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The implicit function theorem asserts that there exists a ball of nonzero radius within
which one can express a certain subset of variables, in a system of equations, as functions
of the remaining variables. We derive a lower bound for the radius of this ball in the case
of Lipschitz maps. Under a sign-preserving condition, we prove that an implicit function
exists in the case of a set of inequalities. Also in this case, we state an estimate for the
size of the domain. An application to the local Lipschitz behavior of solution maps is
discussed.

1. Introduction

The implicit function theorem is one of the fundamental results in multivariable anal-
ysis [1, 8, 11]. It asserts that if Fi(x, y), i = 1, . . . ,n, x ∈ Rm, y ∈ Rn, are countinuously
differentiable functions in a neighborhood of a point (x0, y0), where Fi(x0, y0) = 0, for
i= 1, . . . ,n, and the Jacobian

DyF
(
x0, y0

)= ( ∂Fi
∂yj

(
x0, y0

))
1≤i, j≤n

(1.1)

is invertible, then there exist a positive number r > 0 and continuous functions g1(x), . . . ,
gn(x), defined in the domain B = {x ∈ Rm : |x − x0| < r}, such that gi(x0) = y0i and
Fi(x,g1(x), . . . ,gn(x)) = 0, for i = 1, . . . ,n, in B. This theorem has been extended to Lip-
schitz functions by Clarke [4, 5]. In this case F = (F1, . . . ,Fn) is a locally Lipschitz func-
tion in a neighborhood of (x0, y0) and the invertibility assumption is required for all the
matrices of the generalized Jacobian of F at (x0, y0).

Despite the central role played by this result in analysis, multidimensional nonlinear
optimization algorithms [2, 7, 16, 17], and in developing Newton-type methods for solv-
ing nonsmooth equations [12, 13, 18], a lower bound for the size of the domain B has
not been sufficiently investigated in the literature. The first nontrivial estimate has been
reported in [3] for the case of complex analytic functions. The authors base their result
on the Roche theorem to derive a lower bound in the case n = 1, then they recursively
extend this estimate to the general case.
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Some important problems, like those which appear in sensitivity and stability analysis
of systems of equations and inequalities [14, 15], do not show strong regularity proper-
ties. Therefore, over the years, a great deal of attention has been focused on developing
new tools for maps not necessarily differentiable.

Given the high relevance played by the Lipschitz continuity, one of the purposes of
this paper is to establish an estimate for the size of the domain B and consequently of
the set of values of the implicit function, in the context of Lipschitz continuous maps.
These estimates can be applied for proving the upper-Lipschitz continuity [19] of some
set-valued maps. This is a recently introduced concept of regularity which turns out to
be quite natural in nonlinear optimization. For illustration, we consider the question of
the local Lipschitz behavior of the map “parameter x maps to set of solutions of x ∈
f (y) + C,” where x ∈ Rm, y ∈ Rn, f : Rn → Rm is a Lipschitz function and C ⊂ Rm is
closed; more precisely, we consider the following map:

x ∈Rm �−→ S(x)= {y ∈Rn : x ∈ f (y) +C
}
. (1.2)

In particular, when C = {0}, we obtain a system of equations. For C = Rm
+ , the posi-

tive orthant in Rm, we have a system of inequalities. The local Lipschitz properties of S,
are mainly used for constructing effective numerical algorithms. Actually, by Newton’s
method [18] applied to the problem x ∈ f (y) + C, we mean the following procedure
which generates a sequence {y1, y2, . . .}, with a given starting point y0, according to the
rule

x ∈ f
(
yn
)

+ ∂ f
(
yn
) · (yn+1− yn

)
+C, (1.3)

where ∂ f denotes the generalized Jacobian of f . For given x and y, let {yn} be a New-
ton sequence, that is, a sequence starting from y and satisfying (1.3). Denote by N(x, y)
the set of all Newton sequences for x, starting from the point y. Then in [6] it is proved
that the local upper-Lipschitz continuity of S implies that every Newton sequence, within
a sufficiently small ball around the solution, is convergent. Moreover the radius of this
ball is controlled by a constant which depends on the local Lipschitz behavior of S. Actu-
ally, in establishing the upper-Lipschitz continuity, we have to estimate three parameters
which characterize this property and, as shown in [6], these numbers can be used to de-
rive the rate of convergence of Newton sequences. As shown in Section 4, the implicit
function theorems we prove can be used to find lower bounds for these three constants,
see Proposition 4.2.

In many applications, as in the problem mentioned above, we are mainly interested in
finding an implicit function for a set of inequalities (i.e., Fi ≤ 0, for 1≤ i≤ n), where the
variable y is constrained to stay in a closed convex set Ω ⊂ Rn. In this case, we cannot
apply the classical version of the implicit function theorem because the implicit function
has to map the variable x into the set Ω. Moreover the reference point y0 can lie on the
boundary of Ω, while the map F could not be continuously differentiable in a neigh-
borhood of this point, as required by the classical version of the implicit function theo-
rem. Another interesting case appears when the map F is Lipschitz continuous around
the reference point (x0, y0), but the generalized Jacobian at this point contains singular
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matrices. In such a situation, we cannot apply the Lipschitz version of that result, see
Example 4.7.

Then the question is can we construct an implicit function g(x) = (g1(x), . . . ,gn(x))
such that Fi(x,g(x))≤ 0, for 1≤ i≤ n, in some neighborhood of x0?

A second purpose of this work, is to give an answer to this question. By requiring a
sign-preserving condition on the Jacobian, we will prove that an implicit function exists,
see Theorem 3.4. This result can be used to study the local Lipschitz properties of the
solution map (1.2). Therefore, also for this version of the implicit function theorem, we
state a lower bound for the size of the domain of the implicit function.

The outline of the paper is as follows. Section 2 provides some basic definitions and
notations used in the rest of the paper. In Section 3, we state our main results. In Section 4,
we discuss the connection between our extensions of the implicit function theorem and
the local Lipschitz behavior of the solution map (1.2). Furthermore, for an easier com-
prehension of our assumptions and results, in this section, we present some examples.
Finally Section 5 is devoted to the proof of the results.

2. Main notations and definitions

In this section, we introduce the main notations and definitions used in this paper.
(1) Given a separable metric space (M,d), where d is a distance on M, the open ball

in M with center x ∈M and radius r > 0 is denoted by Br(x) = {y ∈M : d(y,x) < r}. If
M =Rm, we take for d the norm | · |, obtained by the usual scalar product 〈·,·〉 on Rm.
Moreover, for any set A⊂M, clA, ∂A denote the closure and the boundary of A, respec-
tively; for every ε > 0, Aε = {y : d(y,A) < ε} denotes the open ball of radius ε around A.

(2) Given an open set A⊂ Rm and B ⊂ Rn, the space Ck(A;B), for k ≥ 0, denotes the
space of B-valued functions that are continuous with their derivatives up to the order k
in A. The space Ck(clA;B) is the space of functions in Ck(A;B), such that each derivative
up to the order k can be continuously extended to ∂A. When B = Rn, we will omit to
indicate the set of values. We will use the notations D and Dx for the Jacobians of a vector-
valued function, where the subscript stands for the partial derivation with respect to the
variable x.

Let F ∈ C1(clA) and x ∈ ∂A; in the sequel, DF(x) will denote the value at x of the
continuous extension, to the closure of A, of the usual Jacobian of F.

(3) Let x ∈ Rn, then we say x ≤ 0 (resp., x ≥ 0) if and only if xi ≤ 0 (resp., xi ≥ 0) for
every i= 1, . . . ,n.

(4) Let Rm×n be the space of all real matrices with m rows and n columns. We will
denote by Im the identity matrix of order m. Let S ∈ Rm×n, then we define the norm of
S as

‖S‖ =max
x∈Rn

|x|=1

|S · x|. (2.1)

Let � be a set of real square matrices of the same order. We say that � is invertible if
every matrix in � is invertible and we will denote by �−1 the inverse of �, that is,

�−1 = {S−1 : S∈�
}
. (2.2)
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We extend the norm (2.1) to the case of a bounded set of matrices �:

‖�‖∞ = sup
S∈�

‖S‖. (2.3)

For every n and λ > 0, let

�(λ,n)= {S∈Rn×n : S is invertible and
∥∥S−1

∥∥ < λ
}
. (2.4)

Definition 2.1. Let S ∈ Rn×n, then S is sign preserving if and only if the following holds
true:

S · p ≥ 0 ∀p ∈Rn s.t. p ≥ 0. (2.5)

We recall the notion of generalized Jacobian for Lipschitz functions introduced by
F. H. Clarke.

(5) Let F be an Rm-valued Lipschitz continuous function over an open domain A ⊂
Rn. We define the Lipschitz constant of F as

Lip(F)= sup
x,x′∈A
x =x′

∣∣F(x)−F(x′)
∣∣

|x− x′| . (2.6)

Let D(F) denote the set of all points in A where F is differentiable, then by Rademacher’s
theorem, D(F) is of full Lebesgue measure on A. Therefore we can define the generalized
Jacobian of F at a point x ∈A:

∂F(x)= co
{
P ∈Rm×n : P = lim

xh→x
DF

(
xh
)
, xh ∈D(F)

}
, (2.7)

where the notation “co” indicates the convex hull. We define the generalized partial de-
rivative of F at x = (x1,x2)∈Rn1 ×Rn2 , with n1 +n2 = n, as

∂x1F
(
x1,x2

)= {P ∈Rm×n1 : ∃Q∈Rm×n2 , s.t. [P,Q]∈ ∂F(x)
}
. (2.8)

In a similar way, one can define ∂x2F(x1,x2). Some fundamental properties of the gener-
alized Jacobian are summarized below.

(6) Let Γ be a set-valued map from A⊂Rm to the subsets of Rn. For every U ⊂ A, we
set

Γ(U)=
⋃
x∈U

Γ(x). (2.9)

Definition 2.2. Let Γ be a set-valued map from A⊂Rm to the subsets of Rn. Γ is said to be
upper semicontinuous (u.s.c.) at x ∈ A if, for every neighborhood V of Γ(x) in Rn, there
exists a neighborhood U of x in Rm such that Γ(U ∩A)⊂V .
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Proposition 2.3 [5, Proposition 2.6.2]. Let F : A⊂Rn→Rm be Lipschitz continuous near
x ∈ A. Then the following statements hold:

(a) ∂F(x) is a nonempty convex compact subset of Rm×n;
(b) ∂F(x) is closed at x;
(c) ∂F(x) is u.s.c. at x. In particular, for any ε > 0, there exists δ > 0 such that

∂F(x′)⊂ ∂F(x) + εB1(0) ∀x′ ∈ Bδ(x)∩A. (2.10)

We recall a key result in the theory of Lipschitz continuous functions.

Theorem 2.4 (mean value theorem, [5, Proposition 2.6.5]). Let F : A→ Rm be Lipschitz
continuous on an open convex set A⊂Rn, and let x, y ∈ A. Then, there exists a matrix P ∈
co∂F([x, y]) (where [x, y] stands for the straight-line segment connecting x and y) such that

F(x)−F(y)= P · (x− y). (2.11)

3. Main results

In this section, we present our main results. The first version of the implicit functions
theorem is concerned with the case of Lipschitz maps, and here we estimate the size of
the neighborhoods where the implicit function is defined. The proof of this result is based
on a fundamental inclusion proved in Proposition 5.1.

As explained in Section 4, the other result we present allows to deal with the following
situations.

(1) The reference point y0 lies on the boundary of the set where the map F is defined.
(2) The map F is Lipschitz continuous around the reference point but the generalized

Jacobian is not invertible (see point (4) in Section 2).
In these cases, assuming a sign-preserving condition (see Definition 2.1), we prove the

existence of an implicit function for the system of inequalities F ≤ 0. Furthermore, as for
the previous result, we state a lower bound for the size of the domain where this function
is defined.

Theorem 3.1. Let F : �→ Rn be a Lipschitz map defined in the open set � ⊂ Rm ×Rn.
Let (x0, y0)∈ �, L > 0, λ > 0, and r > 0 be such that Br(x0)×Br(y0)⊂ � and the following
hypotheses hold:

(i) F(x0, y0)= 0;
(ii) ‖(∂yF(x0, y0))−1‖∞ < λ;

(iii) ‖∂xF(Br(x0)×Br(y0))‖∞ ≤ L.
Let r2 = r1/2�, � =max(1,(1 +L)λ), where

r1 = sup
{
ρ ∈ [0,r] : co

{
∂yF

(
Bρ
(
x0
)×Bρ

(
y0
))}⊂�(λ,n)

}
. (3.1)

Then there exists a unique function g ∈ C(Br2 (x0);Br1 (y0)) satisfying g(x0)= y0 and

F
(
x,g(x)

)= 0 ∀x ∈ Br2

(
x0
)
. (3.2)

Furthermore the following inequality holds true:∣∣g(x1
)− g

(
x2
)∣∣≤ λL

∣∣x1− x2
∣∣ ∀x1,x2 ∈ Br2

(
x0
)
. (3.3)
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Remark 3.2. By the properties recalled in Proposition 2.3, it is clear that the set-valued
map ρ �→ co{∂yF(Bρ(x0)×Bρ(y0))}, defined for ρ∈ [0,r], is u.s.c. at 0. By (ii), ∂yF(x0, y0)
⊂ �(λ,n) and by (2.4), �(λ,n) is open in Rn×n, therefore the number r1 in (3.1) is well
defined. We observe that the radius r2 represents a lower bound for the size of the domain
of the implicit function.

Remark 3.3. The uniqueness of the implicit function g in Theorem 3.1 implies that any
point (x, y) ∈ Br2 (x0)× Br1 (y0) such that F(x, y) = 0 belongs to the graph of g, that is,
g(x)= y.

Theorem 3.4. Let F : �→ Rn be a continuous function in the open set � ⊂ Rm ×Rn. Let
ε > 0, (x0, y0)∈ �, r1, r2 > 0 be such that, if B+

1 = {y ∈Rn : 0≤ y− y0 ≤ r1} and B2 = {x ∈
Rm : |x− x0| ≤ r2}, then B2×B+

1 ⊂ � and the following conditions hold:
() F(x0, y0)≤ 0;

() F ∈ C1(B2×B+
1 );

() −DyF(x0, y0) is invertible and sign preserving;
() the following inequalities are satisfied:

sup
x∈B2

∣∣F(x, y0
)−F

(
x0, y0

)∣∣≤ r1

(1 + ε
√
n)‖T0‖ , (3.4)

sup
B2×B+

1

∥∥In−T0 ·DyF
∥∥≤ ε

1 + ε
√
n

, T0 =
(
DyF

(
x0, y0

))−1
. (3.5)

Then there exists a function g ∈ C(B2;B+
1 ) satisfying g(x0)= y0 and

F
(
x,g(x)

)≤ 0 ∀x ∈ B2. (3.6)

Moreover the following inequality holds true:

∣∣g(x1
)− g

(
x2
)∣∣≤ (1 + ε)

∥∥T0
∥∥ sup
B2×B+

1

∥∥DxF
∥∥∣∣x1− x2

∣∣ (3.7)

for every x1,x2 ∈ B2.

Remark 3.5. The inequalities (3.4) and (3.5) are used to derive the size r2 for the domain
of definition and the size r1 for the set of values of the implicit function. In particular, the
first inequality is used to find the radius r2 as a function of r1 (i.e., r2 = r2(r1)), then from
(3.5) one derives the radius r1.

4. Comments and applications

In [6], the author relates the local upper-Lipschitz property of the solution map (1.2) to
the convergence of Newton sequences associated to a system of equations or inequalities.

In this section, we discuss an application of Theorem 3.1 to this topic showing the
role played by the estimates of the neighborhoods where the implicit function is defined.
Moreover, for the reader’s comprehension, we present some examples and applications of
Theorem 3.4.
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Definition 4.1. A set-valued map Γ fromRm to the subsets ofRn is locally upper-Lipschitz
continuous at (x∗, y∗), y∗ ∈ Γ(x∗), with constants a and b for neighborhoods and c for
growth if

Γ(x)∩ clBa
(
y∗
)⊂ y∗ + c

∣∣x− x∗
∣∣clB1(0) ∀x ∈ clBb

(
x∗
)
. (4.1)

Proposition 4.2. Let S be the following solution map:

x ∈Rn �−→ S(x)= {y ∈Rnx = f (y)
}

, (4.2)

where f :Rn→Rn is Lipschitz continuous. Let y∗ ∈ S(x∗) and assume that ‖(∂ f (y∗))−1‖∞
< c. Let δ2 = δ1/2ν, where ν=max(1,2c) and

δ1 = sup
{
ρ ≥ 0 : co

{
∂ f
(
Bρ
(
y∗
))}⊂�(λ,n)

}
. (4.3)

Then for any 0 < a < δ1, 0 < b < δ2, S is locally upper-Lipschitz continuous at (x∗, y∗), with
constants a and b for neighborhoods and c for growth.

Remark 4.3. With regard to the role of the parameter a in the convergence of Newton
sequences, we observe that in [6, Theorem 3.1 and Corollary 3.1], sufficient conditions
are given so that any sequence {yn} obtained from the algorithm

x = f
(
yn
)

+Hn ·
(
yn+1− yn

)
, n= 0,1,2, . . . , (4.4)

where Hn is a suitable sequence of matrices, and whose elements are all in Bσ(y∗), is
convergent to y∗. In particular, one of the assumptions for this convergence requires that
σ is estimated from above by the constant a. Therefore it is important to have a nontrivial
lower bound on a. The amount (4.3) in Proposition 4.2 can be used to this purpose.

Proof of Proposition 4.2. Let 0 < a < δ1 and let 0 < b < δ2. Let F(x, y)= f (y)− x, then by
the hypotheses, F is Lipschitz continuous and F(x∗, y∗)= 0; moreover the assumptions
(ii) and (iii) in Theorem 3.1 are satisfied with λ = c and L = 1. Therefore we can apply
this result to F at the reference point (x∗, y∗). By the definition of F, (3.1), and (4.3),
we deduce that r1 = δ1 and r2 = δ2. Hence there exists a unique continuous function
g : Bδ2 (x∗)→ Bδ1 (y∗) such that g(x∗)= y∗ and f (g(x))= x for every x ∈ Bδ2 (x∗).

Let x ∈ clBb(x∗) and consider y ∈ S(x)∩ clBa(y∗), then we have

F(x, y)= f (y)− x = 0. (4.5)

Remark 3.3 implies that y = g(x), and the inequality (3.3) yields∣∣y− y∗
∣∣= ∣∣g(x)− g

(
x∗
)∣∣≤ c

∣∣x− x∗
∣∣. (4.6)

Therefore, y ∈ y∗ + c|x− x∗|clB1(0). In light of Definition 4.1, this proves the assertion.
�

Remark 4.4. We observe that under the same assumptions, the argument used in the
proof of Proposition 4.2 still works in the case of a system of inequalities (i.e., f (y)− x ≤
0). In this situation it suffices to consider the map F(x, y)= [ f (y)− x]− [ f (y∗)− x∗].
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In the following example, we construct a lower bound for the supremum in (3.1).

Example 4.5. Let α,β,γ be real-valued, Lipschitz continuous functions on Rm such that

γ(0)= 0, 0 < α(x) < β(x)≤ τ ∀x ∈Rm (4.7)

for some positive constant τ > 0. Let

F(x, y)= γ(x) +

α(x)y, y ≥ 0,

β(x)y, y < 0.
(4.8)

Let R > 0, then F is Lipschitz continuous on Rn × (−R,R) with a constant estimated by√
2max(Lip(γ) +MR,τ), where M =max(Lip(α),Lip(β)). Since F(0,0)= 0 and ∂yF(0,0)

= [α(0),β(0)], taking λ > 1/α(0), we can apply Theorem 3.1 to F at (0,0). We find a lower
bound for the radius r1 defined in (3.1). We choose R and λ to satisfy also the inequality

α(0)−RLip(α)≤ λ−1. (4.9)

Let ρ > 0 be such that

ρLip(α) < α(0)− λ−1. (4.10)

It is easy to show that

∂yF
(
Bρ(0)× (−ρ,ρ)

)⊂ ⋃
|x|<ρ

[
α(x),β(x)

]
, (4.11)

and for any t ∈ [α(x),β(x)], with |x| < ρ, it holds that

t ≥ α(x)≥ α(0)− ρLip(α) > λ−1. (4.12)

Using (4.11) and (4.12), we obtain the inclusion

co
{
∂yF

(
Bρ(0)× (−ρ,ρ)

)}⊂ S(λ,1). (4.13)

Hence, by (3.1), the number ρ belongs to the set whose supremum is r1, so r1 ≥ ρ. By the
arbitrary choice of ρ > 0 satisfying (4.10), we get the following estimate:

r1 ≥ α(0)− λ−1

Lip(α)
. (4.14)
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Remark 4.6. The typical cases where we can apply Theorem 3.4, are the following.
(1) Let G∈ C1(Rm× clΩ;Rn), where Ω⊂Rn is an open convex set, and consider x0 ∈

Rm, y0 ∈ ∂Ω, such that G(x0, y0) ≤ 0. Then it is easy to show that there exists at least a
basis v = {v1,v2, . . . ,vn} in Rn and a positive number r such that the “cones”

Cr
(
y0;v

)={y0 +
n∑
i=1

yivi : yi ∈ [0,r]∀i= 1, . . . ,n

}
,

C+
r

(
y0;v

)={y0 +
n∑
i=1

yivi : yi ∈ (0,r]∀i= 1, . . . ,n

} (4.15)

satisfy Cr(y0;v) ⊂ clΩ and C+
r (y0;v) ⊂ Ω. For instance, if Ω = {y ∈ Rn : yn < 0} and

y0 = 0, then we can consider the system v = {e1,e2, . . . ,−en}, {ei}1≤i≤n being the standard
orthonormal basis of Rn. With this choice, the previous inclusions hold for any r > 0.

For a basis v = {v1,v2, . . . ,vn} satisfying the previous assumptions, consider the func-
tion F defined by

F(x, y)=G
(
x, y0 +V · y), (4.16)

where V ∈ Rn×n is the matrix whose columns are the vectors v1,v2, . . . ,vn. Then F ∈
C1(Rm× [0,r]n); if DyG(x0, y0) is invertible and the following holds:

p ∈Rn, V−1 · p ≥ 0=⇒DyG
(
x0, y0

) · p ≤ 0, (4.17)

then F satisfies the hypotheses of Theorem 3.4 at (x0,0): in fact, given the regularity as-
sumptions on G, it is always possible to solve the inequalities (3.4), (3.5) to determine
r1 ≤ r and r2. Therefore, there exists a Lipschitz continuous function g : B2 → [0,r1]n such
that g(x0)= 0 and (3.6) holds true. In light of the requirements on v, the Lipschitz con-
tinuous function f = y0 +V · g is clΩ-valued, and

f
(
x0
)= y0, G

(
x, f (x)

)≤ 0 ∀x ∈ B2. (4.18)

(2) Let F : Rm×Rn → Rn be a Lipschitz continuous function in a neighborhood of a
point (x0, y0) ∈ Rm ×Rn, where F(x0, y0) = 0. If ∂yF(x0, y0) is not invertible, we cannot
apply the implicit function theorem for Lipschitz maps [5]. However, if there exists an
open convex set Ω ⊂ Rn such that y0 ∈ ∂Ω and the argument of the previous point can
be applied, then we can find an implicit function g(x), defined in a neighborhood of x0,
for the set of inequalities F ≤ 0. We illustrate this situation in the following example.

Example 4.7. Let F(x, y)= h(x, y)− [y]+ where (x, y)∈R2, [·]+ denotes the positive part
of a real number, and h is a smooth function such that h(0,0)= 0, Dyh(0,0)∈ [0,1). The
function F is Lipschitz continuous in a neighborhood of (0,0) where F(0,0)= 0, and the
generalized partial Jacobian at this point is

∂yF(0,0)=Dyh(0,0)− [0,1], (4.19)

which contains 0. Therefore we cannot apply the Lipschitzian version of the implicit func-
tion theorem at (0,0). Nevertheless, by considering the restriction of F to the domain
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R× [0,∞), we get F ∈ C1(R× [0,∞)); moreover, using the convention described in the
point (2) of section 2, we have

DyF(0,0)=Dyh(0,0)− 1 < 0. (4.20)

Therefore −DyF(0,0) is invertible and sign preserving, and we can apply Theorem 3.4 to
F at (0,0) obtaining an implicit function for the inequality F ≤ 0.

5. Proof of the results

This section is devoted to the proof of the results presented in Section 3. We proceed by
proving Theorem 3.1. To this end we need to state a result which represents a specialized
version of [10, Theorem 5.2].

Proposition 5.1. Let f : Br(ξ0) ⊂ Rn → Rn be a Lipschitz continuous function such that
co{∂ f (Br(ξ0))} is invertible and there exists � > 0 such that∥∥(co

{
∂ f
(
Br
(
ξ0
))})−1∥∥∞ ≤ �. (5.1)

Then the following hold:

∣∣ f (ξ0 +h
)− f

(
ξ0
)∣∣≥ 1

�
|h| ∀|h| < r, (5.2)

Br/2�
(
f
(
ξ0
))⊂ f

(
Br
(
ξ0
))
. (5.3)

Proof of Theorem 3.1. Let f (x, y) = (F(x, y),x) for (x, y) ∈ Br(ξ0) where ξ0 = (x0, y0) ∈
Rm+n. We have

∂ f (x, y)=
(
∂xF(x, y) ∂yF(x, y)

Im O

)
∀(x, y)∈ Br

(
ξ0
)
, (5.4)

where O denotes a null matrix of order m× n. Let 0 < ρ < r1, then by (3.1) we have the
inclusion

co
{
∂yF

(
Bρ
(
x0
)×Bρ

(
y0
))}⊂ S(λ,n). (5.5)

By (5.4), if H ∈ co{∂ f (Bρ(ξ0))}, then there exist Q ∈ co{∂xF(Bρ(x0)× Bρ(y0))}, P ∈
co{∂yF(Bρ(x0)×Bρ(y0))} such that

H =
(
Q P
Im O

)
, (5.6)

and by the invertibility of P we have

H−1 =
(

O Im
P−1 −P−1 ·Q

)
. (5.7)

The assumption (iii) yields ‖Q‖ ≤ L. Hence, using (5.7) and the definition of S(λ,n) in
(2.4), we easily get ∥∥H−1

∥∥≤max
(
1,(1 +L)λ

)= �. (5.8)
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We can apply Proposition 5.1 to f obtaining the inclusion

Bρ/2�
(
0,x0

)⊂ f
(
Bρ
(
x0, y0

))
. (5.9)

Let x ∈ Bρ/2�(x0), then by (5.9) we find (x′, y)∈ Bρ(x0, y0) such that f (x′, y)= (0,x). By
the definition of f , x′ = x and we set g(x)= y ∈ Bρ(y0). We prove that g is well defined.
If there exist y1, y2 ∈ Bρ(y0) such that f (x, y1) = f (x, y2) = (0,x), then by Theorem 2.4
we have

0= F
(
x, y1

)−F
(
x, y1

)∈ co
{
∂yF

(
x,
[
y1, y2

])} · (y1− y2
)
. (5.10)

Since ρ/2� < ρ < r1 and using (5.5), we obtain y1 = y2. By construction and (i), we get
g(x0)= y0 and the equation (3.2) in Bρ/2�(x0). We show that g is Lipschitz continuous. Let
x1,x2 ∈ Bρ/2�(x0) and g1 = g(x1), g2 = g(x2), then by (3.2) and the mean value theorem,
we have

0= F
(
x1,g1

)−F
(
x2,g2

)= [F(x1,g1
)−F

(
x1,g2

)]
+
[
F
(
x1,g2

)−F
(
x2,g2

)]
= P · (g1− g2

)
+Q · (x1− x2

) (5.11)

for some P ∈ co{∂yF(x1, [g1,g2])} and Q ∈ co{∂xF([x1,x2],g2)}. Since [x1,x2] ⊂ Bρ(x0)
and [g1,g2]⊂ Bρ(y0), by (5.5) and (iii), we can write

|P · x| ≥ 1
λ
|x| ∀x ∈Rn, ‖Q‖ ≤ L. (5.12)

Using (5.12) in (5.11), we get∣∣g1− g2
∣∣≤ λ

∣∣P · (g1− g2
)∣∣= λ

∣∣Q · (x1− x2
)∣∣≤ λL

∣∣x1− x2
∣∣. (5.13)

For any fixed ρ ∈ (0,r1), the relation (5.10) implies the uniqueness of g. The previous
analysis proves that the following set is nonempty:

X =
{

(g,ρ) : ρ ≤ r1, g ∈ C
(
Bρ/2�

(
x0
)
; Bρ

(
y0
))

, g
(
x0
)= y0, g satisfies (3.2)

and (3.3) in Bρ/2�
(
x0
)}
.

(5.14)

We assign the following order relation (≤X) on X :

(g,ρ)≤X (h,δ)⇐⇒ ρ ≤ δ, (5.15)

and h extends g. By a standard argument based on the Zorn lemma, we deduce that X
admits a maximal element with respect to the relation ≤X . Let (ĝ, ρ̂) ∈ X be such ele-
ment, then ρ̂ = r1. Otherwise, for a fixed ρ̂ < ρ1 < r1, we can repeat the previous con-
struction to find a function g1 ∈ C(Bρ1/2�(x0); Bρ1 (y0)) satisfying g(x0) = y0, (3.2), and
(3.3) over Bρ1/2�(x0). Since (g1,ρ1) ∈ X and g1 is unique on its domain of definition, we
have (ĝ, ρ̂)≤X (g1,ρ1). Since ρ̂ < ρ1, this yields a contradiction proving that ρ̂ = r1. Hence
the maximal element of X is the implicit function we are seeking. This concludes the
proof. �
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Proof of Proposition 5.1. Applying the mean value Theorem 2.4, we have

f
(
ξ0 +h

)− f
(
ξ0
)∈ co

{
∂ f
(
ξ0 + th

)
: t ∈ [0,1]

} ·h ∀|h| < r, (5.16)

and by the hypotheses, for every S ∈ co{∂ f (Br(ξ0))}, we have |Sx| ≥ �−1|x| for any x ∈
Rn, therefore (5.2) follows. To prove the inclusion (5.3), consider r > ρ > 0 and η ∈
Bρ/2�(η0), η0 being f (ξ0). Let Φ(ξ)= |η− f (ξ)|2. This function takes its minimum over

clBρ(ξ0) in a point ξ. In fact ξ ∈ Bρ(ξ0), otherwise we have |ξ − ξ0| = ρ and by (5.2) we get

∣∣η− f
(
ξ0
)∣∣≥ ∣∣ f (ξ0

)− f (ξ)
∣∣−∣∣η− f (ξ)

∣∣≥ ρ

�
−∣∣η− f

(
ξ0
)∣∣ (5.17)

implying |η−η0| ≥ ρ/2�, which is false of course. Therefore we conclude that ξ lies in the
interior of the ball. Now if η = f (ξ), we are done. Otherwise, by the optimality condition
[9], it holds that

0∈ 2
(
f (ξ)−η

)� · ∂ f (ξ), (5.18)

where (·)� denotes the transpose. Since ∂ f (ξ) contains only invertible matrices, (5.18) is
true only when f (ξ)− η = 0, and this is a contradiction. Therefore we have proved the
following inclusion:

Bρ/2�
(
η0
)⊂ f

(
Bρ
(
ξ0
))

(5.19)

for any 0 < ρ < r. By the arbitrary choice of ρ, we obtain the inclusion (5.3). �

Proof of Theorem 3.4. Let G(·,·)= F(·,·)−F(x0, y0), then we use a fixed-point argument
applied to the following map:

Φ : C
(
B2;B+

1

)−→ C
(
B2;B+

1

)
,

Φ(v)(x)= y0 +
[
v(x)−T0 ·G

(
x,v(x)

)− y0
]

+ ∀v ∈ C
(
B2;B+

1

)
, x ∈ B2,

(5.20)

where T0 = (DyF(x0, y0))−1 and [ξ]+ denotes the vector whose entries are the positive
parts of the components of ξ. We consider the supremum norm on C(B2;B+

1 ). Using
the assumption (), we show that Φ is well defined and is a contraction. Let v,v′ ∈
C(B2;B+

1 ), x ∈ B2; since the Lipschitz constant of τ ∈ R �→ [τ]+ is 1 and B+
1 is convex, by

() and (3.5) we have

∣∣Φ(v)(x)−Φ(v′)(x)
∣∣≤ ∣∣v(x)−T0 ·G

(
x,v(x)

)− v′(x) +T0 ·G
(
x,v′(x)

)∣∣
≤ sup

B2×B+
1

∥∥In−T0 ·DyF
∥∥∣∣v(x)− v′(x)

∣∣
≤ ε

1 + ε
√
n

∣∣v(x)− v′(x)
∣∣.

(5.21)
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Therefore Φ is a contraction map. Let v be the constant function y0, then by Φ(v)(x0)=
y0, (3.4), and (5.21), we can write

0≤ (Φ(v)(x)− y0
)
i ≤

∣∣Φ(v)(x)− y0
∣∣

≤ ∣∣Φ(v)(x)−Φ(v)(x)
∣∣+

∣∣Φ(v)(x)−Φ(v)
(
x0
)∣∣

≤ ε
√
n

(1 + ε
√
n)

r1 +
∥∥T0

∥∥ sup
x∈B2

∣∣F(x, y0
)−F

(
x0, y0

)∣∣
≤ ε

√
n

1 + ε
√
n
r1 +

∥∥T0
∥∥ 1

1 + ε
√
n

r1∥∥T0
∥∥ = r1 ∀i= 1, . . . ,n.

(5.22)

This yields Φ(v)(x)∈ B+
1 and it proves that Φ is well defined. Since C(B2;B+

1 ) is a closed
subspace of the Banach space C(B2;Rn), we can apply the fixed-point theorem getting a
unique function g ∈ C(B2;B+

1 ) such that

g(x)= y0 +
[
g(x)−T0 ·G

(
x,g(x)

)− y0
]

+ ∀x ∈ B2. (5.23)

Let x ∈ B2 and 1≤ i≤ n; if (g(x)− y0)i = 0, then (5.14) implies(
T0 ·G

(
x,g(x)

))
i ≥ 0. (5.24)

Otherwise, if (g(x)− y0)i > 0, then (g(x)− T0 ·G(x,g(x))− y0)i > 0, and by (5.23) we
have (

T0 ·G
(
x,g(x)

))
i = 0. (5.25)

In conclusion p = T0 ·G(x,g(x)) ≥ 0. Using (), the matrix −T−1
0 is sign preserving,

hence

G
(
x,g(x)

)= T−1
0 · p ≤ 0 ∀x ∈ B2. (5.26)

By () and the definition of G, we obtain (3.6).
In the fixed-point theorem, the function g is obtained as the limit of the following

sequence:

gn+1 =Φ
(
gn
) ∀n≥ 0. (5.27)

Choosing g0 = v and using G(x0, y0)= 0, it is easy to show, by induction, that gn(x0)= y0

for every n, which yields g(x0) = y0. Finally, we prove the Lipschitz continuity of g. Let
x1,x2 ∈ B2 and g1 = g(x1), g2 = g(x2), then by (5.23) and (3.5) we have∣∣g1− g2

∣∣≤ ∣∣g1−T0 ·G
(
x1,g1

)− g2 +T0 ·G
(
x2,g2

)∣∣
≤ ∣∣g1−T0 ·G

(
x1,g1

)− g2 +T0 ·G
(
x1,g2

)∣∣+
∥∥T0

∥∥∣∣G(x1,g2
)−G

(
x2,g2

)∣∣
≤ ε

1 + ε

∣∣g1− g2
∣∣+

∥∥T0
∥∥ sup
B2×B+

1

∥∥DxF
∥∥∣∣x1− x2

∣∣.
(5.28)

The previous chain of inequalities proves (3.7). �
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