, 41A05, 41A17.

1 INTRODUCTION AND STATEMENT OF RESULTS

According to a famous theorem of Carlson [12, Theorem 5.81] if f is an entire function of exponential type $< \pi$ which vanishes at $n = 0, \pm 1, \pm 2, ...$, then

^{*}Author for correspondence.

it must be identically zero. An extension of this result due to Plancherel and Pólya [10, Section 33] reads as follows.

THEOREM A Let p > 0 and $c \in [0, 1)$. If f is an entire function of exponential type such that

$$\lim_{y \to \infty} \sup_{y \to \infty} y^{-1} \log\{|f(iy)| + |f(-iy)|\} = c\pi , \qquad (1.1)$$

then there exists a constant B depending only on p and c such that

$$\int_{-\infty}^{\infty} |f(x)|^p dx < B \sum_{n=-\infty}^{\infty} |f(n)|^p .$$
(1.2)

It was shown by Boas [1] that the sampling points in (1.2) do not have to be integers. The following theorem is covered by his generalization of Theorem A.

THEOREM B Let $\lambda := \{\lambda_n\}$ be a sequence of real numbers such that

$$|\lambda_n - n| \le \Delta < \infty , \ |\lambda_{n+u} - \lambda_n| \ge \delta > 0 , \ (u \ne 0) .$$
 (1.3)

If p, c and f are as in Theorem A, then there exists a constant B depending on p, c, Δ and δ such that

$$\int_{-\infty}^{\infty} |f(x)|^p dx < B \sum_{n=-\infty}^{\infty} |f(\lambda_n)|^p .$$
 (1.4)

With $\lambda := \{\lambda_n\}$ as above let

$$G(z) := (z - \lambda_0) \prod_{n = -\infty}^{\infty} \left(1 - \frac{z}{\lambda_n} \right) \left(1 - \frac{z}{\lambda_{-n}} \right) .$$
 (1.5)

The proof of Theorem B makes essential use of the fact that for certain positive constants c_1 , c_2 depending only on Δ , δ we have [8]

$$|G(z)| < c_1(|z|+1)^{4\Delta} \exp(\pi |\Im m z|) \quad \text{for all} \quad z \in \mathbb{C} , \qquad (1.6)$$

$$|G'(\lambda_n)| > c_2(1+|\lambda_n|)^{-4\Delta-1}$$
(1.7)

and for each $\varepsilon > 0$ holds [9, pp. 92–93]

$$\frac{\exp(\pi |\Im m z|)}{|G(z)|} = O\left(\exp(\varepsilon |z|)\right) \quad \text{if} \quad |z - \lambda_n| \ge \delta/2 \;. \tag{1.8}$$

These inequalities extend certain very important properties of the function $\sin \pi z$ to which G(z) reduces when $\lambda_n = n$ for all $n \in \mathbb{Z}$. From (1.6) it can be concluded that for some constant c_3 depending only on Δ and δ we have [11, see (3.3")]

$$\frac{|G(z)|}{|z-\lambda_n|} < c_3(|z|+1)^{4\Delta} \exp(\pi |\Im m z|) \quad \text{for all} \quad z \in \mathbb{C},$$
(1.9)

where the function on the left is assumed to have its singularity at $z = \lambda_n$ removed. Hereafter we will use y to denote $\Im m z$.

Here is another extension of Theorem A which was obtained only a few years ago.

THEOREM C [4, Theorem 3] Let $m \in \mathbb{N}$, $p > 0, c \in [0, 1)$. If f is an entire function of exponential type such that

$$\lim_{y \to \infty} \sup_{y \to \infty} y^{-1} \log\{|f(iy)| + |f(-iy)|\} = cm\pi , \qquad (1.10)$$

then there exists a constant B depending only on m, p and c such that

$$\int_{-\infty}^{\infty} |f(x)|^p dx < B \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(n)|^p .$$
 (1.11)

One might wonder why we restricted ourselves to the sequence $\{n\}_{n\in\mathbb{Z}}$; but consideration of an arbitrary sequence $\{\lambda_n\}$ satisfying (1.3) would have required an additional property of the function G(z) which was not available to us at that time. According to it, for each $k \ge 2$, there exists a constant $c_{4,k}$ depending only on Δ and δ such that [5, see Theorem 1 and Remark 6]

$$\frac{|G^{(k)}(\lambda_n)|}{|G'(\lambda_n)|} < c_{4,k} \quad \text{for all} \quad n \in \mathbb{Z} .$$
 (1.12)

The details of the proof of this crucial inequality were given in [5] in the case $\Delta \leq 1/4$. In Remark 6 of that paper it was stated that the inequality remains true for arbitrary Δ but the details were left out because, there the case $\Delta > 1/4$ was of little importance. Here it is important to let Δ be *any* positive number and so we give below some hints which the reader might find helpful in verifying the inequality in the case $\Delta > 1/4$.

From (1.6) it follows that $|G(z)| < c_1 \exp(\pi)(|\lambda_n| + 2)^{4\Delta}$ in the disk $|z - \lambda_n| \le 1$ and so by the Cauchy's integral formula for the *k*th derivative, we have

$$|G^{(k)}(\lambda_n)| < k!c_1 \exp(\pi)(|\lambda_n|+2)^{4\Delta}$$

This is in conjunction with (1.7) implies that

$$\frac{|G^{(k)}(\lambda_n)|}{|G'(\lambda_n)|} < k! (c_1/c_2) \exp(\pi) (|\lambda_n| + 2)^{4\Delta} (|\lambda_n| + 1)^{4\Delta+1},$$

from which the desired estimate for $|G^{(k)}(\lambda_n)|/|G'(\lambda_n)|$ follows trivially if *n* is bounded. So we may suppose $|n| > 4\Delta$.

The proof of (1.12) in the case $\Delta \leq 1/4$ was based on the fact that for each $n \in \mathbb{Z}$,

$$\varphi_n(N) := \left| \sum_{\substack{\nu = -N \\ \nu \notin \{-n,0,n\}}}^N \frac{1}{\lambda_\nu - \lambda_n} \right| < 10$$

if $N \ge N_n$, where N_n is an integer depending on n, and the estimates

$$\sum_{\substack{\nu=-N\\\nu\neq n}}^{N} \frac{1}{(\lambda_{\nu} - \lambda_{n})^{2}} \leq \pi^{2}, \sum_{\substack{\nu=-N\\\nu\neq n}}^{N} \frac{1}{|\lambda_{\nu} - \lambda_{n}|^{k}} < \pi^{2} + 2^{k+1} \text{ for } k = 3, 4, \dots$$

hold for all $N \in \mathbb{N}$. We note that, for $\Delta > 1/4$, this remains true in the sense that the quantities

$$\varphi_n(N), \sum_{\substack{\nu=-N\\\nu\neq n}}^N \frac{1}{(\lambda_\nu - \lambda_n)^2}, \sum_{\substack{\nu=-N\\\nu\neq n}}^N \frac{1}{|\lambda_\nu - \lambda_n|^k} \text{ where } k = 3, 4, \dots,$$

are bounded by constants depending only on Δ and δ . To see this assume $n > 4\Delta$ and for sufficiently large N write

$$\varphi_n(N) = |B(n) - A(n) + E(n)| \le |B(n) - A(n)| + |E(n)|$$

where

$$\begin{split} A(n) &:= \sum_{\nu=1}^{[n-2\Delta]-1} \frac{2n+2\delta_n - \delta_\nu - \delta_{-\nu}}{(n+\nu+(\delta_n - \delta_{-\nu}))(n-\nu+(\delta_n - \delta_{\nu}))} ,\\ B(n) &:= \sum_{\nu=[n+6\Delta]+3}^{N} \frac{2n+2\delta_n - \delta_\nu - \delta_{-\nu}}{(n+\nu+(\delta_n - \delta_{-\nu}))(\nu-n+(\delta_\nu - \delta_n))} ,\\ E(n) &:= \sum_{\substack{\nu=[n-2\Delta]\\\nu\neq n}}^{[n+6\Delta]+2} \frac{2n+2\delta_n - \delta_\nu - \delta_{-\nu}}{(n+\nu+(\delta_n - \delta_{-\nu}))(\nu-n+(\delta_\nu - \delta_n))} . \end{split}$$

The quantities A(n), B(n) can be estimated from below and above as in the case $\Delta \le 1/4$. Besides, we easily see that

$$|E(n)| < \frac{24(1+2\Delta)}{\delta} .$$

The desired property of $\varphi_n(N)$ can then be proved in essentially the same way as before.

The quantities

$$-\sum_{\substack{\nu=-N\\\nu\neq n}}^{N} \frac{1}{(\lambda_{\nu}-\lambda_{n})^{2}} , \sum_{\substack{\nu=-N\\\nu\neq n}}^{N} \frac{1}{|\lambda_{\nu}-\lambda_{n}|^{k}} ,$$

where $k = 3, 4, \ldots$ present no new problems.

We are now able to prove our main result.

THEOREM 1 Let $m \in \mathbb{N}$, p > 0, $c \in [0, 1)$ and $\lambda := {\lambda_n}$ be a sequence of real numbers satisfying (1.3). If f is as in Theorem C, then there exists a constant B depending only on m, p, c, Δ and δ such that

$$\int_{-\infty}^{\infty} |f(x)|^p dx < B \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p .$$
 (1.13)

Remark 1 Theorem 1 implies, in particular, that if f is an entire function of exponential type satisfying (1.10) for some $c \in [0, 1)$ and vanishes along with its derivatives of order $1, \ldots, m-1$ at points λ_n for which (1.3) holds, then it must be identically zero. This is an extension of the theorem of Carlson mentioned above.

Let $\lambda := {\lambda_n}$ be an arbitrary sequence satisfying (1.3), G as in (1.5), m a positive integer and

$$\Psi_{m,n}(z) = \Psi_{m,n}(\lambda; z) := \left(\frac{G(z)}{G'(\lambda_n)(z-\lambda_n)}\right)^m \quad (n \in \mathbb{Z}) .$$

For $0 \le \mu \le m - 1$ we consider the function

$$\Phi_{m,n,\mu}(z) = \Phi_{m,n,\mu}(\lambda; z)$$

:= $(1/\mu!)(z - \lambda_n)^{\mu} \Psi_{m,n}(z) \sum_{j=0}^{m-1-\mu} (1/j!) a_{m,n,j}(z - \lambda_n)^j$

where $a_{m,n,0} := 1$, $a_{m,n,1} := -\Psi'_{m,n}(\lambda_n)$ and for $j \ge 2$,

$$a_{m,n,j} := (-1)^{j} \begin{vmatrix} \binom{j}{1} \Psi'_{m,n}(\lambda_{n}) & \binom{j}{2} \Psi''_{m,n}(\lambda_{n}) & \dots & \binom{j}{j} \Psi^{(j)}_{m,n}(\lambda_{n}) \\ 1 & \binom{j-1}{1} \Psi'_{m,n}(\lambda_{n}) & \dots & \binom{j-1}{j-1} \Psi^{(j-1)}_{m,n}(\lambda_{n}) \\ 0 & 1 & \dots & \binom{j-2}{j-2} \Psi^{(j-2)}_{m,n}(\lambda_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \binom{1}{1} \Psi'_{m,n}(\lambda_{n}) \end{vmatrix}.$$

It is not hard to verify that

$$\begin{cases} \Phi_{m,n,\mu}^{(k)}(\lambda_n) = \delta_{\mu,k}, \\ \Phi_{m,n,\mu}^{(k)}(\lambda_{\nu}) = 0, & \text{for } k = 0, \dots, m-1 \text{ and } \nu \neq n. \end{cases}$$
(1.14)

According to a formula for the j-th derivative of the reciprocal of a j times differentiable function [5, Lemma 3]

$$a_{m,n,j} = \left. \frac{d^j}{dz^j} \left(\frac{1}{\Psi_{m,n}(z)} \right) \right|_{z=\lambda_n} . \tag{1.15}$$

Given $m \in \mathbb{N}$ and a sequence $\lambda := \{\lambda_n\}$ satisfying (1.3), we associate with any function $f : \mathbb{R} \to \mathbb{C}$ belonging to $C^{m-1}(\mathbb{R})$ the formal series

$$L_{m,\lambda}(f;z) := \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} f^{(\mu)}(\lambda_n) \Phi_{m,n,\mu}(\lambda;z) .$$
 (1.16)

Although $L_{m,\lambda}(f; z)$ may not be defined for $z \notin \{\lambda_n\}$ it follows from (1.14) that $L_{m,\lambda}^{(\mu)}(f; \lambda_n) = f^{(\mu)}(\lambda_n)$ for all $n \in \mathbb{Z}$ and $\mu = 0, \ldots, m-1$. Considerably more can be said if f in (1.16) is an entire function of exponential type belonging to $L^p(\mathbb{R})$ for some p > 0.

THEOREM D [5,7] Let $m \in \mathbb{N}$, $0 and <math>\lambda := \{\lambda_n\}$ a sequence satisfying (1.3) with

$$\Delta \leq \begin{cases} \frac{1}{4m}, & \text{if } 0 (1.17)$$

If f is an entire function of exponential type $m\pi$ belonging to $L^p(\mathbb{R})$, then $f(z) = L_{m,\lambda}(f; z)$ for all $z \in \mathbb{C}$.

Now from Theorem 1 we readily obtain

COROLLARY 1 Let $m \in \mathbb{N}$, $0 , <math>\lambda := \{\lambda_n\}$ a sequence satisfying (1.3) with Δ restricted as in (1.17). If f is an entire function of exponential type less then $m\pi$ satisfying $\sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p < \infty$, then $f(z) = L_{m,\lambda}(f; z)$ for all $z \in \mathbb{C}$.

2 AUXILIARY RESULTS

Using the generalized Leibnitz's formula [3, p. 219] it can be shown that [5, Lemma 2]

$$\Psi_{m,n}^{(s)}(\lambda_n) = \sum_{\substack{s_1 + \dots + s_m = s \\ 0 \le s_1, \dots, s_m \le s}} \frac{s!}{(s_1 + 1)! \cdots (s_m + 1)!} \prod_{j=1}^m \frac{G^{(s_j+1)}(\lambda_n)}{G'(\lambda_n)} .$$

From (1.12) it then follows that if $c_{4,1} = 1$ and $\mathcal{M}_s := \max_{1 \le k \le s+1} c_{4,k}$, then for all $n \in \mathbb{Z}$ we have [5, Remark 4]

$$|\Psi_{m,n}^{(s)}(\lambda_n)| \leq \frac{(\mathcal{M}_s)^m s! m^{s+m}}{(s+m)!} .$$
 (2.1)

Since $a_{m,n,j}$ is a polynomial in $\Psi'_{m,n}(\lambda_n), \ldots, \Psi^{(j)}_{m,n}(\lambda_n)$ there exists a constant c_5 depending only on Δ , δ and m such that

$$|a_{m,n,j}| \leq c_5, \quad \text{where } 0 \leq j \leq m-1, n \in \mathbb{Z}.$$
(2.2)

Hence using (1.7) and (1.9) we conclude that for all $z \in \mathbb{C}$ we have $|\Phi_{m,n,\mu}(z)| < c_6(|z|+1)^{4m\Delta}(\exp(\pi m|y|))(|z|+1+|\lambda_n|)^{m-1}(1+|\lambda_n|)^{(4\Delta+1)m},$ where $c_6 \leq (m+1)c_5(c_3/c_1)^m$. Since $(|z|+1+|\lambda_n|)^{m-1} \leq (|z|+1)^{m-1}(1+|\lambda_n|)^{m-1},$ we get

$$|\Phi_{m,n,\mu}(z)| < c_6(|z|+1)^{(4\Delta+1)m-1}(\exp(\pi m|y|))(1+|\lambda_n|)^{(4\Delta+2)m-1}.$$
(2.3)

Using this estimate we can easily show that if $f : \mathbb{R} \to \mathbb{C}$ is a function belonging to $C^{m-1}(\mathbb{R})$ such that for some M > 0 and some $\alpha > (4\Delta + 2)m$,

$$|f^{(\mu)}(\lambda_n)| \leq \frac{M}{1+|\lambda_n|^{\alpha}}, \quad (n \in \mathbb{Z}, \ \mu = 0, \dots, m-1),$$
 (2.4)

then on each given compact set $E \subset \mathbb{C}$ the series $\sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} f^{(\mu)}(\lambda_n) \Phi_{m,n,\mu}(z)$ converges absolutely and uniformly, i.e. $L_{m,n,\mu}(f; \cdot)$ is an entire function. Further,

$$|L_{m,\lambda}(f;z)| = O\left((|z|+1)^{(4\Delta+1)m-1}\exp(\pi m|y|)\right).$$
(2.5)

Hence, we have

LEMMA 1 If (2.4) holds for some $\alpha > (4\Delta + 1)m$, then $L_{m,\lambda}(f; \cdot)$ is an entire function of exponential type $m\pi$.

It is interesting and useful for us to know that more can be said when f is an entire function of exponential type satisfying (1.10).

LEMMA 2 Let f be an entire function of exponential type satisfying (1.10). If (2.4) holds for some $\alpha > (4\Delta + 2)m$, then $f(z) \equiv L_{m,\lambda}(f; z)$.

Proof Since $L_{m,\lambda}^{(\mu)}(f; \lambda_n) = f^{(\mu)}(\lambda_n)$ for all $n \in \mathbb{Z}$ and $\mu = 0, \ldots, m-1$, the entire function $g(z) := f(z) - L_{m,\lambda}(f; z)$ has zeros of multiplicity at least *m* at each of the points λ_n of the sequence λ . Hence $H(z) := \frac{g(z)}{(G(z))^m}$ is entire. Since *g* is of exponential type, say τ , we may use (1.8) to conclude that for *z* lying outside the union of disks $D_n := \{z : |z - \lambda_n| < \delta/2\}$ we have

$$|H(z)| < K \exp((\tau + 1)|z|), \qquad (2.6)$$

where K is a constant. If $z \in D_n$, then by the maximum modulus principle

$$|H(z)| < K \exp\left((\tau+1)(|\lambda_n|+\delta/2)\right) < K \exp\left(\frac{(\tau+1)(2|\lambda_n|+\delta)|z|}{2|\lambda_n|-\delta}\right),$$

whence

$$|H(z)| < K \exp\left(\frac{(\tau+1)(2\Delta+\delta)|z|}{2\Delta-\delta}\right)$$
(2.7)

if $|\lambda_n| > \Delta$. In view of (2.6) the preceding estimate holds for all z with $|z| > \Delta$. If $K_1 := \max_{|z| \le \delta} |H(z)|$, then clearly

$$|H(z)| < \max\{K, K_1\} \exp\left(\frac{(\tau+1)(2\Delta+\delta)|z|}{2\Delta-\delta}\right) \text{ for all } z \in \mathbb{C},$$

i.e. H is of exponential type.

We next estimate $H(re^{i\theta})$ more precisely for large r and θ near $\pm \pi/2$. Our hypothesis about f implies that for all θ ,

$$|f(r \exp(i\theta))| = O\left(\exp(c'm\pi |\sin\theta| + d|\cos\theta|)r\right),$$

where c' < 1 and d is finite. So by (1.8)

$$\left|\frac{f(r\exp(i\theta))}{(G(r\exp(i\theta)))^m}\right| = O\left(\exp(-(1-c')m\pi|\sin\theta| + d|\cos\theta| + m\varepsilon)r\right),$$

where ε is arbitrarily small; thus $\frac{f(z)}{(G(z))^m}$ is bounded on $\arg z = \theta$ if θ is so near $\pm \pi/2$ that $-(1-c')m\pi |\sin \theta| + d |\cos \theta| + m\varepsilon < 0$. Next, we note that

Hence, for $|y| \ge 1$,

$$\begin{aligned} \left| \frac{L_{m,\lambda}(f;z)}{(G(z))^m} \right| &\leq \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)| \left| \frac{\Phi_{m,n,\mu}(z)}{(G(z))^m} \right| \\ &< \frac{mc_5 M}{c_2^m |y|} \sum_{n=-\infty}^{\infty} \frac{(1+|\lambda_n|)^{(4\Delta+1)m}}{1+|\lambda_n|^{\alpha}} \quad \text{by (2.4)} \\ &= O\left(\frac{1}{|y|}\right) \quad \text{since } \alpha > (4\Delta+2)m \,. \end{aligned}$$

In particular,

$$\left|\frac{L_{m,\lambda}(f; r \exp(i\theta))}{(G(r \exp(i\theta)))^m}\right|$$

is bounded on arg $z = \theta$ if $0 < \theta < \pi$. Thus,

$$\left|\frac{H(z)}{(G(z))^m}\right| \leq \left|\frac{f(z)}{(G(z))^m}\right| + \left|\frac{L_{m,\lambda}(f;z)}{(G(z))^m}\right|$$

is bounded on $\arg z = \theta$ if θ is sufficiently close to $\pm \pi/2$. Hence *H* is bounded on four rays any two consecutive ones of which make an angle of less than π . Since *H* is an entire function of exponential type it must be bounded everywhere by a Phragmén-Lindelöf theorem [2, Theorem 1.4.2] and so is a constant. Finally, this constant must be zero since $H(iy) \rightarrow 0$ as $y \rightarrow \infty$. Consequently, $g(z) \equiv 0$, i.e. $f(z) \equiv L_{m,\lambda}(f; z)$. For the proof of Theorem 1 we shall also need the following.

LEMMA 2 For any η in $(0, \pi - c\pi)$ let $\alpha_1(\eta) < \alpha_2(\eta) < \cdots$ be the positive zeros of $\sin \eta z$ arranged in increasing order. Given any sequence $\{\lambda_n\}$ satisfying (1.3) and a positive integer k, we can find in each subinterval $I := [\eta', \eta'']$ of $(0, \pi - c\pi)$ with $\alpha_1(\eta') - \alpha_1(\eta'') = \delta$, a point η_k such that $|\alpha_j(\eta_k) - \lambda_n| \ge \delta/2^k$ for all $n \in \mathbb{Z}$ and $j = 1, \ldots, k$.

Proof Choose η in *I* such that $|\alpha_1(\eta) - \lambda_n| \ge \delta/2$ for all $n \in \mathbb{Z}$ and call it η_1 . We can change this value of η to a new value η_2 contained in *I* such that $|\alpha_2(\eta_2) - \lambda_n| > \delta/2^2$ for all $n \in \mathbb{Z}$. Since $\alpha_j(\eta) = j\pi/\eta$ this can be achieved without changing $\alpha_1(\eta)$ by more than $\delta/2^3$. This new value η_2 of η can be changed (if necessary) to another value η_3 contained in *I* such that $|\alpha_3(\eta_3) - \lambda_n| \ge \delta/2^3$ for all $n \in \mathbb{Z}$. This can be done without causing $\alpha_1(\eta)$ to move by more than $(1/3)(\delta/2^3) < \delta/2^4$; the value of $\alpha_2(\eta)$ changes by less than $\delta/2^3$. We can continue this process of moving η and obtain at the *k*-th stage a point η_k in *I* such that $|\alpha_j(\eta_k) - \lambda_n| \ge \delta/2^k$ for all $n \in \mathbb{Z}$ and $j = 1, \ldots, k$.

3 PROOF OF THEOREM 1

We assume the right-hand side of (1.13) to be finite, since otherwise there is nothing to prove. In particular, $f, \ldots, f^{(m-1)}$ are bounded at the points λ_n . Let

$$M_1 := \sup_{n \in \mathbb{Z}} \max_{0 \le \mu \le m-1} |f^{(\mu)}(\lambda_n)|.$$

Let N be an integer and put $\lambda_n^{(N)} := \lambda_{n+N} - \lambda_N$, so that $\lambda_0^{(N)} = 0$, $|\lambda_n^{(N)} - n| \le |\lambda_{n+N} - (n+N)| + |\lambda_N - N| \le 2\Delta$, $|\lambda_{n+u}^{(N)} - \lambda_n^{(N)}| = |\lambda_{n+N+u} - \lambda_{n+N}| \ge \delta$ if $u \ne 0$. Hence

$$G(N;z) := z \prod_{n=1}^{\infty} \left(1 - \frac{z}{\lambda_n^{(N)}} \right) \left(1 - \frac{z}{\lambda_{-n}^{(N)}} \right)$$

satisfies (1.6), (1.7) and (1.9) with Δ replaced by 2Δ . It also satisfies (1.8) and (1.12); the constants c_1 , c_2 , c_3 and $c_{4,k}$ are all independent of N.

Let

$$\sigma := \min\{\pi - c\pi, 1/(2\Delta)\}, \ \eta' := \pi\sigma/(2\pi + \delta\sigma), \ \eta'' := \sigma/2 \ (3.1)$$

and k be an integer larger than $(8\Delta + 2)m$ or $(8\Delta + 2)m - 1 + 1/p$ according as $p \ge 1$ or $0 , respectively. Refer to Lemma 2 and find an <math>\eta_k$ in $[\eta', \eta'']$ such that $|\alpha_j(\eta_k) - \lambda_n^{(N)}| > \delta/2^k$ for all $n \in \mathbb{Z}$ and $j = 1, \ldots, k$. We recall that $\alpha_1(\eta) < \alpha_2(\eta) < \cdots$ are the positive zeros of $\sin(\eta_z)$ arranged in increasing order. Consider the function

$$F(N;z) := f(z+\lambda_N) \frac{(\sin(\eta_k z))^m}{\prod_{j=1}^k (z-\alpha_j)}, \ (\alpha_j = \alpha_j(\eta_k)).$$
(3.2)

We claim that

$$F(N; z) \equiv L_{m,\lambda^{(N)}}(F(N; \cdot); z) , \ (\lambda^{(N)} := \{\lambda_n^{(N)}\}) .$$
(3.3)

In order to prove it we use Lemma 1. Let us estimate $|F^{(\mu)}(N; \lambda_n^{(N)})|$ for $0 \le \mu \le m - 1$. Writing

$$F = f_1 \cdot f_2 \cdots f_{m+1} \cdot f_{m+2} \cdots f_{m+k+1},$$

where $f_1(z) := f(z + N)$, $f_2(z) = \cdots = f_{m+1}(z) := \sin(\eta_k z)$ and $f_{m+j+1}(z) := 1/(z - \alpha_j)$ for $j = 1, \ldots, k$ and applying the generalized Leibnitz's formula for the μ th derivative of the product of several functions, we obtain

$$F^{(\mu)}(N;\lambda_{n}^{(N)}) = \sum_{\substack{\mu_{1}+\dots+\mu_{m+k+1}=\mu\\0\leq\mu_{1},\dots,\mu_{m+k+1}\leq\mu}} \frac{\mu!}{\mu_{1}!\dots\mu_{m+k+1}!} \left[f^{(\mu_{1})}(x+\lambda_{N}) \\ \times \prod_{\nu=2}^{m+1} \frac{d^{\mu_{\nu}}}{dx^{\mu_{\nu}}} (\sin(\eta_{k}x)) \prod_{j=1}^{k} \frac{d^{\mu_{m+j+1}}}{dx^{\mu_{m+j+1}}} \left(\frac{1}{x-\alpha_{j}}\right) \right]_{x=\lambda_{n}^{(N)}} \\ = \frac{1}{\prod_{j=1}^{k} (\lambda_{n}^{(N)} - \alpha_{j})} \sum_{l=0}^{\mu} \frac{f^{(l)}(\lambda_{n+N})}{l!} \\ \times \sum_{\substack{\mu_{2}+\dots+\mu_{m+k+1}=\mu-l\\0\leq\mu_{2},\dots,\mu_{m+k+1}\leq\mu-l}} \frac{\mu!}{\mu_{2}!\dots\mu_{m+k+1}!} \\ \times \prod_{\nu=2}^{m+1} \left[\frac{d^{\mu_{\nu}}}{dx^{\mu_{\nu}}} (\sin(\eta_{k}x)) \right]_{x=\lambda_{n}^{(N)}} \prod_{j=1}^{k} \frac{(-1)^{\mu_{m+j+1}}\mu_{m+j+1}!}{(\lambda_{n}^{(N)} - \alpha_{j})^{\mu_{m+j+1}}} \right]$$

$$\begin{split} |F^{(\mu)}(N;\lambda_{n}^{(N)})| &\leq \frac{\max\{\eta^{m-1},1\}}{\prod_{j=1}^{k}|\lambda_{n}^{(N)}-\alpha_{j}|} \left(\frac{2^{k}}{\delta}\right)^{\mu} \prod_{j=1}^{k} (\mu_{m+j+1}!) \\ &\times \sum_{l=0}^{\mu} {\binom{\mu}{l}} |f^{(l)}(\lambda_{n+N})| \sum_{\substack{\mu_{2}+\dots+\mu_{m+k+1}=\mu-l\\0\leq\mu_{2},\dots,\mu_{m+k+1}\leq\mu-l}} \frac{(\mu-l)!}{\mu_{2}!\cdots\mu_{m+k+1}!} \end{split}$$

Note that the last sum is equal to $(m + k)^{\mu - l}$. Setting $M_2 := \max\{\eta_k^{m-1}, 1\}$ $(2^k/\delta)^m (m + k)^m \prod_{j=1}^k \mu_{m+j+1}!$, which depends only on Δ, δ and m, we obtain

$$|F^{(\mu)}(N;\lambda_n^{(N)})| \leq \frac{M_2}{\prod_{j=1}^k |\lambda_n^{(N)} - \alpha_j|} \sum_{l=0}^{\mu} {\binom{\mu}{l}} |f^{(l)}(\lambda_{n+N})|. \quad (3.4)$$

Since $|F^{(\mu)}(N; \lambda_n^{(N)})| \leq \frac{2^{\mu} M_1 M_2}{\prod_{j=1}^k |\lambda_n^{(N)} - \alpha_j|}$, the function $F(N; \cdot)$ satisfies the condition (2.4) at the points $\lambda_n^{(N)}$ with $\alpha = k > (8\Delta + 2)m$. So (3.3) holds by Lemma 2.

We may suppose $\Delta \ge 1/2$. Let Γ be the boundary of the square of side 4Δ with centre at the origin and sides parallel to the coordinate axes. Then by the maximum modulus principle

$$v_N := \max_{|x-\lambda_N| \le 2\Delta} |f(x)| = \max_{-2\Delta \le x \le 2\Delta} |f(x+\lambda_N)| \le \max_{z \in \Gamma} |f(z+\lambda_N)|.$$

Using (3.2), (3.3) and (1.16) we get

$$f(z + \lambda_N) = \left(\prod_{j=1}^k (z - \alpha_j)\right) (1/\sin(\eta_k z))^m$$
$$\times \sum_{n=-\infty}^\infty \sum_{\mu=0}^{m-1} F^{(\mu)}(N; \lambda_n^{(N)}) \Phi_{m,n,\mu}(\lambda^{(N)}; z)$$

Since $\min\{(1-c)\pi/(2+\delta(1-c)), \pi/(4\pi\Delta+\delta)\} \le \eta_k \le 1/(4\Delta)$ and $2\Delta \le |z| \le 2\sqrt{2}\Delta$ for $z \in \Gamma$ it follows that $|1/(\sin(\eta_k z))|$ is bounded above on Γ by a constant M_3 depending only on c, Δ and δ . Besides, from (2.3) it follows that for $z \in \Gamma$,

$$|\Phi_{m,n,\mu}(\lambda^{(N)};z)| \leq M_4(1+|\lambda_n^{(N)}|)^{(8\Delta+2)m-1},$$

where M_4 depends only on Δ , δ and m. It is clear that $\max_{z \in \Gamma} \prod_{j=1}^k |z - \alpha_j| \le M_5$ where M_5 depends only on c, Δ , δ and m. Hence, using (3.4) we obtain

$$\begin{split} v_N &\leq M_5(M_3)^m M_4 M_2 \sum_{n=-\infty}^{\infty} \frac{(1+|\lambda_n^{(N)}|)^{(8\Delta+2)m-1}}{\prod_{j=1}^k |\lambda_n^{(N)} - \alpha_j|} \\ &\times \sum_{\mu=0}^{m-1} \sum_{l=0}^{\mu} {\mu \choose l} |f^{(l)}(\lambda_{n+N})| \\ &\leq \gamma \sum_{n=-\infty}^{\infty} d_n^{(N)} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_{n+N})| \;, \end{split}$$

where $\gamma := M_5(M_3)^m M_4 M_2 m \left(\begin{bmatrix} m-1 \\ \frac{m-1}{2} \end{bmatrix} \right)$ and

$$d_n^{(N)} := \frac{(1+|\lambda_n^{(N)}|)^{(8\Delta+2)m-1}}{\prod_{j=1}^k |\lambda_n^{(N)} - \alpha_j|} \le \frac{(1+|n|+2\Delta)^{(8\Delta+2)m-1}}{\prod_{j=1}^k |\lambda_n^{(N)} - \alpha_j|}$$

Clearly

$$\prod_{j=1}^{k} |\lambda_n^{(N)} - \alpha_j| \ge L(n,k) := \begin{cases} ||n+2\Delta| + \alpha_1|^k, & \text{if } n < -2\Delta \\ n-2\Delta - \alpha_k, & \text{if } n > \alpha_k + 4\Delta \\ \left(\frac{\delta}{2^k}\right)^k, & \text{if } -2\Delta \le n \le \alpha_k + 4\Delta \end{cases}.$$

Note that $\alpha_1 \ge 2\pi/\sigma$, $\alpha_k \le k(2\pi + \delta\sigma)/\sigma$ where σ is as in (3.1). Hence $d_n^{(N)} \le \tilde{d}_n$ where

$$\tilde{d}_n := \frac{(1+|n|+2\Delta)^{(8\Delta+2)m-1}}{L(n,k)}$$
(3.5)

which means, in particular, that \tilde{d}_n does not depend on N. Now we distinguish two cases.

Case (i). $1 \leq p < \infty$.

By the choice of k the series $\sum_{n \in \mathbb{Z}} \tilde{d}_n$ converges. Denote its sum by S. Having assumed Δ to be $\geq 1/2$ we clearly have

$$\int_{-\infty}^{\infty} |f(x)|^p dx \le \sum_{N=-\infty}^{\infty} \int_{-\Delta}^{\Delta} |f(x+N)|^p dx$$
$$\le 2\Delta \sum_{N=-\infty}^{\infty} \max_{-\Delta \le x \le \Delta} |f(x+N)|^p$$

Since $|x + N| = |x + \lambda_N + (N - \lambda_N)|$ and $|N - \lambda_N| \le \Delta$ it follows that $\max_{-\Delta \le x \le \Lambda} |f(x+N)| \le \max_{\lambda \in X} |f(x+\lambda_N)|$

$$\max_{-\Delta \le x \le \Delta} |f(x+N)| \le \max_{-2\Delta \le x \le 2\Delta} |f(x+\lambda_N)|$$

and so

$$\begin{split} \int_{-\infty}^{\infty} |f(x)|^p dx &\leq 2\Delta \sum_{N=-\infty}^{\infty} (v_N)^p \\ &\leq 2\Delta S^p \sum_{N=-\infty}^{\infty} \gamma^p \left(\sum_{n=-\infty}^{\infty} \frac{\tilde{d}_n}{S} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_{n+N})| \right)^p \\ &= 2\delta S^p \gamma^p \sum_{N=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{\tilde{d}_{n-N}}{S} \left(\sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)| \right)^p \\ &\leq 2^m \Delta S^{p-1} \gamma^p \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p \sum_{N=-\infty}^{\infty} \tilde{d}_N \end{split}$$

by the properties of convex functions [6, p. 72]. Hence

$$\int_{-\infty}^{\infty} |f(x)|^p dx \leq 2^m \Delta S^p \gamma^p \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p$$

which proves Theorem 1 in the case $p \ge 1$.

Case (ii). 0 .

By the choice of k the series $\sum_{n \in \mathbb{Z}} (\tilde{d}_n)^p$ converges to a finite sum say, S_p . As above

$$\int_{-\infty}^{\infty} |f(x)|^p dx \leq 2\Delta \gamma^p \sum_{N=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} \tilde{d}_n \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_{n+N})| \right)^p .$$

Set $\mathfrak{S}_s(a) := \left(\sum_{n=-\infty}^{\infty} (a_n)^s\right)^{1/s}$ where $a_n := \tilde{d}_n \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_{n+N})|^p$ and apply inequality (2.10.3) from [6] with s = 1, r = 1 to obtain

$$\begin{split} \int_{-\infty}^{\infty} |f(x)|^p dx &\leq 2\Delta \gamma^p \sum_{N=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} (\tilde{d}_{n-N})^p \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p \\ &= 2\Delta \gamma^p \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p \sum_{N=-\infty}^{\infty} (\tilde{d}_N)^p \\ &= 2\Delta S_p \gamma^p \sum_{n=-\infty}^{\infty} \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_n)|^p \end{split}$$

and so Theorem 1 holds also in the case 0 .

Remark 2 Let $\{\lambda_n\}_{n \in \mathbb{Z}}$ be a sequence of real numbers for which (1.3) holds. From above it follows that if f is an entire function of exponential type satisfying (1.10) for some $c \in [0, 1)$ and

$$|f^{(\mu)}(\lambda_n)| \leq M_1$$
 for $\mu = 0, \ldots, m-1$ and all $n \in \mathbb{Z}$,

then for all $N \in \mathbb{Z}$,

$$\begin{aligned} \max_{-\Delta \le x \le \Delta} |f(x+N)| &\le \max_{-2\Delta \le x \le 2\Delta} |f(x+\lambda_N)| \\ &\le \gamma \sum_{n=-\infty}^{\infty} \tilde{d}_n \sum_{\mu=0}^{m-1} |f^{(\mu)}(\lambda_{n+N})| \\ &\le \gamma m M_1 \sum_{n=-\infty}^{\infty} \tilde{d}_n \\ &= \gamma m S M_1 , \end{aligned}$$

i.e. |f(x)| is bounded on the real line by a constant depending only on M_1, c, Δ, δ and *m*. This extends a result of R.J. Duffin and A.C. Schaeffer for which we refer the reader to [2, Theorem 10.5.1].

Acknowledgements

The first named author (G.R. Grozev) gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada Grant No. A-3081 awarded to the second named author (Q.I. Rahman); he was also partially supported by Grant No. MM-414 from the Bulgarian Ministry of Sciences.

References

- R.P. Boas, Jr., Integrability along a line for a class of entire functions, *Trans. Amer. Math. Soc.*, 73 (1952), 191–197
- [2] R.P. Boas, Jr., Entire functions. Academic Press, New York (1954).
- [3] G.M. Fichtenholz, Differential und Integralrechnung, Vol. 1, VEB Deutscher Verlag der Wissenschaften (1966).
- [4] G.R. Grozev and Q.I. Rahman, Entire functions of exponential type belonging to L^p(ℝ). J. London Math. Soc. (2), 50 (1994), 121–138
- [5] G.R. Grozev and Q.I. Rahman, Reconstruction of entire functions from irregularly spaced sample points. *Canad. J. Math.*, 48 (1996), 777–793.

- [6] G.H. Hardy, J.E. Littlewood and G. Pólya, *Inequalities*, 2d ed., Cambridge University Press, Cambridge (1952).
- [7] G. Hinsen, Irregular sampling of bandlimited L^p-functions. J. Approx. Theory, 72 (1993), 346–364.
- [8] B.Ya. Levin, On functions of finite degree, bounded on a sequence of points, Dokl. Akad. Nauk SSSR (N. S.), 65, (1949), 265–268.
- [9] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., Providence, RI (1940).
- [10] M. Plancherel and G. Pólya, Fonctions entières et intégrales de Fourier multiples. Comment. Math. Helv., 9 (1937), 224–248; 10 (1938), 110–163.
- [11] Q.I. Rahman, Interpolation of entire functions. Amer. J. Math., 87 (1965), 1029–1076.
- [12] E.C. Titchmarsh, The theory of functions, 2d ed., Oxford University Press, London (1939).