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1 INTRODUCTION

Trudinger’s inequality states that the Sobolev space Hn/p’P(n) (1
A)-n/2p Lp (]n) with 1 < p < x are continuously imbedded in the Orlicz

space with defining convex function of expotential type [2, 15-17, 19, 23-25].
This replaces the usual Sobolev imbedding theorem in the limiting case where
the L norm is beyond the control ofthe Hn/p’p norm. Trudinger’s inequality
has a wide variety of applications to the partial differential equations in the
case where the standard Sobolev estimates just fail, see for instance 15-18,
24, 25].

In 19] we have proved a sharp form ofTrudinger’s inequality which makes
the dependence offunctions on the dominant term more explicit: Let p and pt
satisfy 1/p / 1/pt 1 and 1 < p < c. Then there exist positive constants
c and C such that for all f Hn/p’p with II(--A)n/2Pfllzp <_ 1

1
(exp(alflp’) (alflP’)J)dx -< Cllfll pLp" (T1)

O<j<p-1
j
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Since the integrand in (T1) depends monotonically on or, the next important
question consists in the estimation of the upper bound of o for (T1) with
C possibly dependent on or. The restriction [[(--A)n/2Pfllz,, < 1 may be
elminated by rescaling f by f/ll(-A)n/2p fllz’ as follows"

p, dxexp
II(--A)n/2P flILp 1( tlflp’ ). II(-A)n/2PflIL0<j<p-1

j6N

p!
Ilfll (T2)

<C
]I(-A)’/zP flI,,

The converse implication, however, seems nontrivial as was pointed out to
me by Brezis. In 19] the proof of (T1) depends on the following inequality
of Gagliardo-Nirenberg type: For any p with 1 < p < cx there exists a
constant M depending only on p and n such that for all f Hn/p’p and all
qwithp<q <

1-p/q p/qIlfllg _< Mql-1/PII(--A)n/2pfIILp Ilfll (GN)

Given (GN), the power series expansion of the exponential function in
the integrand in (T1) and estimation of the resulting Lp’j norms on the
basis of (GN) implies (T1) as is usual with an argument of the kind. A
feature of (GN) lies in the explicit dependence of II(--A)n/ZPflILP with

sharp exponent on the dominant term as well as in the optimal growth rate

O(q 1-1/p) in the constant factor. The proof of (GN) is reduced to the proof
of the Hardy-Littlewood-Sobolev inequality with constant factor exhibiting
the optimal growth with respect to the indices of target Lebesgue spaces.

In summary, the inequality (T1) in question originates from (GN) and leads
to (T2). The purpose in this paper is to prove that those three inequalities are
in fact equivalent, namely that (T2) implies (GN). Moreover, we characterize
the upper bound of ot in terms of the lower bound of M. To state the main
result precisely, we introduce

or0 sup{or > 0; There exists C depending on ot such that (T1) holds for all

f Hn/p,p with [[(--A)n/ZPfIIL, <_ 1},

M0 inf{M > 0; There exists r _> p depending on M such that (GN) holds
for allf6Hn/p’p and allqwith r <q <},

IIflILP/3o lim SUpq ql_l/pll(_A)./zp,fllp/q, llfl P/q’z.p

The main result in this paper is the following.
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THEOREM Inequalities (T1), (T2), and (GN) are equivalent. Moreover,
1/or0 p’eM’= p’e’.
We prove the theorem in the next section. The last assertion includes the
fact that/30 is independent of f Hn/p’p. Our result does not ensure
the attainability of the best constants in (T1), (T2), and (GN). Although it

deserves to be studied, it is outside the purpose of the paper. The equivalence
described above is reminiscent of the characterization of the John-Nirenberg
inequality by the growth property of the LP mean of oscillation of function,
see Garnett and Jones 10]. We shall return to the problem in the final section.

2 PROOF OF THE THEOREM

Since/3o < Mo, it suffices to prove the (GN) = (T1) with 1

and that (T2) = (GN) with 1/co > p’eMg’.
(I) (GN) = (T1) with 1/0 N p’e" Suppose that (GN) holds. Let

f Hn/p’p. For y e > 0 there exists r such that for all q with

rNq<

IIflIL (0 + e)QI-1/PlI(--)n/2PflIP/qlIflI
Expanding the exponential function in the integrand in (T1), estimating
the individual tes of the resulting expansion by means of (1), and
using the monotone convergence theorem, we obtain

(exp(a[flP’) (a[flP’)J)dx
p’j<r-1
e

(2)
1
(pIj(0 + )P/)J fP,

p/jr-I

provided that the last series converges, namely 0
e)P’). By (GN) the finite sum of (I/jl)(IflP’): with j running over
p p:j < r I is integrable d the resulting integral is bounded
by a constant multiple of llfll p, where we add a trivial remk that
the sum over the empty set is understood to be zero. We have thus
proved that (TI) holds whenever 0 u < I/(p:e(o e)P’). Hence
o I/(p’e(o e)P’) and consequently 0 I/(p’e’) since e > 0
is bitry.
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(II) (T2) = (GN) with 1/or0 > p’eM" For any e with 0 < e < or0 there
exists Ce such that (T2) holds for all f Hn/p’p with et and C replaced
respectively by or0 e and Ce. We regard the resulting integrand as

p
the infinite series of (1/j!)(((0 )If[P’/[I(-A)’/:zp fllLp)j with j
running over p 1 < j < cx3 and single one term out. This yields

1-(p-1)/j (p-1)/jIlfllLp’J <-- (Cj!)I/p’J(otO--F’)-I/P’II(--A)n/2p flILp
(3)

for all j N with j > p 1. Let q > p and let j satisfy
ptj < q < pt(j + 1). We use H61der’s inequality to interpolate (3)
between Lp’j and LP’ (j4-1) to obtain

p/q[[fllzq < (cer’(q/pZ-4-2))l/p’J (otO--e)-l/P’ll(--A)n/aP flllL-P/q llfllLp
(4)

where F stands for the gamma function and we have used (j + 1)! <

F(q/p -4- 2). By using Stirling’s formula and pj > q p, we see that
for any 3 > 0 there exists r such that for all f Hn/p’p and all q with
r < q < x (GN) holds with M replaced by (pte(oto e)) -/p’ + 3.
This proves Mo < (pe(eto e)) -/p’ + 3. Since e and 3 are arbitrary,
M0 < (p’eot0) /p’. []

3 REMARKS

(1) There is another target space for imbeddings of the Sobolev spaces
in the limiting case. That is BMO, the space of functions with bounded
mean oscillation [12]. It is well known that for any p with 1 < p < x,
Hn/p’p BMO with

IIflIMo CII(--A)’*/2PflILp,

see [1, 3, 21, 22]. The equivalence proved in this paper is regarded as an

analogue of the characterization of BM0 due to Garnett and Jones [10],
whereas it would seem unlikely that there is a simple relation between two
classes of equivalent inequalities. An attempt in this direction proceeds as

follows. Since Lq is realized as the complex interpolation between Lp and
BMO Lq [Lp, BMO]l_p/q where 1 < p < q < cx3 [4, 9, 11], we have

P/q iI-pqIlfllLq < KIIfIIBMolIfI,Lp
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Combining these inequalities above yields an inequality similar to (GN),
while the resulting constant factor has a worse growth rate since K grows
at least proportionally to q as is easily verified by the logarithmic function
restricted near origin (a direct proof of the last inequality shows that K is a
constant multiple of q when p 1 [20]). Therefore a simple combination of
these two inequalities results in an inequality weaker than (GN).

(2) There is another inequality arising from the limiting case of Sobolev’s
imbeddings. That is the Brezis-Gallouet-Wainger inequality [5-8, 19], which
states that the L norm falls under the logarithmic control of the Hm’q norm
in the supercritical case rn > n/q. The Brezis-Gallouet-Wainger inequality is
derived from (GN) in 19] and therefore from equivalent Trudinger’s inequal-
ity (T1). This reveals a simple relation between Trudinger’s inequality and
the Brezis-Gallouet-Wainger inequality though the proof of the implication
proceeds in a roundabout way via (GN).

(3) One of the interesting applications of Trudinger’s inequality to the
partial differential equation is given by Vladimirov [26] for the uniqueness of
weak solutions to the mixed problem for the nonlinear Schr6dinger equation
in two space dimensions where the energy norm does not control the L
norm. Subsequently Vladimirov’s argument is refined in [16, 17]. Actually
the proof in 17] depends on a direct use of (GN) with n p 2 instead of
(T1). Now that we have established the equivalence between (T1), (T2), and
(GN), there is not much difference between the proofs in the papers refereed
above. Nevertheless there are several applications of (GN) in the case where
(T1) does not apply efficiently, [13, 14, 28] to name a few. In [27] the best
constant in (GN) with n p 2 is described in terms of the associated
variational problem.
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