J. of Inequal. & Appl., 1997, Vol. 1, pp. 345–356 Reprints available directly from the publisher Photocopying permitted by license only © 1997 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers Printed in Malaysia

Goluzin's Extension of the Schwarz-Pick Inequality

SHINJI YAMASHITA

Department of Mathematics, Tokyo Metropolitan University Minami-Osawa, Hachioji, Tokyo 192-03, Japan

(Received 23 December 1996)

For a function f holomorphic and bounded, |f| < 1, with the expansion

$$f(z) = a_0 + \sum_{k=n}^{\infty} a_k z^k$$

in the disk $D = \{|z| < 1\}, n \ge 1$, we set

$$\Gamma(z, f) = (1 - |z|^2) |f'(z)| / (1 - |f(z)|^2),$$

$$A = |a_n|/(1 - |a_0|^2)$$
, and $\Upsilon(z) = z^n(z + A)/(1 + Az)$.

Goluzin's extension of the Schwarz-Pick inequality is that

$$\Gamma(z, f) \leq \Gamma(|z|, \Upsilon), \quad z \in D.$$

We shall further improve Goluzin's inequality with a complete description on the equality condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove a similar result in terms of the Poincaré metric.

Keywords: Bounded holomorphic functions; Schwarz's inequality; Poincaré density.

1991 Mathematics Subject Classification: 30C80.

1 INTRODUCTION

Let $D = \{|z| < 1\}$, let \mathcal{B} be the family of all the holomorphic functions $f : D \to D$, and let \mathcal{F} be the family of $f \in \mathcal{B}$ univalent and f(D) = D. For $f \in \mathcal{B}$ and $z \in D$ we set

$$\Gamma(z, f) = \frac{(1 - |z|^2)|f'(z)|}{1 - |f(z)|^2}.$$

The Pick version of the Schwarz inequality, or simply, the Schwarz-Pick inequality then reads that

$$\Gamma(z, f) \le 1$$

everywhere in D. Furthermore,

$$\exists z_o \in D, \ \Gamma(z_o, f) = 1 \Rightarrow f \in \mathcal{F} \Rightarrow \Gamma(z, f) = 1 \ \forall z \in D.$$

For $f \in \mathcal{B}$ we set

$$\Phi_1(z) = \frac{z(z + \Gamma(0, f))}{1 + \Gamma(0, f)z}, \ z \in D.$$

The case n = 1 of G. M. Goluzin's theorem [1, Theorem 3], [2, p. 335, Theorem 6], then reads that

$$\Gamma(z, f) \le \Gamma(|z|, \Phi_1) \tag{1.1}$$

at each $z \in D$. Since for Ξ in [3] we have

$$\Xi(z, f) \equiv \frac{\Gamma(0, f)(1+|z|^2)+2|z|}{1+|z|^2+2\Gamma(0, f)|z|} = \Gamma(|z|, \Phi_1),$$
(1.2)

our former result [3, Theorem 1] is actually a rediscovery of (1.1). The present author regrets overlooking (1.1) of Goluzin. However, we dare to note the following two items.

- (I) The equality condition described in [3, Theorem 1] is more detailed than Goluzin's.
- (II) The proof of [3, Theorem 1] is quite different from Goluzin's; it depends on a further analysis of $\Gamma(z, f)$ in [3, Theorem 2].

Goluzin, loc. cit., actually obtained a result under the condition that

$$f(z) = f(0) + \sum_{k=n}^{\infty} \frac{f^{(k)}(0)}{k!} z^k, \ z \in D,$$
(1.3)

for $f \in \mathcal{B}$, where $n \ge 1$ and, possibly, $f^{(n)}(0) = 0$.

The purpose of the present paper is to extend the cited result for f of (1.3) with a complete description for the equality condition.

346

2 EXTENSION

For $f \in \mathcal{B}$ with the expansion (1.3) we set

$$A = \frac{|f^{(n)}(0)|}{n!(1-|f(0)|^2)}.$$

As will be seen, $0 \le A \le 1$. We furthermore set

$$B = \begin{cases} 1, & \text{for } A = 1; \\ \frac{|f^{(n+1)}(0)|}{(n+1)!(1-|f(0)|^2)(1-A^2)}, & \text{for } A < 1. \end{cases}$$

We shall observe that $0 \le B \le 1$. Set

$$\Phi_k(z) = \frac{z^k(z+A)}{1+Az}, \qquad (k=0,1,2,\cdots),$$

$$\Psi(z) = \frac{z(z+B)}{1+Bz}, \quad \text{and} \quad$$

$$R_n(z) = \frac{|z|^n (1 - \Phi_0(|z|)^2) (1 - \Gamma(|z|, \Psi))}{1 - \Phi_n(|z|)^2} \quad \text{(for } n \ge 1 \text{ of } (1.3)\text{)},$$

for $z \in D$. For $f \in \mathcal{B}$ with (1.3) one can prove that $\Gamma(0, f) = \Gamma(0, \Phi_n)$. Furthermore, $R_n(z) \ge 0$ and $R_n(0) = 0$.

Set $G_{\lambda}(z) = z^{\lambda}$, $z \in D$, and

$$\mathcal{F}_{\lambda} = \{T \circ G_{\lambda}; T \in \mathcal{F}\}, \qquad \lambda = 1, 2, \cdots,$$

so that $\mathcal{F} = \mathcal{F}_1$. Note that for $f \in \mathcal{B}$ with (1.3), the *n*-th derivative of $\frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)}$ at z = 0 is $\frac{f^{(n)}(0)}{1 - |f(0)|^2}$. Hence, for $f \in \mathcal{B}$ with (1.3) to be in \mathcal{F}_n , it is necessary and sufficient that A = 1. We further note that

$$\Gamma(z, f) = \Gamma(|z|, G_{\lambda})$$

for $f \in \mathcal{F}_{\lambda}$ and $z \in D$.

For $a \in D$ we set

$$E(a) = \left\{ \begin{cases} D, & \text{if } a = 0; \\ -\frac{a}{|a|}r; & 0 \le r < 1 \end{cases}, & \text{if } a \ne 0. \end{cases} \right\}$$

S. YAMASHITA

THEOREM 1 For $f \in \mathcal{B}$ with the Taylor expansion (1.3) we have the inequality

$$\Gamma(z, f) \le \Gamma(|z|, \Phi_n) - R_n(z) \tag{2.1}$$

at each $z \in D$. The equality in (2.1) holds at a point $z \neq 0$ if and only if either f is in \mathcal{F}_n or f is of the specified form

$$f(w) = T(w^n S(w)) \tag{2.2}$$

in D, where T, $S \in \mathcal{F}$ and S(a) = 0, $a \in D$. For $f \in \mathcal{F}_n$ the equality holds in (2.1) everywhere in D, whereas for f of (2.2), the equality in (2.1) holds at each point $z \in E(a)$.

Each $f(w) = T(w^{n+1}) \in \mathcal{F}_{n+1}$ is of the form (2.2) with S(w) = w. However, one can observe that $f \notin \mathcal{F}_{n+1}$ for f of (2.2) if and only if $a \neq 0$.

Goluzin's cited extension for $f \in \mathcal{B}$ of (1.3) is that

$$\Gamma(z, f) \le \Gamma(|z|, \Phi_n), \tag{2.3}$$

an inequality weaker than (2.1). The inequality (2.1) implies (2.3). Furthermore, as will be observed, $R_n(z) \equiv 0$ if and only if $f \in \mathcal{F}_n$ or f is of the form (2.2). Again the equality condition for (2.3) in Goluzin's is not complete enough.

Let \mathcal{F}^{n+1} be the family of all functions $T_1 \cdots T_{n+1}$, products of $T_k \in \mathcal{F}$, $k = 1, \cdots, n+1$, $n \ge 1$. Then f of (2.2) is in \mathcal{F}^{n+1} . For the proof we let $S(w) = \frac{\varepsilon(w-a)}{1-\overline{a}w}$, $|\varepsilon| = 1$, and T(b) = 0. The equation $w^n S(w) = b$, or,

$$\varepsilon w^n (w-a) - b(1 - \overline{a}w) = 0 \tag{2.4}$$

has exactly n + 1 roots, $c_1, c_2, \dots c_{n+1}$, say, in D. Actually, on the circle $\{|w| = 1\}$ we have

$$|\varepsilon w^n (w-a)| = |w-a| = |1-\overline{a}w| > |b(1-\overline{a}w)|.$$

The Rouché theorem on the equation yields that the equation (2.4) has the same number of roots as that of $w^n(w-a) = 0$ in D. It is now easy to have the expression

$$f(w) = \delta \prod_{k=1}^{n+1} \frac{w - c_k}{1 - \overline{c_k} w},$$

for a constant δ , $|\delta| = 1$.

The converse is true in case n = 1; see [3] where $\mathcal{G} = \mathcal{F}^2$. However, for n > 1, we have $f \in \mathcal{F}^{n+1}$ which is not of the form (2.2). For example,

$$f(w) = \prod_{k=2}^{n+2} \frac{kw - 1}{k - w}$$

is in \mathcal{F}^{n+1} . Suppose that f is of the form (2.2). Then f'(0) = 0. On the other hand,

$$f'(0) = \frac{(-1)^n}{(n+2)!} \sum_{k=2}^{n+2} \left(k - \frac{1}{k}\right) \neq 0.$$

This is a contradiction.

3 PROOF OF THEOREM 1

LEMMA For each $f \in \mathcal{B}$ and at each $z \in D$, one has

$$|f(z)| \le \frac{|z| + |f(0)|}{1 + |f(0)||z|}.$$
(3.1)

The equality in (3.1) at a point $z \neq 0$ holds if and only if $f \in \mathcal{F}$. For $f \in \mathcal{F}$ with f(a) = 0, the equality in (3.1) holds at all points $z \in E(a)$.

Proof It follows from the Schwarz lemma that

$$\left|\frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)}\right| \le |z|, \qquad z \in D.$$

$$(3.2)$$

On the other hand,

$$\frac{|f(z)| - |f(0)|}{1 - |f(0)||f(z)|} \le \left| \frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)} \right|, \quad z \in D.$$
(3.3)

Combining (3.2) and (3.3) one has (3.1). The equality in (3.1) at $z \neq 0$ holds if and only if $f \in \mathcal{F}$ from (3.2) and $\operatorname{Re}\left(\overline{f(0)}f(z)\right) = |f(0)f(z)|$ with $|f(z)| \geq |f(0)|$ from (3.3). Thus, in case $f \in \mathcal{F}$ with f(0) = 0, the equality in (3.1) holds in the whole D, whereas in case $f \in \mathcal{F}$ with f(a) = 0, $a \neq 0$, the equality in (3.1) holds for z with

$$f(z) \in E(-f(0)) \cap \{w; |w| \ge |f(0)|\}.$$

Hence the equality in (3.1) holds at all points $z \in E(a)$.

Proof of Theorem 1 To prove (2.1) we may suppose that $z \neq 0$ because the equality holds at z = 0.

Set

$$g(w) = \frac{1}{w^n} \cdot \frac{f(w) - f(0)}{1 - \overline{f(0)}f(w)}$$

and

$$h(w) = w^n g(w), \qquad w \in D,$$

so that |g(0)| = A and, in case $g \in \mathcal{B}$, one has $\Gamma(0, g) = B$.

In case A = 1 or $|g(w)| \equiv 1$, we conclude that $f \in \mathcal{F}_n$ for which the equality in (2.1) holds at each point of D.

In case A < 1, we can apply (1.1) to $g \in \mathcal{B}$ to have

$$\Gamma(z,g) \le \Gamma(|z|,\Psi) \equiv Q(|z|), \tag{3.4}$$

whence

$$\left|\frac{h'(z)}{z^n} - \frac{nh(z)}{z^{n+1}}\right| = |g'(z)| \le \frac{Q(|z|)\left(|z|^{2n} - |h(z)|^2\right)}{|z|^{2n}(1 - |z|^2)},$$

so that

$$|h'(z)| \le \frac{np}{r} + \frac{Q(r)(r^{2n} - p^2)}{r^n(1 - r^2)},$$
(3.5)

where |z| = r and |h(z)| = p, 0 < r < 1, $0 \le p < 1$.

It now follows from (3.5) that

$$\frac{\Gamma(z,f)}{1-r^2} = \frac{\Gamma(z,h)}{1-r^2} \le \frac{\frac{np}{r} + \frac{Q(r)(r^{2n}-p^2)}{r^n(1-r^2)}}{1-p^2} \equiv F(p).$$

Note that Q(r) > 0 for r > 0. For each r, 0 < r < 1, the function F(p) is strictly increasing for $p, 0 \le p < r^n$. To prove this, we consider the numerator of the derivative F'(p), that is,

$$\varphi(p) = \frac{n}{r} p^2 - \frac{2Q(r)(1 - r^{2n})}{r^n(1 - r^2)} p + \frac{n}{r}.$$

Since the product of the roots of the equation $\varphi(p) = 0$ is 1, at most one root is in the interval 0 .

350

Goluzin, loc. cit., proved that

$$\Theta(r) \equiv n\left(r^{n} + \frac{1}{r^{n}}\right) - \frac{2(1 - r^{2n})}{r^{n-1}(1 - r^{2})} > 0$$

for 0 < r < 1. Hence

$$\varphi(r^n) = r^{n-1} \left[n \left(r^n + \frac{1}{r^n} \right) - \frac{2Q(r)(1 - r^{2n})}{r^{n-1}(1 - r^2)} \right] \ge r^{n-1} \Theta(r) > 0.$$

Since $\varphi(0) > 0$, and $\varphi(r^n) > 0$ we thus conclude that the equation $\varphi(p) = 0$ has no root in the interval $0 , so that <math>\varphi(p) > 0$ for all $p, 0 \le p \le r^n$. Therefore F'(p) > 0 for $0 \le p \le r^n$.

We now apply our Lemma to g to have

$$p = |h(z)| = r^{n}|g(z)| \le r^{n} \cdot \frac{r+A}{1+Ar} < r^{n}.$$
 (3.6)

Hence

$$\Gamma(z, f) \le (1 - r^2) F\left(\frac{r^n(r+A)}{1 + Ar}\right). \tag{3.7}$$

This is just (2.1).

The equality in (3.7) holds if and only if those in (3.4) and in (3.5) for $p = \frac{r^n(r+A)}{1+Ar}$, and furthermore the equality

$$|g(z)| = \frac{r+A}{1+Ar},$$
(3.8)

all hold at the same time. The equality (3.8) is valid if and only if

$$g \in \mathcal{F}, \quad g(a) = 0, \quad \text{and} \quad z \in E(a).$$
 (3.9)

The equality in (3.4) holds in the whole D for $g \in \mathcal{F}$; in this case Q(|z|) = 1. To prove that the equality in (3.5) holds under (3.9) for $p = \frac{r^n(r+A)}{1+Ar}$ and for $z \in E(a)$, we set

$$g(w) = \frac{\varepsilon(w-a)}{1-\overline{a}w}, \qquad |\varepsilon| = 1.$$

In case a = 0, we have A = |g(0)| = 0 and $h(w) \equiv \varepsilon w^{n+1}$. Hence the equality in (3.5) holds for $p = \frac{r^n(r+A)}{1+Ar} = r^n$. In case $a \neq 0$, we have for $z = -\frac{a}{|a|}r$ (0 < r < 1) of E(a) that

$$g(z) = -\frac{a}{|a|}\varepsilon|g(z)|$$
 and $g'(z) = \varepsilon|g'(z)|$,

so that

$$\frac{h'(z)}{z^n} = \varepsilon \left[\frac{n}{r} |g(z)| + |g'(z)| \right] \quad \text{and} \quad \frac{nh(z)}{z^{n+1}} = \varepsilon \cdot \frac{n}{r} |g(z)|.$$

Hence

$$\left|\frac{h'(z)}{z^n}-\frac{nh(z)}{z^{n+1}}\right|=\left|\frac{h'(z)}{z^n}\right|-\left|\frac{nh(z)}{z^{n+1}}\right|.$$

We thus have the equality in (3.5) for $p = \frac{r^n(r+A)}{1+Ar}$ because $\Gamma(z, g) = 1$.

Remark We can further improve (2.1) for $f \notin \mathcal{F}_n$. For this purpose we apply Theorem 1 to $g \in \mathcal{B}$ in the proof of Theorem 1 to have

$$\Gamma(z,g) \le Q_1(|z|),\tag{3.10}$$

where $Q_1(|z|)$ is the right-hand side of (2.1) applied to the present g. We then follow the lines in the proof of Theorem 1 replacing (3.4) with (3.10). The resulting inequality in terms of f is rather complicated.

4 POINCARÉ METRIC

A domain Ω in the plane $C = \{|z| < +\infty\}$ is called hyperbolic if its boundary in C contains at least two points. Each hyperbolic domain Ω has the Poincaré metric $P_{\Omega}(z)|dz|$. Namely,

$$1/P_{\Omega}(z) = (1 - |w|^2)|\phi'(w)|, \quad z = \phi(w),$$

for a holomorphic, universal covering projection ϕ from D onto Ω ; the choice of ϕ and w is immaterial as far as $z = \phi(w)$ is satisfied. The Poincaré distance $d_{\Omega}(z_1, z_2)$ of z_1 and z_2 in Ω is the minimum of all the integrals $\int_{\gamma} P_{\Omega}(z)|dz|$ along the rectifiable curves γ connecting z_1 and z_2 within Ω . Given z_1 and z_2 in D, for each $w_1 \in D$ with $z_1 = \phi(w_1)$ we have $w_2 \in D$ with $z_2 = \phi(w_2)$ such that

$$d_{\Omega}(z_1, z_2) = d_D(w_1, w_2).$$

Let Ω and Σ be hyperbolic domains in C, and let $f : \Omega \to \Sigma$ be holomorphic. For $c \in \Omega$ and $n \ge 1$ we suppose that

$$f(z) = f(c) + \sum_{k=n}^{\infty} \frac{f^{(k)}(c)}{k!} (z-c)^k$$
(4.1)

in a disk of center c contained in Ω . Again, $f^{(n)}(c) = 0$ is admissible. Set

$$\Lambda_I(z) = \frac{\partial}{\partial z} \log P_{\Omega}(z)$$
 and $\Lambda_{II}(z) = \frac{\partial}{\partial z} \log P_{\Sigma}(f(z))$

for $z \in \Omega$. Set

$$A(c) = \frac{P_{\Sigma}(f(c))}{P_{\Omega}(c)^{n}} \frac{|f^{(n)}(c)|}{n!},$$

$$B(c) = \begin{cases} 1, & \text{for } A(c) = 1; \\ \frac{\Theta(c)}{1 - A(c)^2}, & \text{for } A(c) < 1, \end{cases}$$

where, in case n = 1,

$$\Theta(c) = \frac{P_{\Sigma}(f(c))}{P_{\Omega}(c)^2} \left| \frac{f''(c)}{2} + f'(c) \left\{ \Lambda_{II}(c) - \Lambda_{I}(c) \right\} \right|,$$

and, in case n > 1,

$$\Theta(c) = \frac{P_{\Sigma}(f(c))}{P_{\Omega}(c)^{n+1}} \left| \frac{f^{(n+1)}(c)}{(n+1)!} - \frac{f^{(n)}(c)}{(n-1)!} \Lambda_I(c) \right|;$$

as will be seen, $0 \le A(c) \le 1$ and $0 \le B(c) \le 1$ (for $n \ge 1$ of (4.1)). Furthermore, set

$$\Phi_{k,c}(z) = \frac{z^k(z+A(c))}{1+A(c)z}, \quad (k=0,1,2,\cdots),$$
$$\Psi_c(z) = \frac{z(z+B(c))}{1+B(c)z}, \text{ and}$$

$$R_{n,c}(z) = \frac{|z|^n \left(1 - \Phi_{0,c}(|z|)^2\right) \left(1 - \Gamma(|z|, \Psi_c)\right)}{1 - \Phi_{n,c}(|z|)^2} \quad \text{(for } n \ge 1 \text{ of } (4.1)\text{)},$$

for $z \in D$.

In particular, if $\Omega = \Sigma = D$ and c = 0, then we have

$$A = A(0), B = B(0), \Phi_k = \Phi_{k,0}, \Psi = \Psi_0, \text{ and } R_n = R_{n,0}.$$

S. YAMASHITA

THEOREM 2 For a holomorphic function $f : \Omega \to \Sigma$ with the Taylor expansion (4.1) we have the inequality

$$\frac{P_{\Sigma}(f(z))}{P_{\Omega}(z)} |f'(z)| \le \Gamma\left(\tanh d_{\Omega}(z,c), \Phi_{n,c}\right) - R_{n,c}\left(\tanh d_{\Omega}(z,c)\right)$$
(4.2)

at each $z \in \Omega$.

For the equality in (4.2), see just after the proof.

Proof of Theorem 2 Let ϕ and ψ be universal covering projections from D onto Ω and Σ , respectively, such that $c = \phi(0)$ and $f(c) = \psi(0)$. Let F be the single-valued branch of $\psi^{-1} \circ f \circ \phi$ in D such that F(0) = 0. Since $\psi(F(w)) = f(\phi(w)), w \in D$, we have

$$\psi'(F(w))F'(w) = f'(\phi(w))\phi'(w),$$

$$\psi''(F(w))F'(w)^2 + \psi'(F(w))F''(w) = f''(\phi(w))\phi'(w)^2 + f'(\phi(w))\phi''(w),$$

and for n > 2, we have, by induction,

$$(\star) + n\psi''(F(w))F'(w)F^{(n-1)}(w) + \psi'(F(w))F^{(n)}(w) =$$

$$f^{(n)}(\phi(w))\phi'(w)^n + \frac{n(n-1)}{2}f^{(n-1)}(\phi(w))\phi'(w)^{n-2}\phi''(w) + (\#),$$

where the terms containing

$$F'(w), \cdots, F^{(n-2)}(w)$$

appear in (\star) , and those containing

$$f'(\phi(w)), \cdots, f^{(n-2)}(\phi(w))$$

appear in (#). We thus have

$$\frac{F^{(n)}(0)}{n!} = \frac{f^{(n)}(c)}{n!} \frac{\phi'(0)^n}{\psi'(0)};$$

actually, in case n > 1, we have $F^{(k)}(0) = f^{(k)}(c) = 0$ for $1 \le k \le n - 1$. Consequently,

$$\frac{|F^{(n)}(0)|}{n!} = \frac{P_{\Sigma}(f(c))}{P_{\Omega}(c)^n} \frac{|f^{(n)}(c)|}{n!}.$$

354

We now calculate $\frac{|F^{(n+1)}(0)|}{(n+1)!}$. In case n = 1, it follows that

$$\frac{|F''(0)|}{2} = \left|\frac{\phi'(0)^2}{\psi'(0)}\right| \left|\frac{f''(c)}{2} + \frac{1}{2}\frac{\phi''(0)}{\phi'(0)^2} \cdot f'(c) - \frac{1}{2}\frac{\psi''(0)}{\psi'(0)^2} \cdot f'(c)^2\right|,$$

which, together with

$$\Lambda_I(c)\phi'(0) = -\frac{1}{2} \frac{\phi''(0)}{\phi'(0)} \text{ and } \Lambda_{II}(c)\psi'(0) = -\frac{1}{2} \frac{\psi''(0)}{\psi'(0)} \cdot f'(c),$$

shows that $\frac{|F''(0)|}{2} = \Theta(c)$. In case n > 1, it follows from $0 = f^{(k)}(c) = F^{(k)}(0)$ $(1 \le k \le n - 1)$ that

$$\frac{|F^{(n+1)}(0)|}{(n+1)!} = \left|\frac{\phi'(0)^{n+1}}{\psi'(0)}\right| \left|\frac{f^{(n+1)}(c)}{(n+1)!} + \frac{1}{2}\frac{\phi''(0)}{\phi'(0)^2} \cdot \frac{f^{(n)}(c)}{(n-1)!}\right| = \Theta(c).$$

Given $z \in \Omega$, we choose $w \in D$ with $z = \phi(w)$ and $d_{\Omega}(z, c) = d_D(w, 0) = \arctan |w|$. We apply now Theorem 1 to F at $w \in D$. Since

$$\Gamma(w, F) = \frac{P_{\Sigma}(f(z))}{P_{\Omega}(z)} \cdot |f'(z)|,$$

the requested (4.2) follows from (2.1) with $|w| = \tanh d_{\Omega}(z, c)$.

One can give the equality conditions in terms of F to (4.2); they are left as exercises. The formulation appears not to have a good geometric interpretation. It is easy to see that the equality in (4.2) holds at z = c.

In case $\Omega = \Sigma = D$, the inequality (4.2) becomes

$$\Gamma(z, f) \leq \Gamma\left(\left|\frac{z-c}{1-\overline{c}z}\right|, \Phi_{n,c}\right) - R_{n,c}\left(\left|\frac{z-c}{1-\overline{c}z}\right|\right)$$

at each $z \in D$. In this case, for $n \ge 1$,

$$A(c) = \frac{|f^{(n)}(c)|}{n!} \frac{(1-|c|^2)^n}{1-|f(c)|^2},$$

and in case n = 1,

$$\Theta(c) = \frac{(1-|c|^2)^2}{1-|f(c)|^2} \left| \frac{f''(c)}{2} - \frac{\overline{c}f'(c)}{1-|c|^2} + \frac{\overline{f(c)}f'(c)^2}{1-|f(c)|^2} \right|$$

and in case n > 1,

$$\Theta(c) = \frac{(1-|c|^2)^{n+1}}{1-|f(c)|^2} \left| \frac{f^{(n+1)}(c)}{(n+1)!} - \frac{\overline{c}}{1-|c|^2} \cdot \frac{f^{(n)}(c)}{(n-1)!} \right|.$$

References

- G.M. Goluzin, Some estimations of derivatives of bounded functions (in Russian), Mat. Sbornik, 16(58) No. 3 (1945), 295–306.
- [2] G.M. Goluzin, Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, vol. 26, Amer. Math. Soc., Providence, 1969.
- [3] S. Yamashita, The Pick version of the Schwarz lemma and comparison of the Poincaré densities. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 19 (1994), 291–322.