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1 INTRODUCTION

We consider the second-order differential operator

L[y] -(py’)’ + qy

and lower-order perturbations

Bj[y] bj y(J) (j =0, 1)

375



376 T.G. ANDERSON and D.B. HINTON

in the setting of the Hilbert space L2 (a, x). We prove three theorems which
give necessary and sufficient integral average conditions on bj for relative
boundedness orrelative compactness ofBj withrespect to L (with appropriate
domain restrictions). We employ the following terminology (cf. Kato [9, pp.
190, 194] or Goldberg [7, p. 121]).
Suppose B, L are operators in a Hilbert space. We say B is relatively

bounded with respect to L or simply L-bounded if D(L) __c D(B) and B
is bounded on D(L) with respect to the graph norm I1 of L defined by

Y g Y + Ly II, Y 6 D(L), where D(L) denotes the domain of L. In
other words, B is L-bounded if D(L)

_
D(B) and there exist nonnegative

constants ot and t such that

IIByll cllYll +/311ZYll, y D(L).

A sequence {Yn is said to be L-bounded if there exists K > 0 such that

IlYn IlL < K, n > 1.

B is called relatively compact with respect to L or simply L-compact if

D(L) D(B) and B is compact on D(L) with respect to the L-norm, i.e.,
B takes every L-bounded sequence into a sequence which has a convergent
subsequence. For example, if L is the identity map, then L-boundedness
(L-compactness) of B is equivalent to the usual operator norm boundedness
(compactness) of B.
The space of complex-valued functions y with domain I such that

Ilyllc ess suptelly(t)l < cx is denoted by L(I). A local property
is indicated by use of the subscript "loc," and AC is used to abbreviate

absolutely continuous. The space ofall complex-valued, n times continuously
differentiable functions on I is denoted by cn(I); C2(I) denotes the
restriction of Cn(I) to functions with compact support contained in I;
and C(I) is the space of all complex-valued functions on I which are

infinitely differentiable and have compact support contained in the interior

of I. Throughout denotes the norm in L2(a,
Let e be a differential expression of the form e[y] _(pyt)1 + qy, where

p and q are complex-valued, Lebesgue measurable functions on an interval
I such that l/p, q Lloc(I). Then the maximal operator L corresponding
to has domain D(L) {y L2(I) y, py’ ACloc(I),g[y] L2(I)}
and action L[y] [y] -(pyt) -t- qy (y D(L)). The minimal operator

Lo corresponding to is defined to be the minimal closed extension of L
restricted to those y D(L) which have compact support in the interior of I.
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The maximal and minimal operators corresponding to bj y(J) have similar
definitions. See Naimark 10, 17] for properties of maximal and minimal

operators.
Theorem 2.1 below is a special case of Theorem 1.3 in Anderson 1, pp.

31-32] and of Theorem 1.2 in Anderson [2]. This theorem covers the
case in which the coefficients of L are eventually bounded above by the
corresponding coefficients of an Euler operator, i.e., 0 < p(t) < Ct2,
Ipt(t)l < Kt, and Iq(t)l < M for some positive constants C, K, and M,
and all sufficiently large.

Before proving the other two second-order results, we give, in Theorem
2.2, conditions under which perturbation conditions for maximal operators
are equivalent to those for minimal operators. The theorem is stated for
operators ofany order, and the key hypothesis is that the higher-order operator
is limit-point at cxz. This result simplifies the proofs of the next two theorems
since it suffices to consider only minimal operators.
The differential expression

[y] (-1)n[Poy(n)] (n) q- (-1)n-l[Ply(n-1)](n-1) +"" "q- PnY,

-cx < a < < b < oe, (where po, pl Pn are real-valued functions)is
said to be regular at a if a > -cxz and if the functions 1/po, pl Pn are

Lebesgue integrable in every interval [a,/],/ < b. Otherwise, g. is singular
at a. Following usual terminology, is said to be limit-point at o if its
deficiency index equals n, i.e., the number of square-integrable solutions of
[y] )y, Im()) 0, is n.

In Theorem 3.1, unrestricted growth of p and q is allowed with q being the
dominant term in the sense of (3.2) and (3.3). For example, the situation in
which p(t) a and q(t) Kt for some constants K > 0 and a </3 + 2
is included as a special case, as is the situation p(t) eat and q(t) Ket

with ot < ft. We give perturbation conditions on b0 and bl which involve

integral averages over intervals of length 8/p(t)/q(t) for some sufficiently
small 8 > 0. The pointwise (sufficient) conditions in Everitt and Giertz [6, pp.
322-324] are recovered as a special case.
The last theorem, Theorem 4.1, deals with the case in which p(t)

(or > 2) dominates q in the sense of (4.3), e.g., q(t) Mt with fl < ot 2.
As in Theorem 2.1, the perturbation conditions involve integral average
conditions of b0 and bl over intervals of length 8t for some sufficiently
small 8 > 0. Theorems 2.1, 3.1, and 4.1 overlap in the case that L is an Euler
operator.
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The proof of Theorems 3.1 requires a different approach from that used
in Theorem 2.1. First, L[y]2 is computed and a separation inequality of the
form

C1 I(py’)’l2 + C2 pqlY’l + C3 qelYl _< IL0[Y]l

(y D(Lo)) is used. The separation inequality, used in proving Theorem 3.1,
is derived in Everitt and Giertz [6, Theorem 1]. The proofs of Theorems 3.1
and 4.1 also rely on Theorem A, a special case of Theorem 2.1 in Brown and
Hinton [4] on sufficient conditions for weighted interpolation inequalities.

In concluding 4 we show that Theorem 4.1 applies to the energy operator
of the hydrogen atom, i.e.,

g(g + 1)
L[y] =-y"+ x; 4- V(x)] y,

on 0 < x < 1, and give (for > 1/2) necessary and sufficient conditions
that V(x) is a relatively bounded (compact) perturbation of the operator
-y" 4- (g. 4-1)x-2y. This application does not seem to have appeared in the
literature.

Since self-adjoint operators for differential expressions are determined
by restricting the domain of the maximal operator, a relatively bounded
(compact) perturbation of the maximal operator is automatically a relatively
bounded (compact) perturbation of such self-adjoint operators. For this
reason, perturbation theorems for differential expressions are most useful
when proved for maximal operators.
The authors express their appreciation to Mike Shaw for correcting an

error in the proof of Theorem 2.2.

2 A p DOMINANT CASE AND AN EQUIVALENCE

Specializing the results of [2] to the second-order case yields the theorem
below. This result is a case of p dominant and "small" in the sense of
Ip’(t)l < k/p(t).

THEOREM 2.1 Let I [a, cx). Suppose p and q are real-valuedfunctions
satisfying p ACloc(I), q L(I), p > 0 on I, and

Ip’(t)l <_ Kv/p(t)
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a.e. on I for some positive constant K. Let L, Bj be the maximal operators
associated with the differential expressions

[y] -(py’)’ + qY

and

vj[y] bj y (j) (j 0, 1),

respectively, where each bj Lloc(I). For j 0, 1 and 8 > O, define

1 ft+aP"v/--- ]bj (r)] 2
gj,(t)

.t p(z)) dz (t I)

Then thefollowing holdfor j O, 1.
(i) Bj is L-bounded ifand only if bj Loc(I) and

sup gj,a(t) <
a< <cx

for some 3 6 (0, 1/2).
(ii) Bj is L-compact ifand only if bj L12oc(I) and

lim gj, (t) O,
t---> o:)

for some 3 6 (0, 1/2).

Proof This result is the special case of [1, Theorem 1.3] and [2, Theorem
1.2] in whichp n 2, s(t) /p(t), w =- 1, ct O, ao q,
a -p’/,q/if, and a2 --- -1. (In this case, W -= 1, Pi pi for 0, 1, 2,
and No 1.) []

Remark 2.1 Since a maximal operator is an extension ofa minimal operator,
Theorem 2.1 also holds if L and Bj are replaced by the minimal operators
corresponding to and vj, respectively.

THEOREM 2.2 Consider the differential expressions .in=o ai (t)D and
n-1m j=0 bj (t)DJ, where each ai, bj L12oc (a, o). Let Lo, Mo andL 1, M1

be the corresponding minimal and maximal operators, respectively. Suppose
and m are symmetric. Let be regular at a and limit-point at cxz. Then M1

is a relatively bounded (relatively compact) perturbation ofL1 ifand only if
Mo is a relatively bounded (relatively compact)perturbation of Lo.
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Proof First suppose M0 is L0-bounded. Then D(L0)

___
D(M0) and there

exists C1 > 0 such that

IlM0yll _< C1 (llyll / IlZ0yll) (2.1)

for all y D(Lo). First we show that D(LI) D(M1). Let y D(L1).
Since is regular ata and limit-point at cx (see Naimark [10, p. 31]),

D(L) D(Lo) S

whereL is the adjoint of L0 and S is a finite-dimensional space of Cn (a,
functions with compact support. Since is symmetric, L L1. Therefore,

D(LI) D(Lo) @ S. (2.2)

Hence there exists Yo D(Lo) and yc C (a, cxz) such that

Y Yo + yc. (2.3)

Thus [Imyl[ < [[my0[I + Ilmycll. The first term on the fight side is finite

because Yo D(Lo) c_. D(Mo). The second term on the right is finite

since y(cj), 0 _< j _< n 1, are continuous functions with compact support
and bj Loc(a, cxz). Hence my L2(a, o,z), and so y 6 D(M1). Since

y 6 D(L1) was arbitrary, we have shown that D(L1) c_ D(M).
Next we show that there exists a constant C such that

IIMYll C (IlYll + IILlYlI)

for all y D(L). Let y D(L1.). Write y as in (2.3). Before proceeding
further, we state and prove a lemma.

LEMMA 2.1 Let X and S be subspaces of a Banach space B, where X is

closed, S isfinite-dimensional, and X fq S {0}. Then there exists a constant

K > 0 such that Ilx + s >_ K IIs for all x X and s S.

Proof The proof is by contradiction. Suppose no such K exists. Then there
exist sequences {Xn C X and {sn C S with Ilsn 1 for all n such that

IlXn + Sn 0 as n x. Let C {s S Ilsll 1}. Then C is closed
and bounded. Since S is finite-dimensional, C is compact. Therefore, {Sn}
has a convergent subsequence which we relabel as {se}. So there exists s*
such that Ilse s* 0 as o. Note that IIs* 1 and

Ilxe Xm Ilxe + se se + Sm Sm Xm

<_ Ilxe + Se + Ilse Sm + IlSm + Xm II.
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By hypothesis, the first and last terms on the right side approach 0 as -- cx

and m -- cx, respectively. Since {se} is convergent, IIse Sm - 0 as, m -- cx. Therefore, {xe is Cauchy. Since X is closed, there exists x* X
such that I[xe x* - 0 as -- x. We have

II(xe + se) (x* / s*)ll _< Ilxe x*ll / Ilse s*ll 0

as c. Hence xe + se x* + s*. By hypothesis, xe + se O. Since

limits in B are unique, x* + s* 0. Finally, since X f S {0}, x* s* 0,
which contradicts IIs*ll 1. This completes the proof of Lemma 2.1. []

Returning to the proof of the theorem, an application of Lemma 2.1 (with
X graph of L1 with graph norm IlYlI IlYll / IILYlI, and S as in (2.2))
yields the existence of a constant k for all y as in (2.3),

Ilyll + IlZlyll- Ilyll >_ kllycll >_ kllYcll. (2.4)

Since a linear operator acting on a finite-dimensional space is bounded,
there exists Ca > 0 such that

IIMlYcll <_ CellYcll (2.5)

for all yc S. By hypothesis, D(Lo)

_
D(Mo). Thus since Mo C M1,

M1 Y0 MoYo. So M1 y M1Yo + M1Yc MoYo + M1Yc. Now, use of

(2.1), (2.5), and (2.4) produces

IIMYll <_ IIMoYoll / IIMlYcll <_ Cl(llYoll / IltoYoll) + CellYcll

_< C1 (IlY011 / IIL0Y011) / -- [IlYll / IILYII]. (2.6)

Note that

Ilyoll Ily ycll <_ Ilyll + Ilycll _< 1 + Ilyll + IILylI, (2.7)

where the last bound follows from (2.4). Since Yo D(Lo) and Lo C L1,

LoYo L1Yo. Thus LoYo LYo IIg (YOnt- Yc) L lYc

Ly L1Yc _< L y + L yc I1o Since L1 is a bounded operator when
acting on the finite-dimensional space S, there exists C > 0 independent of
yc such that IlL yc < C3 IlYc II. Another application of (2.4) and substitution
in the previous estimate gives IILoYoll _< IILYll + - [llYll + IILYlI]. Use
of this bound and (2.7) in (2.6) yields IIMYll _< C (IlYll / IILlYlI) for some
constant C independent of y D(L1). Since y D(L1) was arbitrary, M1
is L 1-bounded.
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Now suppose M0 is Lo-compact. Then D(Lo) c_ D(Mo) and {fn} C

D(Lo) with Ilfnll + IILofnll < C for all n implies that {Morn) contains a

convergent subsequence. To show that M1 is Ll-compact, suppose {Yn C

D(L1) with IlYnll < C1 and IILlYnll < C2 for all n. Since L0-compactness
of Mo implies Lo-boundedness of Mo, M1 is Ll-bounded by the first part
of the proof. Therefore, D(L1) c_C_ D(M1). By (2.3), Yn YnO + Ync
where Yno - D(Lo) and Ync E S. So Mlyn MlYnO + MlYnc. Since

YnO D(Lo) C_. D(Mo) and Mo C M1, MlYnO MoYno. Therefore,

MlYn MoYno + MlYnc. Since L0 C L, LoYno LlYnO. By hypothesis,
{LlYn} is bounded in L2(a, o). Thus

IlZlYoll--- Z y, Z y,c < IILyII + L y,c
C C

<_ Ce / C IlY,,c _< C / -IlY _< Ce / -C,
for some positive constants C and k, where we have used the fact that L is
bounded when acting on the finite-dimensional space S, Lemma 2.1 (as in

(2.4)), and the hypothesis that {Yn is bounded. Therefore {L lYnO}, and hence
{LoYno} is bounded in L:Z(a, o,:). Since M0 is L0-compact, {MoYno} contains
a convergent subsequence {MoYnjO}. Since M1 is a bounded operator on S,
IIMlYnjcll < CIlYnvcll < (C/k)llYnvll < C, where the last two inequalities
follow from Lemma 2.1 and boundedness of {Yn}. Therefore, {MlYnc} is

bounded in a finite-dimensional subspace of LZ(a, cx) and hence contains
a convergent subsequence. So {MlYn contains a convergent subsequence.
Therefore, M1 is L1-compact.

Next suppose that M1 is Ll-bounded. Then D(L1) c__ D(M1) and

IIMlYll < C(IlYll + IILYlI) (2.8)

for all y D(L1). First we show that D(Lo) c__ D(Mo). Let y D(Lo).
Then, by a theorem in Naimark [11, p. 68], there exists {y} C Cn (a, cx)
such that y, --+ y and Loyk --+ Loy as k -- cxz. Since L0 C L 1, (2.8) holds
for y y for each k:

IIMly Mlyll _< C (IlY Yll / IlZl(y Y)II)
C (11Y Y / Zoy Loy II)

It follows that Mly, M1 y. Since order(m) < order(l), the functions y,
C’(a, o) are smooth enough (specifically, Ccn-1 (a, cx)) that y, D(Mo).
Since M0 C M1, M0y, M1 y,; and so M0y, - M1 y. Therefore, {y,
and {M0y,} are convergent. Since M0 is a closed operator, y D(Mo) and
Moy, -- Moy. Therefore, D(Lo) c_ D(Mo).
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Since Lo C L1, (2.8) holds for all y D(Lo), i.e., IIMly[I < C(llyll +
IILoYll) for all y D(Lo). Since D(Lo) c_ D(Mo)and Mo C M1,
Mly Moy for y D(Lo). Hence IlMoyll < c(llyll + IlL0yll) for all
y D(Lo). Therefore, M0 is Lo-bounded.

Finally, suppose M1 is L1-compact. Then D(L1) c_ D(M1) and if

{fn C D(L!) with

fn / L fn -< C (2.9)

for all n, then {Mlfn} contains a convergent subsequence. Since L1-
compactness of M1 implies L1-boundedness of M1, Mo is Lo-bounded by
the proof of the previous part. Therefore, D(Lo) c_ D(Mo). Suppose {Yn C_
D(Lo) with IlYII / IILoYII <_ C for all n. Since Lo c_ L, {Yn} C_ D(L)
and LoYn Lyn. Hence (2.9) holds with fn replaced by Yn. Therefore,
{MlYn} contains a convergent sequence. Since {Yn} c_ D(Lo) C_ D(Mo)
and Mo C M1, it follows that {MOYn contains a convergent subsequence.
Therefore, M0 is Lo-compact. []

3 A q DOMINANT RESULT

The following theorem establishes relative boundedness and compactness of
perturbations when q dominates p in the sense of (3.2) and (3.3).

THEOREM3.1 Let I [a, cxz). Let p and q be AC]oc(I) real-valued

functions such that p > 0 on I,

q(t) > K, (3.1)

Ip’(t)l < Alv/p(t)q(t) (3.2)

and
p(t)l/2lq’(t)l < A2q(t)3/2 (3.3)

for I and some positive constants K, A 1, and A2 with A2 < 1.
Let L, Bj be the maximal operators associated with the differential

expressions

e[y] -(py’)’ + qy

and

vj[y] bjy(j) (j O, 1)
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respectively, where each bj Lloc(I). For j O, 1 and > O, define

_/q(t) t+- / Ibj(r)l2

p(r)Jq(r)2-j
dr. (3.4)

Then thefollowing holdfor j O, 1.

(i) Bj is L-bounded ifand only ifbj L12oc (I) and

i, < cxsup
a< <cx

(3.5)

for some e (0, 1/(A1 + A2)).
(ii) Bj is L-compact ifand only ifbj L2oc(I) and

lim gj,(t) 0
t--+cx

(3.6)

for some e (0, 1/(A1 -k-A2)).

The following theorem is a special case of Theorem 2.1 in Brown
and Hinton [4]. It gives sufficient conditions for weighted interpolation
inequalities.

THEOREM A Let I [a, o) and 0 < j < 1. Let N, W, and P be positive
measurable functions such that N Lloc(I) and W-1, p-1 Lloc(I).
Suppose there exists eo > 0 and a positive continuousfunction f f(t) on
I such that

Sl(e) := suPtel f2(2-J)Tt e(P) --e-f at

and

for all e (0, eo), where Tt,e(P) + ftt+ef p-1 with a similar definition
for Tt,e (W). Then there exists K > 0 such thatfor all e (0, eo) and y D,

Nly j) 12 <_K{e-2JSz(e)fWlylZ+eZ(2-JSa(e)fPly"12],
where D {y y’ ACoc(I), fI WIy[2 < cx, and fI PLY"[2 < cx}.
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Proof of Theorem 3.1 From Dunford and Schwartz [5; XIII 6.14], L is
regular at a and limit-point at oo. In view ofTheorem 2.2, it suffices to prove
the result for minimal rather than maximal operators. Let L0 and Bj,o denote
the minimal operators associated with and vj, respectively.

In Everitt and Giertz [6, Theorem 1], the separation inequality

I(py’)’l 2 + C1 p q lY’l 2 + C2 q2lyl2 < IL0[Y]l2, (3.7)

valid for all y D(Lo) and some positive constants C1 and C2, is established.
Their proof uses (3.3) and shows that C1 1 + w and C2 w where
w 1 A2. Thus we have for all y D(Lo) that

[(py,),]2 + (1 + o9) p q (y,)2 _+_ co q2y2 < Lo[y]2. (3.8)

To make use of (3.8) in subsequent calculations, we will estimate

fa p21y"12 in terms of f q21Y12 and f I(py’)’l2, where y D(Lo).
Note that (py’)’ py" + p’y’, and so fa p2ly"12 fac I(Py’)’ p’y’l2 <
2 [fa I(py’)’l 2 -t- fa Ip’y’l 2] by the inequality lot
Use of (3.2) gives

pZly"12 _< 2 I(py’)’l2 + 2A p q ly’l2. (3.9)

Next we will estimate the last integral in terms of fa q2 lY 12 and the integral
on the left. We apply Theorem A with N pq, W q2, p p2, j 1,
and eo and f f(t) to be chosen below. By the definitions of S1 and $2 in
Theorem A,

Sl (’) sup { f2 1 (f 1 1 t+efp2) -’ f Pql
and

S2(e) sup{ 1 1 (ftt+ef 1) 1 ft+ef pq
tl q2 - at

Basic estimates are obtained from the following lemma in [4, pp. 575-576].
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LEMMA 3.1 Let s and w be positive, ACloc (I) functions such that Is’ (t)l <
No and Is(t)w’(t)[ < Mow(t) a.e. on Ifor some constants No and Mo. Then

forfixed I, 0 < e < -o’ and < r < + es(t), we have that

(1- eNo)s(t) < s(z) < (1 q-eNo)s(t)

and

exp --0-0 w(t) < w(r) < exp w(t).

Note that if p and q are constant functions, then the choice f /p/q
implies that $1 $2 1. Of course, p and q need not be constant functions.
However, this choice of f and Lemma 3.1 (with s f and w p or q)
imply that p(r) and q(r) are nearly constant for < z < + ef and e

sufficiently small. Thus for f /p/q, we have

1 1/2ptq-1/2 1 1/2q-3/2qt--ip

by (3.2) and (3.3), where No (A1 + A2)/2. Also,

and

Ip’l
<A1

/pq

<_A2.
q3/2

Let 0 < e < eo, where e 1 2/(A1 + A2). Then by Lemma 3.1, we
have for fixed 6 1 and < r < + ef(t),

(1- eNo)f(t) <_ f(r) < (1 + eNo)f(t),

(--Ally0/)exp -zT--._ p(t) < p(v) < exp p(t),

(3.10)

(3.11)

and

(-A2) (A2) q(t) (3 12)exp .q(t) <q(r) <exp 00
It follows that $1 (e) < C1 and S2(e) < C2 for some positive constants C1
and C2. By Theorem A, for each e 6 (0, e0), there exists a constant C > 0
such that

p q ly’l2 < C q2lyl2 + e p21y"12
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for all y D(L) and hence for all y D(Lo). Use of this estimate in (3.9)
gives (1 2A21e) f pely"le < 2C A21 fa qelYle -t- 2f I(py’)’l e for all
y D(Lo). Choose e > 0 such that e < 1/2A. Then there exist positive
constants K1 and K2 such that

p21y"12 < gl q2lyl2 -F K2 I(py’)’l 2 (3.13)

for all y D(Lo).
(i) Sufficiency. Suppose (3.5) holds for some 3 (0, 1/(A1 q-- A2)). Fix

j 6 {0, 1}. To prove that Bj,o is L0-bounded, we will employ Theorem A
again. To be specific, choose N [bj [2, W q2, p p2, eo 6, and

f vrp--. By (3.11) and (3.12), we have for 0 < e < 3, using f f(t),
p p(t), etc, that

Sl(e) <- sup { f2(2-j) --P2 --ef
l ft+efa [bjl2

_< C sup
p2

dr
t6I 6 f at p(.g)jq(.g)2-j

for some constants C and C. By the definition (3.4) of gj,a and the choice of
f, for all e 6 (0, 3),

C C1
S1 (e) < sup gj,(t) <_ (3.14)

8, tI E

where the last inequaliW holds by (3.) for some constant C1 O. Similarly,

{ l l pJq2-j } C C2
S2(e) < C sup gj,(t) sup gj,(t) < (3.15)

tI f2j q2 8 e tI E

for some constant C2 > 0 and all e 6 (0, 3). By Theorem A, there exists a
constant K > 0 such that for all e 6 (0, 3) and y 6 D(L0),

fa / fa fa }]bjy(J)] 2 <_ K C28-2j-1 q2[y[2-t-C183-2j p2lyttl2
(3.16)

where we have used (3.14) and (3.15). Since j 0 or 1, 3 2j > 0 and
so the coefficient of the last integral in (3.16) can be made arbitrarily small
by choosing e (0, 3) sufficiently small. This observation and (3.13) imply
that for any el 6 (0, 3), there exists a constant M > 0 such that

Ibjy(J) 12 <_ M q2lyl2 d- 81 I(py’)’l 2
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for all y D(Lo). It follows from this estimate and the separation inequality
(3.8) that Bj,o is L0-bounded.

Necessity. For the proof of necessity of (3.5), we work with maximal op-
erators. Suppose Bj is L-bounded. Fix j {0, 1} and (0, 1/(A1 -t-- A2)).
Let p be a function in C (TO.) such that p 1 on [0, 1] and support
(p) [-2, 2]. Define for > a

ho(t) (t), hi(t) top(t). (3.17)
(J) (t) 1 on [0, 1] for j 0, 1. For each r > a,Then hj C (7"q.) and hj

define

hj,r(t) 8J f(r)Jhj(u), > a, (3.18)

where

Then

and

f V/p/q, tmr

af(r)

@,J)r (t) 1, r < <_ r + af (r), (3.19)

support(hi,r) [r 2af(r), r + 2af(r)]. (3.20)

By the definition of Bj, (Bjhj,r)(t) bj(t)@,J)r (t), > a, and so

bj Bj hj,r on Jr, r q- af (r)].

Thus for r > a, we have (by the definition (3.4))

./q(r) fr+a./wr 12 [r+af(r) 12V [bj 1 [Bjhj,r
gJ,a

1 - pjq2-j f(r) pjq2--j

1 C [r+f(r)< IBjhj, 12
f(r) p(r)Jq(r)2-j 4r

r

for some constant C > 0, where we have used (3.11) and (3.12). Now, by
the definition of f P-,

17 fa 17
gj,(r) <_ IBjhj,rl2- 2

f(r)2j+lq(r)2 f(r)2j+lq(r)2
(3.21)

for r > a. By the hypothesis that Bj is L-bounded, we obtain

gj,(r) < (llhj rll-t-IILhj rll) (3.22)
f(r)j+/Zq(r)

for r > a and a different constant C. Estimates for the terms in the graph
norm of hj,r are given in the following lemma.
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LEMMA 3.2 Let p and q be positive, ACloc[a, o) functions such that (3.2)
and (3.3) hold. Let f /p/q. For each r >_ a, define hj,r as in (3.18). Then
there exist positive constants C1, C2, Ca, and C4 such that for r >_ a and
j 0or 1,

Ilhj,rl[ < Clf(r)j+l/2, (3.23)

Ilqhj,rll < C2f(r)J+l/2q(r), (3.24)

II(ph,r)’[ < C3 f(r)J+/2q(r), (3.25)

and

IILhj,rll <_ C4f(r)J+l/2q(r). (3.26)

Proof of Lemma 3.2 Fix r > a, and j 6 {0, 1}. By (3.20) and the change
of variable u (t r)/3f (r),

fa Ir+2af(r)

]]hj,rll 2 Ihj,r(t)]2dt a2J f(r)2J Ihj(u)12dt
dr-23f(r)

82j f(r)2J ihj(u)12f(r)du Cf(r)2j+l
2

for some positive constant C which is independent of r. (Note that

f-2 Ihj (u)12du is finite since hj is continuous on 7.) This establishes (3.23).
Next we use (3.11) and (3.12) to estimate

faOO f
r+2af(r)

Ilqhj,r[I 2 q(t)2lhj,r(t)12dt q(t)2a2J f(r)2Jlhj(u)12dt
dr-26f(r)

r+26f(r)
< Cf(r)2jq(r)2 Ihj(u)[Zdt

dr-23f(r)

Cf(r)2jq(r)2 Ihj(u)12f(r)du f(r)2j+q(r)2

2

for some positive constants C and C independent of r. So (3.24) holds.
Since (oe +/)2 < 2(o2 + f12),

tt 2 2II(ph},r)’ll 2 Ilphj, + P hj,rll 2 _< 211phj,rll + 2llP -j,r

r+2f(r)

< 2 p(t)2lh}’,r(t)12dt
dr--23f(r)

r+26f(r)

+ 2 A21P(t)q(t)lh,r(t)lZdt
dr-26f(r)
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(U) duby (3.2). Note that hi, 3J f(r)Jhj -37 3J-lf(r)J-lh (u) and
-2 tthjt, r(t) 8J-ef(r)J hj (u). By (3.10), (3.11), and (3.2), we obtain (for

some constants K1 and K2 independent of r)

r+2f(r)

II(phj,r)’ll 2 < Klp(r)Zf(r)2j-4 Ih(u)lZdt
dr-26f(r)

r+2,f(r)

+ K2p(r)q(r)f(r)2j-2 Ih(u)lZdt
ar-23f(r)

K2p(r)2f(r)2j-3 Ih(u) 12du
2

+ Kep(r)q(r)f(r)aj- Ih}(u)lZdu
2

<_ C[p(r)ef(r)2j-3 nt- p(r)q(r)f (r)ej-1]

where C is a constant independent of r. Since f /, we find that

II(ph),r)’ll e < 2Cf(r)J+q(r)a. Hence (3.25) holds.
By the action of L and an inequality used earlier,

IILhj,r 112 2 2(phj,r) nt q(phj,r) -+-qhj, _< 211 2 hj,rll 2

By (3.24) and (3.25), this implies that Lhj,r 2 _< 2(C3 -+-C2)f(r)2j+lq (r)2.
This establishes (3.26) and completes the proof of Lemma 3.2. []

Returning to the proof of Theorem 3.1, use of (3.23) and (3.26) in (3.22)
yields

CC1
,(r) < + CC4 (3.27)

q(r)

for all r > a. By hypothesis, q is bounded away from 0. Hence gj, is bounded
above on [a, cx). Therefore, (3.5) holds for any 8 (0, 1/(A1 + Ae)). This
establishes the necessity of (3.5) for L-boundedness of Bj.

(ii) Sufficiency. Suppose (3.6) holds for some (0, 1/(A1 + Ae)). It
suffices to show that Bj,o (j 0, 1) is L0-compact (by Theorem 2.2). Fix
j {0, 1 }. For y D(Lo) and each positive integer N > a, define

Bj,o[y] bj y(J) on [a, N],
Rj,N[y]

0 on [N,

Set
@j(N)= sup gj,(t).

N<t<cx
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By hypothesis,
lim 7tj (N) 0

N--+cxz

and (3.5) holds. Hence Bj,o is L0-bounded by (i). So D(Lo) C D(Bj,o). For
y D(Lo),

IlBj,o[y]- Rj,N[Y]II Ibjy(J)12 (3.28)

by the definition of Rj,N.
Next we apply TheoremA on the interval [N, exz] in the same manner used

to derive (3.16). As in the proofs of (3.14) and (3.15), we find that

SI() < C1 sup gj,3(t) --CIj(N)
N<t<oo

and
82() _< C2j(N)

for some positive constants C1 and C2 and all s 6 (0, 6). It follows that there
exists a constant K > 0 such that for all s 6 (0, 3) and y D(Lo),

]bjy(J)12 <_ K -2Jc2j(N q21y

+ e2(2-J)cIj(N p2lytt]2

< COj(N) qlY + I(PY’)’I

for some constant C > 0, where the last inequality holds by (3.13). Now by
the separation inequality (3.8) and the definition of the graph norm I1, we
have

Ibjy(J)l < CTsj(N) IL0[Y]l < Cqlj(N)llYll 2
t

for some constant C > 0 (independent of N) and all y D(Lo). Combining
this inequality with (3.28) yields

sup
yOo IlYlIL
y0

IIBj,o[y]- Rj,N[Y]II
< CTj(N --+ 0

as N --+ exz. Therefore, Rj,N "-’> nj,o as N ex with respect to I1" IlL.
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Next we show that each Rj,N is L0-compact. Because the argument is
standard, we give only a brief sketch here. Let {y} be an L0-bounded
sequence. Clearly, {y is bounded in L2 (a, N). An application ofTheoremA
yields that {y} and {y} are equicontinuous on [a, N]. By the Arzela-Ascoli
Theorem, {y} has a subsequence {Ym such that {Ym and {y} converge
uniformly on [a, N]. This fact, combined with the hypothesis that bj
Loc(a, cxz), implies that {Rj,NY:m} is a Cauchy sequence in LZ(a, N). Since
{y} was an arbitrary L0-bounded sequence, each Rj,N is L0-compact.
So Bj,o is the uniform limit of L0-compact operators. Therefore, Bj,o is
L0-compact.

Necessity. Fix j 6 {0, 1}. Suppose Bj,o is L0-compact and that (3.6)
does not hold for any 6 (0, 1/(A1 + A2)). We show that this leads to
a contradiction. By hypothesis, for any 3 6 (0, 1/(A1 + A2)), there exists
e > 0 and a sequence {re C 7 such that re -- cxz and

gj,a (re) >_ e

for all > 1. Fix 6 (0, 1/(A1 + A2)). Define hj,r as in (3.18). Then by
(3.21), we have that for some constant C > 0,

C
gj,a(re) < IIn2 ohj re

2

f(re)2j+lq(re)2

for all > 1. For r, [a, cxz), define

crj,r(t
1

f(r)j+l/2g(r hj,r (t).

Then for all > 1,

and

e < c nj,orj,re 2 (3.29)

iirj,r, 2 1 2
L .f(re)2j+lq(re)2 Ilhj,rellL < M

for some constant M > 0 by Lemma 3.2 and (3.1). (See (3.22) and (3.27).)
Thus the sequence {rj,re is L0-bounded. Since Bj,o is L0-compact, {Bj,orj,re
has a subsequence converging to some yo L2(a, cxz). Since the supports of
the rj,r tend to infinity as r --+ cx), this implies y0 0 thereby contradicting
(3.29). []
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Everitt and Giertz consider the operators R and To defined by

R[y] ir(ry)’ (y D(R))

and
T0[y] -(py’)’ + qy (y D(To))

withD(R) {y Le(a, oo) y ACloc[a, oo), R[y] Le(a, oo), y(a)
O, ry Le(a, cx)} and D(T0) {y Le(a, oo) y’ ACloc[a, oo), T0[y]
Le(a, cxz), y(a) 0}. They prove that the pointwise conditions

Ir(t)l4 < Clp(t)q(t), Ir(t)l2 < C2q(t), Ir’(t)l 2 < C3q(t)

(for some positive constants C1, C2, and C3 and 6 [a, oo)) are sufficient
for R to be T0-bounded. By identifying b0 r r and bl r2, we find
that their result is a special case of Theorem 3.1. Furthermore, Theorem
3.1 generalizes the sufficient pointwise conditions of Everitt and Giertz to

integral average conditions which are necessary and sufficient for relative
boundedness of Bj with respect to L.

EXAMPLE 3.1 Letp(t) ta,q(t) Ktl,anda 1, where ot, /5, andK are
constants with K > 0. Then (3.2) and (3.3) are each equivalent to ot </5 + 2.
Assume that this relationship between ot and/5 is satisfied. Also, assume that
K > /32. Then A2 < 1, where A2 is the constant in (3.3). From (3.4), we
have (up to multiplicative constants)

t+3t(a-)/2

go,,(t) (-a)/2 Ib()12
at Z’2/5

d

and
-)/ 12g,(t) (/-a)/2 Ib(r)

za+,8

For example, by Theorem 3.1, B0, B1 are L-bounded if Ib0(t)l _< CotE and

Ibl(t)l < Clta+)/2 for some positive constants Co and C1 and 6 [1, oo).

EXAMPLE 3.2 Let p(t) eat and q(t) Ket with ot < /5 and K >

/See(a-)a, Then (3.2) and (3.3) hold with Ae < 1. By definition,

+e(u-)t/2 ]2
go,(t) e(-a)t/2

]b0(z)
d2
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and
t_l_e(-)t/2

gl,(t) e(-t)t/2 [bl_&7...)7(:)12 dr
(up to multiplicative constants). For example, by Theorem 3.1, B0, B1 are
L-compact if Ib0(t)l < Coe(-e)t and Ibl(t)l < Cle(a+-e)t for some
positive constants Co, C1, and e and all 6 [a, e). []

4 A p DOMINANT CASE WITH p LARGE

In the next theorem, we consider the situation in which p(t) and
Iq(t)l < Mt’*-2 for some constants ot > 2 and M > 0, 6 [a, cxa).

THEOREM 4.1 Let I [a, o). Let L, Bj be the maximal operators
associated with the differential expressions

[y] -(t’* y’)’ + qy (4.1)

and

vj[y] bjy (j) (j 0, 1), (4.2)

respectively, where a > O, > 2, q is a real-valued Lloc(I)function such
that

]q(t)] _< Mt-2 (a _< < e) (4.3)

for some sufficiently small positive constant M, and each bj Lloc(I). For
j 0, 1 and > O, define

1 f +a/ ibj(v)l 2
gj,a(t) - at .2(ot+j-2)

Then thefollowing holdfor j O, 1.
(i) Bj is L-bounded ifand only if bj Loc(I) and

sup gj,a(t) < oo (4.4)
a<t<oo

for some 3 (0, 1/2).
(ii) Bj is L-compact ifand only if bj Loc(I and

lim gj,a (t) 0 (4.5)
t--+ (x)

for some/ 6 (0, 1/2).
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Proof We first consider the case q 0. Then is a one-term operator
which is limit point ([y] 0 has the non L2(a, cxz) soltuion y --_-- 1). Thus
by Theorem 2.2 it suffices to prove the result for the minimal operators L0
and Bj,o associated, respectively with and vj.

Let y C(a, oe) be real valued. Since (ty’) ty’t + ta-ly’, we
have after an integration by parts that

[(ty’)’]2 [t2(y")2 + 2ott2-ly’y’’ + ot2t2-2(y’)2]
(4.6)

fa It2 (yt,)2 + ( 2) t2-2 (y,)2

from which we conclude that

[(t y’)’]a (y") (4.7)

since > 1. On the other hand, the Hdy inequality ([8, pp. 245-246]) gives
that for g 1,

b 4 bw(t)dt t+w
(Y + 1)

(t)2dt (4.8)

for all w ACloc[a, b] such that w(a) w(b) O. Applying (4.8) to

w y and y 2 2 gives

4 (y’) (4.9)t-(Y’)
(2 1)

Substitution of (4.9) into (4.6) d simplifying yields that

t(y") (2- 1) [(ty’)’]. (4.10)

Again employing the lemma of Everitt and Giez [6, p. 313], we have that

(4.10) holds for all y D(Lo).
(i) Suciency. Suppose (4.4) holds for some (0, 1/2). Fix j {0, 1 }.

We will apply Theorem A with N Ibj , W a-4, P a, e0 ,
and f(t) t. For 0 < e < , we have (by Lena 3.1) for some constant

C1,

a<t<
8gJ’(t) sup {gj,(t)} <

aNt<
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by (4.4). Similarly, for 0 < e < and some constant C2,

82(8) < C2 sup It-2j 1 t2(ot+j_2) 1

a<t<cx | 2t-4 8
gj,a(t) } C2

sup {gj,a(t)} < cxz
8 a<_.t<cx

Hence by Theorem A, there exists K > 0 such that for all e 6 (0, 3) and y 6

C(a, ), f Ibjy(j)12 < K{e-2j-1 f t2-41Y12 + e3-2j f t2=lY"12}
for j 0, 1. Applying the Hardy-type inequality (4.8) twice to the

16 c t2a y, 12middle integral produces f tza-a[y[2 < (2a_3)2(2a_l)Z fa for

y 6 C(a, cxz). Thus for a different constant K > 0,

Ibj yfJ)12 < K t2 lY" 12

for all y 6 C(a, cxz). By (4.10), we have for all y 6 C(a, cx) that,

IlBj,oyll2-- IbjyfJ)[2 < K(2ot-1)2 [(tay’)’l2-- K(2a-1)llLoyll 2.
(4.11)

To extend (4.11) to functions in D(Lo), let u D(Lo). Then there exists a

sequence {Un ofC(a, cx) functions such that un -- u and Loun LOU.
Replacing y in (4.11) by un -urn, we see that Bj,oUn is aCauchy sequence in

L2 (a, cx:). Since Bj,o is a closed operator, this implies that Bj,oUn Bj,OU.
Hence, by replacing y in (4.11) by Un and letting n --+ cx, we have established
that (4.11) holds for functions in D(Lo). Therefore, Bj,o is L0-bounded.

Necessity. As in the proof of necessity in Theorem 3.1 (i), we will work
directly with maximal operators. Fix j 6 {0, 1 and 3 6 (0, 1/2). Suppose
Bj is L-bounded. For each r > a, define the function hj,r as in (3.18) with
the exception that f is replaced by f(r) r. Then

hj,r(t) 3JrJhj(u), > a, (4.12)

where u (t r)/3r and hj is defined by (3.17). Also, (3.19), (3.20) hold
for the choice f(r) r.

By the definition of gj,,

l frr+ar Ibj(r)l2 I fr+ar [Bjhj,r(’C)l2
gj,a(r) r2(ot+j_2)

dr r--gqY--5 dr
r r 4r

<
r2a+2j_3 IBjhj,r(r)l2dr"
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Now, after replacing the interval of integration by the larger interval [a, cx),
2we obtain gj,(r) < r/21-3 Ilnjhj,rll Since Bj is L-bounded, there exists a

positive constant C such that for all r > a,

X/ C
gj,(r) < ra+J_3/2 (llhj,r + IlZhj,r II). (4.13)

Next we state and prove the analog of Lemma 3.2 for the present setting.

LEMMA 4.1 For j O, 1 define hj,r by (4.12). Let q 0 in (4.1). Then there
exist positive constants C1 and C2 such thatfor r >_ a and j 0 or 1,

Ilhj,rll <_ C1 rj+l/2, (4.14)

and

IILhj rll--II(t=h )’11 < C2ru+j-3/2 (4.15)
j,r

Proof of Lemma 4.1
of hj,r, we have

Fix r > a and j 6 {0, 1}. Using the compact support

r+23r

[[hj,ri[ 2 2JrZJlhj(u)lZdt 2JrZJ ]hj(u)lZ3r du Cr2j+l
dr-26r 2

for some positive constant C independent of r. (Recall that hi, defined by
(3.17), belongs to C(a, cx) and does not depend on r.) So (4.14) holds.

Next we estimate, using (4.7), that

II(t=h,r)’ll 2
r+26r

<_ t2lh},r(t)12dt
dr-26r

fr+26r 1 2

< r2 Jrj ,
dr-26r

hj (u) --r2 dt

Kr2+2j-4 [ht(u)12t r du r2t+2j-3

2

for some positive constants C, C, K, and K independent of r. This establishes

(4.15) and Lemma 4.1. []
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We now continue with the proof of Theorem 4.1. By combining (4.14)
Kand (4.15) with (4.13), we find that v/gj,(r) < r-Z=r_ + K2 for some positive

constants K1 and K2 and all r > a. Since oe > 2, the right side can be bounded
above independently of r. Therefore, (4.4) holds for any (0, 1/2). Thus
(4.4) is necessary for the L-boundedness of Bj.

(ii) The proof that (4.5) is necessary and sufficient for the L-compactness
of Bj is essentially the same as the proof of Theorem 3.1 (ii) and is therefore
omitted. This completes the proof of Theorem 4.1. []

To allow for a q term we note that if q satisfies (4.3), then it is a b0
pertubation term satisfying (4.4) and is thus an L-bounded perturbation of
(tay’)r. Further the above proof shows from (4.11) that the relative bound is

proportional to M. Therefore the relative bound can be made less than one

by taking M sufficiently small. This fact, together with the following general
result, completes the proof of Theorem 4.1" If B is a relatively bounded
perturbation of A with relative bound b < 1, i.e., D(A) C D(B) and

IIBxll _< allxll + bllAxll, and C is a relatively bounded (relatively compact)
perturbation of A, then C is a relatively bounded (relatively compact)
perturbation of A + B. Note that if Iq(t)l < Mtzx, /X < ot 2, then it

is a b0 perturbation of (ta yr) which is relatively compact. In this case there
is no restriction on M.

Finally, we apply Theorem 4.1 to the energy operator ofthe hydrogen atom

( + 1)
L[y] y + X2 + V(x)] y, 0 < x < 1 (4.16)

where > 1/2. First we define a unitary transformation U from L2(O, 1)
onto LZ(t0, o), to 1/(2 1), by

(Uy)(t) z(t) xey(x), x1-2e/(2 1). (4.17)

From the formulas in [3] it follows by straightforward calculations that if

K[z] -(P(t).) + Q(t)z, d/dt, to < < cxz, (4.18)

where P(t) x-4 and Q(t) V(x), as in (4.17), then the minimal

operator L0 and maximal operator L1 determined by (4.16) are unitarily
equivalent to the minimal operator K0 and maximal operator K1 determined

by (4.18), i.e., K0 ULoU-1, KI UL1U-. This means that relative
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boundedness (compactness) criteria for one operator translates into relative
boundedness (compactness) criteria for the other. Let B0 be the maximal

operator associated with multiplication by Q(t) in L2(t0, cx), and let Co be
the maximal operator associated with multiplication by V (x) in L2 (0, 1).
Define, for0<e< 1,0<x < 1,

lfxXg(x)
X (l-e)

u4lV(u)12du,

and set e0 1 (3/2) 1-2. Let 1 be the maximal operator associated
with (4.16) in the case V (x) 0. We now show Co is a relatively bounded
(compact) perturbation of 1 if and only if V 6 Loc (0, 1) and

sup ge(x) < cxz
0<x<l

lim ge(x) O)x--+0

for some e 6 (0, e0).
For the proof we apply Theorem 4.1 to 1 U U-1. Clearly Q 6

Loc(tO, o) is equivalent to V 6 Loc(0, 1). Also with P(t) x-4

4/(2-1) we have ot 4/(2 1) in Theorem 4.1 and the change of
variable u [(2 1)r] 1/-2) shows that

1 f,+ t IQ(v)I 2

go,,(t) :=
r2(_2

dr

ZxX2-1 u41g(u)12(2 1)Cu-2du
(l-e)

where e := 1-(1-+-)1/(1-2), c :--- (2+3)/(2-l).Onx(1-e) < u <_ x
we have

()2 1
1 < <

(1 _e)2,
hence the boundedness of g0,(t) on 1 < < cx is equivalent to the
boundedness of ge(x) on 0 < x _< 1. Similarly go,(t) -- 0 as --+ cxz

if and only if ge (x) --+ 0 as x --+ 0+. This completes the proof.
In particular, a Coulomb type potential V(x) c/x is a relatively compact

perturbation of L 1.
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