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Received 27 August 2003 and in revised form 18 November 2003

We establish optimal, in a sense, unique solvability conditions of the Cauchy problem
for a wide class of linear functional differential equations in a Banach space with a solid
wedge. The conditions are formulated in terms of certain abstract functional differential
inequalities.

1. Introduction

It is well known that, in the theory of functional differential equations, the study of the
Cauchy problem requires much more effort than in the case of an ordinary differential
equation. One can easily show that even the simplest scalar initial value problem

u′(t)= p(t)u(θ), t ∈ [a,b], (1.1)

u(τ)= 0, (1.2)

where the function p : [a,b]→R is integrable and θ ∈ [a,b] is a fixed number, may have
infinitely many solutions. From the theoretical viewpoint, the Cauchy problem for func-
tional differential equations, therefore, should be put amongst the other boundary value
problems because the question on its solvability is almost as far from being obvious as is
that of any other problem for this extremely general kind of equations.

At present, unfortunately, there are not but a few fruitful, leading one to sharp and
easy-to-verify conditions, approaches to the Cauchy problem for general functional dif-
ferential equations, the most powerful and efficient one being based on the use of dif-
ferential inequalities and developed most extensively for ordinary differential equations
(see, e.g., [3, 5, 6, 7]). It should be noted, however, that the techniques used in the works
cited are essentially finite-dimensional, often even one-dimensional, in which circum-
stance excludes any opportunity to study, for example, countable systems of differential
equations. Moreover, the majority of significant results on the solvability of the general
Cauchy problem are currently available for the scalar equations only [2, 3].

In this paper, we suggest a new approach to the Cauchy problem, which is based on
the use of order-theoretical methods, and establish considerably more general versions of

Copyright © 2005 Hindawi Publishing Corporation
Journal of Inequalities and Applications 2005:3 (2005) 235–250
DOI: 10.1155/JIA.2005.235

http://dx.doi.org/10.1155/S1025583403412150


236 Cauchy problem for infinite-dimensional linear equations

the related results of [2, 3]. The solvability conditions obtained here involve abstract func-
tional differential inequalities understood in a rather broad sense; they are constructed on
the base of a certain preordering of the given Banach space. The approach based on the
study of operators preserving a certain preordering in the given Banach space, firstly, is
equally applicable in finite- and infinite-dimensional cases, without any loss in the sharp-
ness of estimates, and, secondly, provides a unified way to obtain solvability conditions
for various equations with apparently different properties.

Due to the use of rather general preorderings, which may not be, and often are not
orderings, the theorems that we prove here allow one to establish the unique solvability
of the Cauchy problem for (finite- or infinite-dimensional) linear functional differential
equations also in the cases where the operator determining the equation may not be pos-
itive in any natural sense. In the “positive” cases, that is, if the preorderings are generated
by cones, we obtain a statement (namely Theorem 4.4) containing the corresponding re-
sults of [2, 3].

In the proofs of the main Theorems 4.1 and 4.4, we use our previous results on the
estimates of spectra of certain classes of linear operators [11] which may not necessarily
be isotone with respect to any proper cone.

We do not give applications of our general theorems to any concrete classes of equa-
tions here. To demonstrate the practical realisation of the ideas on an example, we only
obtain a generalised version of a theorem from [2] concerning a scalar linear equation
with a single transformation of argument.

2. Notation and definitions

The following notation is used in the sequel.
(i) R= (−∞,∞), R+ = [0,∞), R− = (−∞,0].

(ii) 〈X ,‖ · ‖〉 is a Banach space.
(iii) C([a,b],X) is the Banach space of continuous functions u : [a,b]→ X endowed

by the norm

C
(
[a,b],X

)� u 	−→ max
t∈[a,b]

∥∥u(t)
∥∥. (2.1)

(iv) L([a,b],X) is the Banach space of Bochner integrable functions u : [a,b]→ X en-
dowed by the norm

L
(
[a,b],X

)� u 	−→
∫ b

a

∥∥u(t)
∥∥dt. (2.2)

(v) mesΩ is the Lebesgue measure of a set Ω.
(vi) r(A) is the spectral radius of a linear operator A.

(vii) A(H) := {Ax | x ∈H} is the image of a set H ⊂ X under the mapping A.
(viii) IntB is the set of interior points of a set B.

(ix) �K and�K : see Definitions 2.4 and 2.6.
(x) bladeK : see Definition 2.2 and formula (2.3).

(xi) �K (τ,Ω; [a,b],X): see Definition 2.9.
(xii) CK ,Ω([a,b],X): see formula (5.5).
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The two subsections below contain a number of definitions used in the sequel.

2.1. Wedges. We recall some definitions from the theory of linear semigroups in Banach
spaces (see, e.g., [8, 9]).

Definition 2.1. A nonempty closed set K in a Banach space X is called a wedge (see, e.g.,
[8]) if the following conditions are satisfied:

(i) K +K ⊂ K ,
(ii) λK ⊂ K for an arbitrary λ∈ [0,∞).

Here, by definition, we set K +K := {x1 + x2 | {x1,x2} ⊂ K} and, similarly, λK := {λx |
x ⊂ K}.
Definition 2.2. The set K ∩ (−K) is referred to as the blade [8] of the wedge K .

We use the following notation for the blade:

K ∩ (−K)=: bladeK. (2.3)

Remark 2.3. In the original terminology introduced by Kreı̆n and Rutman [9], a set K
satisfying conditions (i) and (ii) of Definition 2.1 is called a linear semigroup.

The presence of a wedge in a Banach space X allows one to introduce a natural pre-
ordering there. More precisely, we introduce the following standard.

Definition 2.4. Two elements {x1,x2} ⊂ X are said to be in relation x1 �K x2 if and only if
they satisfy the relation x2− x1 ∈ K .

In a similar way, the relation �K is introduced: x1 �K x2 if and only if x2 �K x1. Thus,
we have

K = {x ∈ X | x �K 0
}

,

bladeK = {x ∈ X | 0 �K x �K 0
}
.

(2.4)

Definition 2.5. A wedge K ⊂ X will be called proper if it does not coincide with the entire
X and is different from the zero-dimensional subspace {0}.
Definition 2.6. A wedge K ⊂ X is said to be solid [9] if its interior is nonempty.

In the case of a solid wedge K , following [9], we write x�K 0 if and only if x ∈ IntK .

Definition 2.7. The wedge K is called a cone [8, 9] if it has trivial blade, that is, when

bladeK = {0}. (2.5)

2.2. Definition of a (τ,Ω)-positive operator. The set �K (τ,Ω; [a,b],X). Here, we intro-
duce the classes of operators frequently used in the sequel.

Let τ be a point in [a,b], Ω a subset of [a,b], and K ⊂ X a wedge.
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Definition 2.8. An operator l : C([a,b],X)→ L([a,b],X) is said to be (τ,Ω)-positive with
respect to the wedge K ⊂ X if

∫ t

τ
(lu)(s)ds�K 0 ∀t ∈ [a,b] \Ω (2.6)

whenever the function u from C([a,b],X) is such that

u(t) �K 0 ∀t ∈ [a,b] \Ω. (2.7)

Recall that the sign �K is introduced by Definition 2.4.

Definition 2.9. By the symbol �K (τ,Ω; [a,b],X), denote the set of all operators l : C([a,b],
X)→ L([a,b],X) that are (τ,Ω)-positive with respect to the wedge K and possess the fol-
lowing additional property: the fulfilment of the relation u([a,b] \Ω) ⊂ bladeK for a
function u from C([a,b],X) always implies that

∫ t

τ
(lu)(s)ds= 0 ∀t ∈ [a,b]. (2.8)

Definition 2.10. A linear operator l : C([a,b],X) → L([a,b],X) will be called regular if
there exists a nonnegative Lebesgue integrable function ω : [a,b]→ R such that, for an
arbitrary u from C([a,b],X),

∥∥(lu)(t)
∥∥≤ ω(t) max

s∈[a,b]

∥∥u(s)
∥∥ ∀t ∈ [a,b]. (2.9)

The regularity of a linear mapping from C([a,b],X) to L([a,b],X), obviously, implies
its continuity.

Remark 2.11. The property described by Definition 2.10 is similar to a notion from the
theory of K-spaces (see, e.g., [4, Chapter VII, Section 1.2]). The context, however, is quite
different here because the wedge K generating the preordering in the space X is not as-
sumed to be a minihedral [9] cone (even more, K is not assumed to be a cone at all), and,
therefore, X may not be a lattice.

3. Statement of problem

We consider the linear inhomogeneous Cauchy problem

u′(t)= (lu)(t) + f (t), t ∈ [a,b], (3.1)

u(τ)= c. (3.2)

Here, l : C([a,b],X) → L([a,b],X) is a continuous linear operator which is (τ,Ω)-
positive with respect to a certain proper wedge K in X . By a solution of problem (3.1),
(3.2), we mean an absolutely continuous function u : [a,b]→ X possessing property (3.2)
and satisfying (3.1) almost everywhere on [a,b].
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4. Conditions sufficient for the unique solvability of problem (3.1), (3.2)

We consider problem (3.1), (3.2) in a Banach space X , in which we fix a certain solid and
proper wedge K .

Theorem 4.1. Assume that, for some solid proper wedge K ⊂ X and some set Ω ⊂ [a,b]
such that [a,b] \Ω is closed, the linear operator l : C([a,b],X)→ L([a,b],X) is regular and
belongs to the set �K (τ,Ω; [a,b],X).

Then the existence of a constant α∈ [0,1) and a continuous abstract function y : [a,b]→
X satisfying the conditions

y(t)�K 0 ∀t ∈ [a,b] \Ω, (4.1)

αy(t) �K

∫ t

τ
(ly)(s)ds for every t ∈ [a,b] \Ω (4.2)

ensures the unique solvability of the Cauchy problem (3.1), (3.2) for arbitrary f ∈L([a,b],X)
and c ∈ X . Under these assumptions, the unique solution u(·) of the Cauchy problem (3.1),
(3.2) is representable in the form of the uniformly convergent functional series

u(t)= fc(t) +
∫ t

τ

(
l fc
)
(s)ds+

∫ t

τ

(
l
∫ ·
τ

(
l fc
)
(ξ)dξ

)
(s)ds+ ··· , t ∈ [a,b], (4.3)

where

fc(t) := c+
∫ t

τ
f (s)ds, t ∈ [a,b]. (4.4)

If, furthermore, the function f ∈ L([a,b],X) and vector c ∈ X are such that

∫ t

τ
f (s)ds�K −c ∀t ∈ [a,b] \Ω, (4.5)

then the solution u(·) of problem (3.1), (3.2) satisfies condition (2.7).

Remark 4.2. Condition (4.5) of Theorem 4.1 is satisfied, in particular, when c and f in
problem (3.1), (3.2) are such that

c �K 0,

f (t)sign(t− τ) �K 0 for a.e. t ∈ [a,b].
(4.6)

Remark 4.3. One can prove that the regularity condition for the linear operator l in
Theorem 4.1 can be replaced by the assumption on its continuity (we do not consider
this problem in more detail here). Note also that, in the case where the solid wedge K is a
normal cone, one can also drop the continuity assumption for l (cf. [10]).

In the case where the wedge K is a cone, the assumptions of Theorem 4.1 are somewhat
simpler, and the corresponding assertion is formulated as follows.

Theorem 4.4. Assume that, for some solid cone K in X and a subset Ω of [a,b] such that
[a,b] \Ω is closed, the linear operator l : C([a,b],X)→ L([a,b],X) is regular, (τ,Ω)-positive
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with respect to K , and, moreover, for an arbitrary function u from C([a,b],X) vanishing on
the set [a,b] \Ω, relation (2.8) holds.

Then the existence of a constant α∈ [0,1) and a continuous abstract function y : [a,b]→
X satisfying the conditions (4.1) and (4.2) ensures the unique solvability of the Cauchy
problem (3.1), (3.2) for arbitrary f ∈ L([a,b],X) and c ∈ X . Under these assumptions, the
unique solution u(·) of the Cauchy problem (3.1), (3.2) is representable in the form of the
uniformly convergent functional series (4.3), where fc is the function given by formula (4.4).

If, furthermore, relation (4.5) holds for the function f ∈ L([a,b],X) and vector c ∈ X ,
then the solution u(·) of problem (3.1), (3.2) satisfies condition (2.7).

Remark 4.5. A statement similar to Theorem 4.4 for the scalar (i.e., when X =R and K =
R+) initial value problem (3.1), (3.2) with τ ∈ {a,b} is contained in [3, Theorem 2.1].
The former theorem generalises the result of [3] cited above to the infinite-dimensional
case.

Corollary 4.6. Assume that the linear operator l : C([a,b],X) → L([a,b],X) is regular
and satisfies the following condition for some solid cone K in X : the relation

(lu)(t)sign(t− τ) �K 0 for a.e. t ∈ [a,b] (4.7)

holds whenever the function u from C([a,b],X) is such that

u
(
[a,b]

)⊂ K. (4.8)

Furthermore, assume that there exist a constant α∈ [0,1) and a continuous abstract func-
tion y : [a,b]→ X such that

y(t)�K 0 ∀t ∈ [a,b], (4.9)

αy(t) �K

∫ t

τ
(ly)(s)ds for every t ∈ [a,b]. (4.10)

Then the Cauchy problem (3.1), (3.2) has a unique solution for arbitrary f ∈ L([a,b],X)
and c ∈ X . Under these assumptions, the unique solution u(·) of the Cauchy problem (3.1),
(3.2) is representable in the form of the uniformly convergent functional series (4.3), where
fc is the function given by formula (4.4).

If, furthermore,

∫ t

τ
f (s)ds�K −c ∀t ∈ [a,b], (4.11)

then the solution u(·) of problem (3.1), (3.2) satisfies condition (4.8).

Remark 4.7. Conditions (4.2) and (4.10) in the theorems formulated above are optimal in
the sense that the inequality α < 1 for the constant α involved therein, generally speaking,
cannot be replaced by the corresponding nonstrict inequality α≤ 1.
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Indeed, we consider the simplest scalar functional differential equation (1.1), where
θ ∈ [a,b] \ {τ} and p is a function from L([a,b],R) such that

∫ θ

τ
p(s)ds= 1. (4.12)

Equation (1.1), obviously, can be rewritten as (3.1) with X =R, f = 0, and the operator
l given by

C
(
[a,b],R

)� u 	−→ lu := p(·)u(θ). (4.13)

If we set, for example, K := [0,+∞), then (4.8) always implies (4.7), whenever p satisfies
the condition

p(t)sign(t− τ)≥ 0, t ∈ [a,b]. (4.14)

It is easy to see that, by (4.12), the function uλ of the form

uλ(t)= λ
∫ t

τ
p(s)ds, t ∈ [a,b], (4.15)

where λ is an arbitrary real constant, is a solution of the homogeneous Cauchy problem
(1.2) for (1.1). Indeed, differentiating (4.15), we obtain

u′λ(t)= λp(t), t ∈ [a,b]. (4.16)

However, in view of condition (4.12), we have

uλ(θ)= λ, (4.17)

and hence, equality (1.1) holds.
We put

y := uλ + λ. (4.18)

For positive λ, this function satisfies the corresponding condition (4.9) of Corollary 4.6.
Assume that, besides relations (4.12) and (4.14), the function p satisfies also the condition

max
t∈[a,b]

∫ t

τ
p(s)ds≤ 1. (4.19)

Note that conditions (4.12), (4.14), and (4.19) are satisfied, for example, by the function

p(t) :=



0 for t ∈ [a, min{τ,θ}]∪ [max{τ,θ},b],
(θ− τ)−1 for t ∈ (min{θ,τ}, max{θ,τ}). (4.20)

Since

uλ(t)=
∫ t

τ

(
luλ
)
(s)ds, t ∈ [a,b], (4.21)
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where l is the operator given by formula (4.13), it follows that, for positive λ, the function
y also satisfies the relation

y(t)≥
∫ t

τ
(ly)(s)ds, t ∈ [a,b], (4.22)

which, clearly, is a particular case of inequality (4.10) with α= 1. Indeed, in view of (4.18),
(4.12), (4.19), and (4.15), for λ > 0, we have

y(t)−
∫ t

τ
(ly)(s)ds= λ+ λ

∫ t

τ
p(s)ds−

∫ t

τ
p(s)ds · y(θ)

= λ+ λ
∫ t

τ
p(s)ds−

∫ t

τ
p(s)ds · 2λ

= λ
(

1−
∫ t

τ
p(s)ds

)
≥ 0

(4.23)

at every point t from [a,b].
Thus, all the assumptions of Corollary 4.6 are satisfied with the function y defined by

relation (4.18), except condition (4.10), instead of which inequality (4.22) holds. How-
ever, for nonzero λ, the function uλ is a nontrivial solution of the homogeneous Cauchy
problem (1.1), (1.2).

The example given above shows that, for α = 1, assumption (4.10) in Corollary 4.6
may not guarantee the unique solvability of problem (3.1), (3.2) for arbitrary f and c,
and thus, is strict in this sense and cannot be weakened. Clearly, the same is true for
condition (4.2) appearing in Theorems 4.1 and 4.4.

Remark 4.8. Results similar to those stated above have been recently obtained in [10] for
finite systems of linear functional differential equations determined by operators satis-
fying certain positivity conditions (cf. Theorem 4.4). The methods of [10] are different
from those used in this paper. Furthermore, the differential inequalities here are under-
stood in a different and more broad sense.

Note also that, similarly to [1, 10], the results presented here allow one to obtain a
series of efficient conditions of the unique solvability of problem (3.2) for various kinds
of (in this case, generally speaking, infinite-dimensional) functional differential equations
(3.1). However, we do not obtain such results in this paper, restricting ourselves mainly
to the general theorems.

The results stated above allow one to derive various efficient conditions sufficient for
the unique solvability of problem (3.1), (3.2) for arbitrary values of forcing terms. How-
ever, we do not dwell on this here in more detail, trying instead to focus on general
ideas. As an illustrative example, we only show a possible way to apply Theorem 4.4 to
the Cauchy problem (3.2) for the following scalar functional differential equation:

u′(t)= p(t)u
(
θ(t)

)
+ f (t), t ∈ [a,b]. (4.24)

Here, {p, f } ⊂ L([a,b],R), and θ is a measurable transformation of the interval [a,b] into
itself. The choice of dimension one and of this specific type of equation is motivated by a
previous study of equations of such a kind made in [2].
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Remark 4.9. It should be noted that in case X is a one-dimensional space, there is no
any opportunity to demonstrate an “essentially nonpositive” example of application of
Theorem 4.4. Indeed, in the one-dimensional space X = R, we have only four wedges,
namely,R+,R−, {0}, andR itself. Of these, the first two are cones, whereas the other ones
are not proper wedges and, therefore, are excluded from consideration.

Corollary 4.10. Assume that the function p : [a,b]→R in (4.24) is such that

p(t)sign(t− τ)≥ 0 for a.e. t ∈ [a,b] (4.25)

and, moreover, the inequality

max
{∫ τ

a

∣∣p(s)
∣∣ds,

∫ b

τ
p(s)ds

}
< 1 (4.26)

is true. Let the measurable function θ : [a,b]→ [a,b] satisfy the inclusion

θ
(
[a,b]

)⊂ [a,b] \Ω (4.27)

with some subset Ω of [a,b] such that [a,b] \Ω is closed.
Then the inhomogeneous Cauchy problem (4.24), (3.2) has a unique solution for arbitrary

f ∈ L([a,b],R) and real c, and this solution is represented by the uniformly convergent series

u(t)= cpθ,τ(t) +
∫ t

τ
f (s)ds+

∫ t

τ
p
(
s1
)∫ θ(s1)

τ
f
(
s2
)
ds2 ds1

+
∫ t

τ
p
(
s1
)∫ θ(s1)

τ
p
(
s2
)∫ θ(s2)

τ
f
(
s3
)
ds3 ds2 ds1 + ··· ,

(4.28)

where

pθ,τ(t) := 1 +
∫ t

τ
p(s)ds+

∫ t

τ
p
(
s1
)∫ θ(s1)

τ
p(s2)ds2 ds1 + ··· . (4.29)

If, furthermore, f and c are such that
∫ t

τ
f (s)ds≥−c (4.30)

(resp., their relation
∫ t

τ
f (s)ds≤−c (4.31)

holds) for all t ∈ [a,b] \Ω, then the unique solution of problem (4.24), (3.2) is nonnegative
(resp., nonpositive) on the set [a,b] \Ω.

Remark 4.11. Similarly to Remark 4.7 one can show that condition (4.26) in Corollary
4.10 is strict in the sense that, generally speaking, it cannot be replaced by the correspond-
ing nonstrict inequality

max
{∫ τ

a

∣∣p(s)
∣∣ds,

∫ b

τ
p(s)ds

}
≤ 1. (4.32)
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As follows from the example below, under the conditions of Corollary 4.10 guarantee-
ing the nonnegativeness of the solution of problem (4.24), (3.2) on the set [a,b] \Ω, the
solution may not be nonnegative on the entire interval [a,b].

Example 4.12. We consider the Cauchy problem (3.2) for the scalar equation

u′(t)= p(t)u(θ) + f (t), t ∈ [a,b], (4.33)

where θ ∈ [a,b] and {p, f } ⊂ L([a,b],R). Assume that p satisfies conditions (4.25) and
(4.26), whereas the point θ does not belong to a certain subset Ω of [a,b] such that the
corresponding set [a,b] \Ω is closed. It follows from Corollary 4.10 that problem (4.33),
(3.2) is uniquely solvable for an arbitrary integrable function f : [a,b]→R and constant
c and, moreover, its solution is nonnegative (resp., nonpositive) on the set [a,b] \Ω if f
and c satisfy condition (4.30) (resp., (4.31)) for every t from [a,b] \Ω.

One can verify that the unique solution u of problem (4.33), (3.2) is given by the

formula (conditions (4.26) and (4.25), in particular, imply the inequality
∫ θ
τ p(s)ds < 1

and, hence, formula (4.34) makes sense)

u(t)= c+
∫ t

τ
f (s)ds+

c+
∫ θ
τ f (s)ds

1− ∫ θτ p(s)ds

∫ t

τ
p(s)ds, t ∈ [a,b]. (4.34)

If f is such that
∫ θ
τ f (s)ds=−c, then the solution u of (4.33), (3.2) is negative (resp.,

positive) at those points t from [a,b] where inequality (4.30) (resp., (4.31)) is not satis-
fied.

As a particular case of Corollary 4.10 for Ω = ∅ and τ = a, we obtain the following
result of [2].

Corollary 4.13 [2]. If p : [a,b]→ R is a nonnegative integrable function satisfying the
inequality

∫ b

a
p(t)dt < 1, (4.35)

then the Cauchy problem (4.24), (3.2) with τ = a is uniquely solvable for arbitrary f from
L([a,b],R) and real c, and the solution of (4.24), (3.2) is nonnegative whenever f and c
have this property.

5. Auxiliary statements and proofs of main results

The proofs use a number of auxiliary statements given in the subsections below.

5.1. Operators vanishing on the blade of a wedge. Let � be a Banach space, � a wedge
in it, and A : �→� a linear operator.

Definition 5.1. The operator A : �→� is said to leave invariant a set H ⊂� if

A(H)⊂H. (5.1)
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The following statement is, in fact, [11, Theorem 4].

Theorem 5.2 [11]. Let A : �→ � be a completely continuous linear operator leaving in-
variant a solid wedge �⊂� and such that

blade�⊂ kerA. (5.2)

Then the existence of constants α∈ [0,+∞), m∈N, and an element g ∈ Int� such that

αg −Amg ∈� (5.3)

implies the estimate

r(A)≤ m
√
α. (5.4)

5.2. SetCK ,Ω([a,b],X) and operator �τ,l. Throughout this section, we fix a set Ω⊂ [a,b]
such that [a,b] \Ω is closed.

Let CK ,Ω([a,b],X) be the set of all continuous abstract functions u : [a,b]→ X satisfy-
ing condition (2.7):

CK ,Ω
(
[a,b],X

)
:= {u∈ C

(
[a,b],X

) | u(t) �K 0∀t ∈ [a,b] \Ω}. (5.5)

Lemma 5.3. For an arbitrary proper wedge K ⊂ X , the following assertions are true.
(i) The set CK ,Ω([a,b],X) is a proper wedge in C([a,b],X).

(ii) The wedge CK ,Ω([a,b],X) is solid whenever K possesses the property indicated. In this
case, y ∈ IntCK ,Ω([a,b],X) if and only if relation (4.1) holds.

(iii) The equality

bladeCK ,Ω
(
[a,b],X

)= {u∈ C
(
[a,b],X

) | u([a,b] \Ω)⊂ bladeK
}

(5.6)

is true.

Proof. The fulfilment of conditions (i) and (ii) in Definition 2.1 is obvious. The set
CK ,Ω([a,b],X) is nonempty because it contains, in particular, constant functions with
values in K . It is also easy to see that (5.5) is a set closed with respect to the uniform norm
in C([a,b],X).

According to formula (2.1) for the norm in C([a,b],X), a function y from C([a,b],X)
is an interior element of CK ,Ω([a,b],X) if and only if there exists a δ ∈ (0,+∞) such that
every u∈ C([a,b],X) satisfying the condition

∥∥u(t)− y(t)
∥∥ < δ ∀t ∈ [a,b] (5.7)

belongs to CK ,Ω([a,b],X), that is,

u
(
[a,b] \Ω)⊂ K. (5.8)

Indeed, if y ∈ IntCK ,Ω([a,b],X), then, obviously,

y
(
[a,b] \Ω)⊂ IntK. (5.9)
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If, conversely, (5.9) holds, then, for an arbitrary t ∈ [a,b] \Ω, the number

δ(t) := sup
{
δ | δ > 0, x ∈ X ,

∥∥y(t)− x
∥∥ < δ imply x ∈ K

}
(5.10)

is finite and different from zero. The function y is continuous and the set [a,b] \Ω is
assumed to be closed. Therefore, it can be shown that the number δ := inf t∈[a,b]\Ω δ(t)
is strictly positive and, hence, every continuous function u : [a,b]→ X for which (5.7) is
true with this value of δ satisfies condition (5.8), that is, y belongs to IntCK ,Ω([a,b],X).

Finally, we note that relation (5.6) is an immediate consequence of Definition 5.1 of
the set CK ,Ω([a,b],X). �

Given a linear operator l : C([a,b],X)→ L([a,b],X), we introduce the mapping �τ,l by
putting

(
�τ,lu

)
(t) :=

∫ t

τ
(lu)(s)ds, t ∈ [a,b]. (5.11)

It is clear that �τ,l is a linear operator transforming the space C([a,b],X) into itself.
Note that, for (τ,Ω)-positive l, the inclusion

�τ,lCK ,Ω
(
[a,b],X

)⊂ CK ,Ω
(
[a,b],X

)
(5.12)

is true.

Lemma 5.4. For every linear operator l : C([a,b],X)→ L([a,b],X) belonging to the set �K

(τ,Ω; [a,b],X), the corresponding mapping �τ,l satisfies the condition

bladeCK ,Ω
(
[a,b],X

)⊂ ker�τ,l. (5.13)

Proof. In view of Definition 2.9, this statement is an immediate consequence of Lemma
5.3 and the inclusion l∈�K (τ,Ω; [a,b],X). �

Lemma 5.5. For every regular linear operator l : C([a,b],X)→ L([a,b],X), the correspond-
ing linear mapping �τ,l : C([a,b],X)→ C([a,b],X) is completely continuous.

Proof. Indeed, due to the linearity, it will be sufficient to show that the set

Qτ,l :=
{

�τ,lu | u∈ C
(
[a,b],X

)
, max
t∈[a,b]

∥∥u(t)
∥∥≤ 1

}
(5.14)

is relatively compact.
This set is, obviously, uniformly bounded because for every v ∈Qτ,l there exists a func-

tion u∈ C([a,b],X) such that

�τ,lu= v, max
t∈[a,b]

∥∥u(t)
∥∥≤ 1, (5.15)
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and therefore, in view of (5.11),

max
t∈[a,b]

∥∥v(t)
∥∥= max

t∈[a,b]

∥∥∥∥
∫ t

τ
(lu)(s)ds

∥∥∥∥

≤
∫max{τ,t}

min{τ,t}

∥∥(lu)(s)
∥∥ds≤

∫ b

a

∥∥(lu)(s)
∥∥ds.

(5.16)

The boundedness of the operator l : C([a,b],X)→ L([a,b],X) means the existence of
a constant C ∈ (0,+∞) such that

∫ b

a

∥∥(lu)(s)
∥∥ds≤ C max

t∈[a,b]

∥∥u(t)
∥∥. (5.17)

Consequently, in view of (5.16),

max
t∈[a,b]

∥∥v(t)
∥∥≤ C max

t∈[a,b]

∥∥u(t)
∥∥≤ C, (5.18)

that is, the norms of all elements of set (5.14) are bounded from above by one and the
same constant, C.

Set (5.14) is also equicontinuous. Indeed, we fix an arbitrary ε ∈ (0,+∞) and consider
an arbitrary element v from Qτ,l. For all {t′, t′′} ⊂ [a,b], we have

∥∥v(t′′)− v
(
t′
)∥∥=

∥∥∥∥
∫ t′′

t′
(lu)(s)ds

∥∥∥∥, (5.19)

where u is a function from C([a,b],X) possessing properties (5.15).
Due to the properties of the Bochner integral, the right-hand side term of the last

relation can be estimated as
∥∥∥∥
∫ t′′

t′
(lu)(s)ds

∥∥∥∥≤
∫max{t′,t′′}

min{t′,t′′}

∥∥(lu)(s)
∥∥ds, (5.20)

whence, by virtue of relation (5.15) and the regularity of the operator l (see Definition
2.10), we obtain the inequality

∥∥∥∥
∫ t′′

t′
(lu)(s)ds

∥∥∥∥≤
∫max{t′,t′′}

min{t′,t′′}
ω(s)ds · max

t∈[a,b]

∥∥u(t)
∥∥≤

∫max{t′,t′′}

min{t′,t′′}
ω(s)ds, (5.21)

where ω is a nonnegative function from L([a,b],R) appearing in Definition 2.10. It fol-
lows from the continuity of the function

[a,b]� t 	−→
∫ t

τ
ω(s)ds, (5.22)

that for the given ε, there exists a positive δε such that the right-hand side term in (5.21) is
less than ε whenever |t′ − t′′| < δε. The arbitrariness of a function v from Qτ,l proves that
the latter set is equicontinuous. Applying the Arzelà-Ascoli theorem, we conclude that set
(5.14) is relatively compact and, hence, the mapping �τ,l is completely continuous. �
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5.3. Proof of Theorem 4.1. We first formulate the following obvious lemma.

Lemma 5.6. The set of solutions of the Cauchy problem (3.1), (3.2) coincides with that of
absolutely continuous solutions of the functional equation

u=�τ,lu+ fc. (5.23)

Thus, it will suffice to prove the unique solvability of (5.23) for arbitrary values of f
from L([a,b],X) and c from X . Recall that fc in (5.23) is the function constructed from
f and c by formula (4.4).

To prove the statement indicated above, it, in turn, would be sufficient to show that
the spectrum of the operator �τ,l is contained inside the unit circle with centre at zero.

We show that, under the conditions assumed, the spectral radius r(�τ,l) of the operator
�τ,l admits the estimate

r(�τ,l)≤ α. (5.24)

Indeed, condition (4.2) assumed in Theorem 4.1 for a continuous function y : [a,b]→
X can be rewritten as

αy(t) �K
(
�τ,ly

)
(t) ∀t ∈ [a,b] \Ω, (5.25)

which means nothing but the inclusion

αy−�τ,ly ∈ CK ,Ω
(
[a,b],X

)
. (5.26)

The set CK ,Ω([a,b],X), as we know from Lemma 5.3, forms a solid wedge in the space
C([a,b],X). Furthermore, assertion (ii) of the lemma mentioned guarantees that the
function y, which also satisfies condition (4.1), belongs to the interior of the wedge
CK ,Ω([a,b],X).

Note also that, in view of Lemma 5.4, the inclusion l ∈ �K (τ,Ω; [a,b],X) implies
that the mapping �τ,l : C([a,b],X)→ C([a,b],X) satisfies condition (5.13). According to
Lemma 5.5, the regularity of l implies the complete continuity of �τ,l. Finally, in view of
(5.12), the operator �τ,l leaves the wedge CK ,Ω([a,b],X) invariant.

Applying Theorem 5.2 with m = 1, � = C([a,b],X), � = CK ,Ω([a,b],X), g = y, and
A= �τ,l, we establish inequality (5.24). In view of the condition 0≤ α < 1, this, as is well
known, guarantees the convergence of the series

u := fc + �τ,l fc + �2
τ,l fc + ··· (5.27)

to the unique solution u of (5.23) or, which is the same (see Lemma 5.6), of the inhomo-
geneous Cauchy problem (3.1), (3.2). Clearly, series (5.27) coincides with (4.3).

Property (2.7) of the solution of problem (3.1), (3.2) follows immediately from its
series representation (5.27) and inclusion (5.12) because CK ,Ω([a,b],X) is a closed set
possessing property (i) of Definition 2.1.

5.4. Proof of Theorem 4.4. Since bladeK = {0} in the case where K is a cone, it is clear
that Theorem 4.4 is an immediate consequence of Theorem 4.1.
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5.5. Proof of Corollary 4.6. It is sufficient to apply Theorem 4.4 with Ω=∅. Note that,
to prove the (τ,∅)-positivity of the operator �τ,l, it suffices to apply the the following
statement: if a Bochner integrable function h : [a,b]→ X satisfies the condition

h(t)sign(t− τ) �K 0 for a.e. t ∈ [a,b], (5.28)

then the relation
∫ t
τ h(s)ds�K 0 holds for all t ∈ [a,b].

5.6. Proof of Corollary 4.10. We apply Theorem 4.4 to the scalar Cauchy problem (4.24),
(3.2). To do so, we put X :=R, K :=R+, and

(lu)(t) := p(t)u
(
θ(t)

)
, t ∈ [a,b]. (5.29)

Operator (5.29) is obviously regular because under our assumptions,

∣∣p(t)u
(
θ(t)

)∣∣≤ ∣∣p(t)
∣∣ max
s∈[a,b]

∣∣u(s)
∣∣ (5.30)

for almost every t ∈ [a,b] and an arbitrary u from C([a,b],R). We show that the operator
l defined by formula (5.29) belongs to the set �R+ (τ,Ω; [a,b],R).

According to Definition 2.8, conditions (4.25) and (4.27) imposed on the functions p
and θ imply the (τ,Ω)-positivity of the corresponding operator (5.29) with respect to the
cone R+.

The function θ is assumed to satisfy condition (4.27) and, therefore, the fulfilment of
the relation u([a,b] \Ω) ⊂ {0} for u from C([a,b],X) yields that the function [a,b] �
t 	→ p(t)u(θ(t)) vanishes almost everywhere on the interval [a,b]. This means that, under
our assumptions, l ∈�R+ (τ,Ω; [a,b],R). It remains to construct a continuous function
y : [a,b]→R satisfying conditions (4.1) and (4.2), which, by (5.29), have the form

y(t) > 0 ∀t ∈ [a,b] \Ω, (5.31)

αy(t)≥
∫ t

τ
p(s)y

(
θ(s)

)
ds for every t ∈ [a,b] \Ω, (5.32)

respectively.
We set

y(t) := 1, t ∈ [a,b]. (5.33)

Then condition (5.31) is obviously satisfied, whereas relation (5.32) takes the form

α≥
∫ t

τ
p(s)ds for every t ∈ [a,b] \Ω. (5.34)

Note that (5.34) is true in view of inequality (4.26) because 0≤ α < 1 and, by assump-
tion, condition (4.25) holds for the function p.

Thus, we have shown that, in the case indicated, all the conditions of Theorem 4.4 are
satisfied. Application of the theorem mentioned leads us to the conclusion required.
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[1] N. Z. Dil’naya and A. N. Rontó, Some new conditions for the solvability of the Cauchy problem
for systems of linear functional-differential equations, Ukrainian Math. J. 56 (2004), no. 7,
1033–1053.
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