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1. Introduction

Our main objective is to study the pointwise behaviour and Lusin-type approximation of
functions which belong to a variable exponent Sobolev space. In particular, we are inter-
ested in the first-order Sobolev spaces. The standard Sobolev spaceW1,p(Rn) with 1≤ p <
∞ consists of functions u ∈ Lp(Rn), whose distributional gradient Du = (D1u, . . . ,Dnu)
also belongs to Lp(Rn). The rough philosophy behind the variable exponent Sobolev
space W1,p(·)(Rn) is that the standard Lebesgue norm is replaced with the quantity

∫
Rn

∣∣u(x)
∣∣p(x)

dx, (1.1)

where p is a function of x. The exact definition is presented below, see also [1, 2]. Variable
exponent Sobolev spaces have been used in the modeling of electrorheological fluids, see,
for example, [3–7] and references therein. Very recently, Chen et al. have introduced a
new variable exponent model for image restoration [8].

A somewhat unexpected feature of the variable exponent Sobolev spaces is that smooth
functions need not be dense without additional assumptions on the exponent. This was
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observed by Zhikov in connection with the so-called Lavrentiev phenomenon. In [9], he
introduced a logarithmic condition on modulus of continuity of the variable exponent.
Variants of this condition have been expedient tools in the study of maximal functions,
singular integral operators, and partial differential equations with nonstandard growth
conditions on variable exponent spaces. This assumption is also important for us. Under
this assumption, compactly supported smooth functions are dense in W1,p(·)(Rn).

Instead of approximating by smooth functions, we are interested in Lusin-type ap-
proximation of variable exponent Sobolev functions. By a Lusin-type approximation we
mean that the Sobolev function coincides with a continuous Sobolev function outside
a small exceptional set. The essential difference compared to the standard convolution
approximation is that the mollification by convolution may differ from the original func-
tion at every point. In particular, our result implies that every variable exponent Sobolev
function can be approximated in the Lusin sense by Hölder continuous Sobolev functions
in the variable exponent Sobolev space norm. In the classical case this kind of question
has been studied, for example, in [10–16]. For applications in calculus of variations and
partial differential equations, we refer, for example, to [17, 18].

Our approach is based on maximal functions. For a different point of view, which
is related to [15], in the variable exponent case, we refer to [19]. Bounds for maximal
functions in variable exponent spaces have been obtained in [20–27]. The exceptional
set is estimated in terms of Lebesgue measure and capacity. We apply the fact that the
fractional maximal function is smoother than the original function and it can be used as
a test function for the capacity.

2. Variable exponent spaces

Let Ω ⊂ Rn be an open set, and let p : Ω→ [1,∞) be a measurable function (called the
variable exponent on Ω). We write

p+
Ω = ess sup

x∈Ω
p(x), p−Ω = ess inf

x∈Ω
p(x), (2.1)

and abbreviate p+ = p+
Ω and p− = p−Ω. Throughout the work we assume that 1 < p− ≤

p+ <∞. Later we make further assumptions on the exponent p.
The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable functions u :

Ω→ [−∞,∞] such that

ρp(·),Ω(u)=
∫
Ω

∣∣u(x)
∣∣p(x)

dx <∞. (2.2)

The function ρp(·),Ω(·) : Lp(·)(Ω)→ [0,∞] is called the modular of the space Lp(·)(Ω). We
define the Luxemburg norm on this space by the formula

‖u‖Lp(·)(Ω) = inf
{
λ > 0 : ρLp(·)(Ω)

(
u

λ

)
� 1

}
. (2.3)

The variable exponent Lebesgue space is a special case of a more general Orlicz-Musielak
space studied in [28]. For a constant function p(·), the variable exponent Lebesgue space
coincides with the standard Lebesgue space.
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The variable exponent Sobolev space W1,p(·)(Ω) consists of all functions u ∈ Lp(·)(Ω),
whose distributional gradient Du = (D1u, . . . ,Dnu) belongs to Lp(·)(Ω). The variable ex-
ponent Sobolev space W1,p(·)(Ω) is a Banach space with the norm

‖u‖W1,p(·)(Ω) = ‖u‖Lp(·)(Ω) +‖Du‖Lp(·)(Ω). (2.4)

For the basic theory of variable exponent spaces, we refer to [1], see also [2].

3. Capacities

We are interested in pointwise properties of variable exponent Sobolev functions and,
for simplicity, we assume that our functions are defined in all of Rn. Exceptional sets for
Sobolev functions are measured in terms of the capacity. In the variable exponent case,
the capacity has been studied in [29, Section 3]. Let us recall the definition here. The
Sobolev p(·)-capacity of E ⊂Rn is defined by

Cp(·)(E)= inf
∫
Rn

(∣∣u(x)
∣∣p(x)

+
∣∣Du(x)

∣∣p(x))
dx, (3.1)

where the infimum is taken over all admissible functions u∈W1,p(·)(Rn) such that u� 1
in an open set containing E. If there are no admissible functions for E, we set Cp(·)(E)=
∞. This capacity enjoys many standard properties of capacities, for example, it is an outer
measure and a Choquet capacity, see [29, Corollaries 3.3 and 3.4].

We define yet another capacity of E ⊂Rn by setting

Capp(·)(E)= inf
∫
Rn

(∣∣u(x)
∣∣p∗(x)

+
∣∣Du(x)

∣∣p(x))
dx, (3.2)

where p∗(x) = np(x)/(n− p(x)) is the Sobolev conjugate of p(x) and the infimum is
taken over all functions u such that u∈ Lp∗(·)(Rn), Du∈ Lp(·)(Rn), and u≥ 1 in an open
set containing E.

It is easy to see that

|E| ≤ Cp(·)(E), |E| ≤ Capp(·)(E). (3.3)

Thus both capacities are finer measures than Lebesgue measure. Next we study the rela-
tion of the capacities defined by (3.1) and (3.2).

By truncation it is easy to see that in (3.1) and (3.2) it is enough to test with admissible
functions which satisfy 0≤ u≤ 1. For those functions, we have

∣∣u(x)
∣∣p∗(x) ≤ ∣∣u(x)

∣∣p(x)
, (3.4)
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and hence

Capp(·)(E)≤ Cp(·)(E). (3.5)

In particular, if Cp(·)(E)= 0, then Capp(·)(E)= 0.
Assume then that Capp(·)(E)= 0. By the basic properties of Sobolev capacity, we have

Cp(·)(E)= lim
i→∞

Cp(·)
(
E∩B(0, i)

)
. (3.6)

Hence, in order to show that Cp(·)(E)= 0, it is enough to prove that Cp(·)(E∩B(0, i))= 0
for every i = 1,2, . . .. Let ε > 0. Since Capp(·)(E∩ B(0, i)) = 0, there exists an admissible

function u∈ Lp
∗(·)(Rn), Du∈ Lp(·)(Rn), and u≥ 1 in an open set containing E∩B(0, i)

for which
∫
Rn

(∣∣u(x)
∣∣p∗(x)

+
∣∣Du(x)

∣∣p(x))
dx < ε. (3.7)

Let φ ∈ C∞0 (B(0,2i)) be a cutoff function which is one in E∩B(0, i) and |Dφ| ≤ c. Now it
is easy to show that φu is an admissible function for Cp(·)(E∩B(0, i)) and hence Cp(·)(E∩
B(0, i)) < cε. Letting ε→ 0, we see that Cp(·)(E∩B(0, i))= 0. This implies that the capaci-
ties defined by (3.1) and (3.2) have the same sets of zero capacity.

Recall that a function u : Rn → [−∞,∞] is said to be p(·)-quasicontinuous with re-
spect to capacity Cp(·) if for every ε > 0 there exists an open set U with Cp(·)(U) < ε
such that the restriction of u to Rn \U is continuous. We also say that a claim holds
p(·)-quasieverywhere with respect to capacity Cp(·) if it holds everywhere in Rn \N with
Cp(·)(N)= 0. The corresponding notions can be defined with respect to capacity Capp(·)
in the obvious way.

By (3.5) we see that if a function is p(·)-quasicontinuous with respect to capacityCp(·),
then it is p(·)-quasicontinuous with respect to capacity Capp(·). From now on, we will use
the capacity defined by (3.2). It has certain advantages over the capacity defined by (3.1)
which will become clear when we estimate the size of the exceptional set in our main
result.

If continuous functions are dense in the variable exponent Sobolev space, then each
function inW1,p(·)(Rn) has a p(·)-quasicontinuous representative, see [29, Theorem 5.2].
It follows from our assumptions that the Hardy-Littlewood maximal operator is bounded
on Lp(·)(Rn), which implies that C∞0 (Rn) is dense in W1,p(·)(Rn) [30, Corollary 2.5]. Usu-
ally a function u ∈W1,p(·)(Rn) is defined only up to a set of measure zero. We define u
pointwise by setting

u∗(x)= limsup
r→0

−
∫
B(x,r)

u(y)dy. (3.8)

Here the barred integral sign denotes the integral average. Observe that u∗ :Rn→ [−∞,∞]
is a Borel function which is defined everywhere in Rn and that it is independent of the
choice of the representative of u. Instead of the limes superior the actual limes in (3.8)
exists p(·)-quasieverywhere in Rn and u∗ is a quasicontinuous representative of u, see
[31]. For every function u∈W1,p(·)(Rn), we take the representative given by (3.8).
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4. Fractional maximal function

The fractional maximal operator of a locally integrable function f is defined by

�α f (x)= sup
r>0

rα−
∫
B(x,r)

∣∣ f (y)
∣∣dy, 0≤ α < n. (4.1)

Here B(x,r) with x ∈Rn and r > 0 denotes the open ball with center x and radius r. The
restricted fractional maximal operator where the infimum is taken only over the radii
0 < r < R for some R > 0 is denoted by �α,R f (x). If α= 0, then � f =�0 f is the Hardy-
Littlewood maximal operator.

We say that the exponent p :Rn→ [1,∞) is log-Hölder continuous if there exists a con-
stant c > 0 such that

∣∣p(x)− p(y)
∣∣� c

− log|x− y| (4.2)

for every x, y ∈ Rn with |x− y|� 1/2. Assume that p is log-Hölder continuous and, in
addition, that

∣∣p(x)− p(y)
∣∣≤ c

log
(
e+ |x|) (4.3)

for every x, y ∈ Rn with |y| ≥ |x|. Let us briefly discuss conditions (4.2) and (4.3) here.
Under these assumptions on p, Cruz-Uribe, Fiorenza, and Neugebauer have proved that
the Hardy-Littlewood maximal operator � : Lp(·)(Rn)→ Lp(·)(Rn) is bounded, see [21,
22]. This is an improvement of earlier work by Diening [24] and Nekvinda [27]. In [32],
Pick and Růžička have given an example which shows that if log-Hölder continuity is
replaced by a slightly weaker continuity condition, then the Hardy-Littlewood maximal
operator need not be bounded on Lp(·)(Rn). Lerner has shown that the Hardy-Littlewood
maximal operator may be bounded even if the exponent is discontinuous [26].

There is also a Sobolev embedding theorem for the fractional maximal function in
variable exponent spaces. If 1 < p− ≤ p+ < n, (4.2), (4.3) hold, and 0 ≤ α < n/p+, then
Capone, Cruz-Uribe, and Fiorenza have proved in [20, Theorem 1.4] that

�α : Lp(·)(Rn
)−→ Lnp(·)/(n−αp(·))(Rn

)
(4.4)

is bounded. Observe that when α = 0, then this reduces to the fact that the Hardy-
Littlewood maximal operator is bounded on Lp(·)(Rn).

A simple modification of a result of Kinnunen and Saksman [33, Theorem 3.1] shows
that if (4.4) holds, f ∈ Lp(·)(Rn), 1 < p− ≤ p+ < n, 1≤ α < n/p+, then

�α f ∈ Lq∗(·)(Rn
)
, Di�α f ∈ Lq(·)(Rn

)
, i= 1,2, . . . ,n. (4.5)

Moreover, we have

∥∥�α f
∥∥
Lq∗(·)(Rn) ≤ c‖ f ‖Lp(·)(Rn), (4.6)∥∥D�α f
∥∥
Lq(·)(Rn) ≤ c‖ f ‖Lp(·)(Rn), (4.7)
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where

q(x)= np(x)
n− (α− 1)p(x)

, q∗(x)= np(x)
n−αp(x)

. (4.8)

Estimate (4.7) follows from the pointwise inequality

∣∣Di�α f (x)
∣∣≤ c�α−1 f (x), i= 1,2, . . . ,n, (4.9)

for almost every x ∈Rn and the Sobolev embedding (4.4), see [33, Theorem 3.1]. Roughly
speaking, this means that the fractional maximal operator is a smoothing operator and
it usually belongs to certain Sobolev space. This enables us to use the fractional maximal
function as a test function for certain capacities.

5. Hölder-type quasicontinuity

In this section, we assume that 1 < p− ≤ p+ <∞ and that the Hardy-Littlewood maximal
operator � : Lp(·)(Rn) → Lp(·)(Rn) is bounded. We begin by recalling the well-known
estimates for the oscillation of the function in terms of the fractional maximal function
of the gradient. The proof of our main result is based on these estimates.

Let x0 ∈Rn and R > 0. If u∈ C1(Rn), then

−
∫
B(x0,R)

∣∣u(z)−u(y)
∣∣dy ≤ c(n)

∫
B(x0,R)

∣∣Du(y)
∣∣

|z− y|n−1
dy (5.1)

for every z ∈ B(x0,R). Since C∞0 (Rn) is dense in W1,p(·)(Rn), we find that the inequality
(5.1) holds for almost every x ∈ B(x0,R) for each u∈W1,p(·)(Rn).

Let B(x,r)⊂ B(x0,R). We integrate (5.1) over the ball B(x,r) and obtain

−
∫
B(x0,R)

∣∣uB(x,r)−u(y)
∣∣dy ≤−

∫
B(x,r)

−
∫
B(x0,R)

∣∣u(z)−u(y)
∣∣dydz

≤ c(n)−
∫
B(x,r)

∫
B(x0,R)

∣∣Du(y)
∣∣

|z− y|n−1
dydz

≤ c(n)
∫
B(x0,R)

−
∫
B(x,r)

|z− y|1−ndz∣∣Du(y)
∣∣dy

≤ c(n)
∫
B(x0,R)

∣∣Du(y)
∣∣

|x− y|n−1
dy.

(5.2)

Here we also used the simple fact that

−
∫
B(x,r)

|z− y|1−ndz ≤ c(n)|x− y|1−n. (5.3)

From this, we conclude that

−
∫
B(x0,R)

∣∣∣∣∣ limsup
r→0

−
∫
B(x,r)

u(z)dz−u(y)

∣∣∣∣∣dy ≤ c(n)
∫
B(x0,R)

∣∣Du(y)
∣∣

|x− y|n−1
dy. (5.4)
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This shows that the inequality (5.1) is true at every x ∈ B(x0,R) for u ∈W1,p(·)(Rn),
which is defined pointwise by (3.8). A Hedberg-type zooming argument gives

∫
B(x0,R)

∣∣Du(y)
∣∣

|x− y|n−1
dy ≤

∫
B(x,2R)

∣∣Du(y)
∣∣

|x− y|n−1
dy

≤
∞∑
i=0

∫
B(x,21−iR)\B(x,2−iR)

∣∣Du(y)
∣∣

|x− y|n−1
dy

≤
∞∑
i=0

2i(n−1)R1−n
∫
B(x,21−iR)

∣∣Du(y)
∣∣dy

≤ c(n)R
∞∑
i=0

2−i−
∫
B(x,21−iR)

∣∣Du(y)
∣∣dy

= c(n)R1−α/q
∞∑
i=0

2−iRα/q−
∫
B(x,21−iR)

∣∣Du(y)
∣∣dy

≤ c(n)R1−α/q�α/q,2R|Du|(x),

(5.5)

where 0≤ α < q.
Let R= |x− y| and choose x0 ∈Rn so that x, y ∈ B(x0,R). A simple computation gives

∣∣u(x)−u(y)
∣∣≤ ∣∣u(x)−uB(x0,R)

∣∣+
∣∣u(y)−uB(x0,R)

∣∣

≤−
∫
B(x0,R)

∣∣u(x)−u(z)
∣∣dz+−

∫
B(x0,R)

∣∣u(y)−u(z)
∣∣dz

≤ c(n)|x− y|1−α/q(�α/q|Du|(x) + �α/q|Du|(y)
)

(5.6)

for every x, y ∈Rn, if u is defined pointwise by (3.8).

Remark 5.1. It follows from the previous considerations that

−
∫
B(x,R)

∣∣u(x)−u(z)
∣∣dz ≤ c(n)R1−α/q�α/q|Du|(x) (5.7)

for every x ∈ Rn, if u is defined pointwise by (3.8). Thus all points which belong to the
set

{
x ∈Rn : �α/q|Du|(x) <∞} (5.8)

are Lebesgue points of u. Next we provide a more quantitative version of this statement.

The following theorem is our main result. Later we give a sharper estimate on the size
of the exceptional set in the theorem.

Theorem 5.2. Assume that 1 < p− ≤ p+ <∞, 0 ≤ α < q, and that the Hardy-Littlewood
maximal operator � : Lp(·)(Rn) → Lp(·)(Rn) is bounded. Let u ∈W1,p(·)(Rn) be defined
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pointwisely by (3.8). Then there exists λ0 ≥ 1 such that for every λ ≥ λ0, there are an open
set Uλ and a function uλ with the following properties:

(i) u(x)= uλ(x) for every x ∈Rn \Uλ,
(ii) ‖u−uλ‖W1,p(·)(Rn) → 0 as λ→ 0,

(iii) uλ is locally (1−α/q)-Hölder continuous,
(iv) |Uλ| → 0 as λ→∞.

Remark 5.3. If α = 0, then the theorem says that every function in the variable expo-
nent Sobolev space coincides with a Lipschitz function outside a set of arbitrarily small
Lebesgue measure. The obtained Lipchitz function approximates the original Sobolev
function also in the Sobolev norm.

Proof. First we assume that the support of u is contained in a ball B(x0,2) for some x0 ∈
Rn. Later we show that the general case follows from this by a partition of unity.

We denote

Uλ =
{
x ∈Rn : �α/q|Du|(x) > λ

}
, (5.9)

where λ > 0. We claim that there is λ0 ≥ 1 such that for every x ∈Rn and r > 1 we have

rα/q−
∫
B(x,r)

∣∣Du(y)
∣∣dy ≤ λ0. (5.10)

Indeed, if B(x,r)∩B(x0,2) �= ∅ and r > 1, then

rα/q−
∫
B(x,r)

∣∣Du(y)
∣∣dy = c(n)rα/q−n

∫
B(x,r)

∣∣Du(y)
∣∣dy

≤ c(n)
∫
B(x0,2)

∣∣Du(y)
∣∣dy,

(5.11)

and hence we may choose

λ0 = c(n)
∫
Rn

∣∣Du(y)
∣∣dy. (5.12)

Taking a larger number if necessary, we may assume that λ0 ≥ 1. In particular, this implies
that

Uλ ⊂
{
x ∈ B(x0,3

)
: �α/q,1|Du|(x) > λ

}
(5.13)

when λ≥ λ0, where

�α/q,1|Du|(x)= sup
0<r<1

rα/q−
∫
B(x,r)

∣∣Du(y)
∣∣dy ≤�|Du|(x). (5.14)

From this, we conclude that

∣∣Uλ

∣∣≤
∫
Uλ

(
λ−1�|Du|(x)

)p(x)
dx ≤ λ−p−

∫
Rn

(
�|Du|(x)

)p(x)
dx (5.15)
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for λ ≥ λ0. This proves claim (iv), since the Hardy-Littlewood maximal operator � is
bounded on Lp(·)(Rn).

The set Uλ is open, since �α is lower semicontinuous. By (5.6) we find that

∣∣u(x)−u(y)
∣∣≤ c(n)λ|x− y|1−α/q (5.16)

for every x, y ∈Rn \Uλ. Hence, u|Rn\Uλ is (1−α/q)-Hölder continuous with the constant
c(n)λ.

Let Qi, i= 1,2, . . . , be a Whitney decomposition of Uλ with the following properties:
(i) each Qi is open,

(ii) cubes Qi, i= 1,2, . . . , are disjoint,
(iii) Uλ =

⋃∞
i=1Qi,

(iv)
∑∞

i=1 χ2Qi ≤N <∞,
(v) 4Qi ⊂Uλ, i= 1,2, . . . ,

(vi) c1 dist(Qi,Rn \Uλ)≤ diam(Qi)≤ c2 dist(Qi,Rn \Uλ).
Then we construct a partition of unity associated with the covering 2Qi, i = 1,2, . . ..

This can be done in two steps.
First, let ϕi ∈ C∞0 (2Qi) be such that 0≤ ϕi ≤ 1, ϕi = 1 in Qi, and

∣∣Dϕi∣∣≤ c

diam
(
Qi
) (5.17)

for i= 1,2, . . .. Then we define

φi(x)= ϕi(x)∑∞
j=1ϕj(x)

(5.18)

for every i = 1,2, . . .. Observe that the sum is over finitely many terms only since ϕi ∈
C∞0 (2Qi) and the cubes 2Qi, i = 1,2, . . . , are of bounded overlap. The functions φi have
the property

∞∑
i=1

φi(x)= χUλ(x) (5.19)

for every x ∈Rn.
Then we define the function uλ by

uλ(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), x ∈Rn \Uλ,

∞∑
i=1

φi(x)u2Qi , x ∈Uλ,
(5.20)

and claim (i) holds. The function uλ is a Whitney-type extension of u|Rn\Uλ to the set
Uλ. We claim that uλ has the desired properties. If Uλ =∅, we are done. Hence, we may
assume that Uλ �= ∅.
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Claim (iii). We show that the function uλ is Hölder continuous with the exponent 1−
α/q. Recall that we assumed that the support of u is contained in a ball B(x0,2) for some
x0 ∈Rn. For every x ∈Uλ, there is x ∈Rn \Uλ such that |x− x| = dist(x,Rn \Uλ). Then
using the partition of unity we have

∣∣uλ(x)−uλ(x)
∣∣=

∣∣∣∣∣
∞∑
i=1

φi(x)
(
u(x)−u2Qi

)∣∣∣∣∣≤
∑
i∈Ix

∣∣u(x)−u2Qi

∣∣, (5.21)

where i∈ Ix if and only if x belongs to the support of φi. Observe that for every i∈ Ix we
have 2Qi ⊂ B(x,ri), where ri = cdiam(Qi) by the properties of the Whitney decomposi-
tion. Hence, we obtain

∣∣u(x)−u2Qi

∣∣≤ ∣∣u(x)−uB(x,ri)
∣∣+

∣∣uB(x,ri)−u2Qi

∣∣, (5.22)

where, again by the properties of the Whitney decomposition, we have

∣∣u(x)−uB(x,ri)
∣∣≤ cr1−α/q

i �α/q|Du|(x)≤ cλ|x− x|1−α/q. (5.23)

Here we also used (5.1), (5.5) and the fact that x ∈Rn \Uλ.
On the other hand, by the properties of the Whitney decomposition and the Poincaré

inequality, we have

∣∣uB(x,ri)−u2Qi

∣∣≤−
∫

2Qi

∣∣u(z)−uB(x,ri)
∣∣dz ≤ c−

∫
B(x,ri)

∣∣u(z)−uB(x,ri)
∣∣dz

≤ cri−
∫
B(x,ri)

∣∣Du(z)
∣∣dz ≤ cr1−α/q

i �α/q|Du|(x)

≤ c|x− x|1−α/qλ.

(5.24)

It follows that

∣∣uλ(x)−uλ(x)
∣∣≤ cλ|x− x|1−α/q (5.25)

whenever x ∈Uλ and x ∈Rn \Uλ such that |x− x| = dist(x,Rn \Uλ).
From this, we conclude easily that

∣∣uλ(x)−uλ(y)
∣∣≤ cλ|x− y|1−α/q (5.26)
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for every x ∈Uλ and y ∈Rn \Uλ. Indeed, by (5.6), we have
∣∣uλ(x)−uλ(y)

∣∣≤ ∣∣uλ(x)−uλ(x)
∣∣+

∣∣uλ(x)−uλ(y)
∣∣

≤ cλ|x− x|1−α/q + cλ|x− y|1−α/q,
(5.27)

where |x− y| ≤ |x− x|+ |x− y| ≤ 2|x− y|.
Then we consider the case x, y ∈Uλ. First we assume that

max
{|x− x|,|y− y|} < |x− y|. (5.28)

By the previously considered cases, we have
∣∣uλ(x)−uλ(y)

∣∣≤ ∣∣uλ(x)−uλ(x)
∣∣+

∣∣uλ(x)−uλ(y)
∣∣+

∣∣uλ(y)−uλ(y)
∣∣

≤ cλ(|x− x|1−α/q + |x− y|1−α/q + |y− y|1−α/q)

≤ cλ|x− y|1−α/q.

(5.29)

In the last inequality we used (5.28) and the fact that

|x− y| ≤ |x− x|+ |x− y|+ |y− y| ≤ 3|x− y|. (5.30)

Then we consider the case x, y ∈Uλ with

|x− y| ≤max
{|x− x|,|y− y|}. (5.31)

First we assume, in addition, that

max
{|x− x|,|y− y|}≤ 2min

{|x− x|,|y− y|}. (5.32)

Since

∞∑
i=1

(
φi(x)−φi(y)

)= 0, (5.33)

we obtain

∣∣uλ(x)−uλ(y)
∣∣=

∣∣∣∣∣
∞∑
i=1

φi(x)u2Qi −
∞∑
i=1

φi(y)u2Qi

∣∣∣∣∣

=
∣∣∣∣∣
∞∑
i=1

(
φi(x)−φi(y)

)(
u(x)−u2Qi

)∣∣∣∣∣

≤ c|x− y|
∑

i∈Ix∪Iy
diam

(
Qi
)−1∣∣u(x)−u2Qi

∣∣.

(5.34)

We have already proved in (5.23) that

∣∣u(x)−u2Qi

∣∣≤ cdiam
(
Qi
)1−α/q

�α/q|Du|(x) (5.35)
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if i ∈ Ix. On the other hand, if i ∈ Iy , then (5.31) and (5.32) imply that 2Qi ⊂ B(x,ri),
where ri = cdiam(Qi) by the properties of the Whitney decomposition. Therefore, we
obtain (5.35) for all indices i∈ Ix ∪ Iy . From this, we conclude that

∣∣uλ(x)−uλ(y)
∣∣≤ c|x− y|1−α/q

∑
i∈Ix∪Iy

|x− y|α/q
diam

(
Qi
)α/q �α/q|Du|(x)

≤ cλ|x− y|1−α/q.
(5.36)

Here we used (5.31) and (5.32), the properties of the Whitney decomposition, and the
fact that x ∈Rn \Uλ.

Assume then that x, y ∈Uλ such that (5.31) holds and

max
{|x− x|,|y− y|} > 2min

{|x− x|,|y− y|}. (5.37)

If |x− x| ≤ |y− y|, then

|x− y| ≥ |y− y|− |x− x| > 1
2
|y− y|, (5.38)

where we used (5.37) and the fact that the distance function dist(x,Rn \Uλ) is Lipschitz
continuous with constant one. This implies that 2|x− y| ≥ |y− y|. Now we have

∣∣uλ(x)−uλ(y)
∣∣≤ ∣∣uλ(x)−uλ(x)

∣∣+
∣∣uλ(x)−uλ(y)

∣∣+
∣∣uλ(y)−uλ(y)

∣∣

≤ cλ(|x− x|1−α/q + |x− y|1−α/q + |y− y|1−α/q)

≤ cλ|x− y|1−α/q.

(5.39)

By switching the roles of x and y, we see that the same estimate holds also if |x− x| >
|y− y|. This completes the proof of claim (iii).

We prove the claim (ii) in two steps.
Step 5.4. First we claim that

∥∥uλ∥∥W1,p(·)(Uλ) ≤ c‖u‖W1,p(·)(Uλ). (5.40)

Since

�
(
uχUλ

)
(x)≥ c|u|2Qi (5.41)

for every x ∈ 2Qi and the cubes 2Qi, i= 1,2, . . . , are of bounded overlap, we have

∣∣uλ(x)
∣∣≤

∞∑
i=1

φi(x)|u|2Qi ≤
∞∑
i=1

φi(x)�
(
uχUλ

)
(x)≤ c�(uχUλ

)
(x). (5.42)

Since the maximal function is bounded on Lp(·)(Rn), we obtain
∥∥uλ∥∥Lp(·)(Uλ) ≤ c

∥∥�
(
uχUλ

)∥∥
Lp(·)(Uλ) ≤ c

∥∥�
(
uχUλ

)∥∥
Lp(·)(Rn)

≤ c∥∥uχUλ

∥∥
Lp(·)(Rn) = c‖u‖Lp(·)(Uλ).

(5.43)
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Then we consider an estimate for the gradient. We recall that

Φ(x)=
∞∑
i=1

φi(x)= 1 (5.44)

for every x ∈ Uλ. Since the cubes 2Qi, i = 1,2, . . . , are of bounded overlap, we see that
Φ∈ C∞(Uλ) and

DjΦ(x)=
∞∑
i=1

Djφi(x)= 0, j = 1,2, . . . ,n, (5.45)

for every x ∈Uλ. Hence we obtain

∣∣Djuλ(x)
∣∣=

∣∣∣∣∣
∞∑
i=1

Djφi(x)u2Qi

∣∣∣∣∣=
∣∣∣∣∣
∞∑
i=1

Djφi(x)
(
u(x)−u2Qi

)∣∣∣∣∣

≤ c
∞∑
i=1

diam
(
Qi
)−1∣∣u(x)−u2Qi

∣∣χ2Qi(x).

(5.46)

Let B(xi,Ri) be the smallest ball containing 2Qi with Ri = diam(2Qi)/2. By the pointwise
inequalities (5.1) and (5.5) with α= 0, we obtain

∣∣u(x)−u2Qi

∣∣≤−
∫

2Qi

∣∣u(x)−u(y)
∣∣dy ≤ c−

∫
B(xi,Ri)

∣∣u(x)−u(y)
∣∣dy

≤ cRi sup
0<r<2Ri

−
∫
B(x,r)

∣∣Du(y)
∣∣dy

≤ cdiam
(
2Qi

)
sup

0<r<diam(2Qi)
−
∫
B(x,r)

∣∣Du(y)
∣∣dy.

(5.47)

This implies that for every j = 1,2, . . . ,n,

∣∣Djuλ(x)
∣∣≤ c

∞∑
i=1

χ2Qi(x) sup
0<r<diam(2Qi)

−
∫
B(x,r)

∣∣Du(y)
∣∣dy ≤ c�(|Du|χUλ

)
(x)

∞∑
i=1

χ2Qi(x)

≤ c�(|Du|χUλ

)
(x).

(5.48)

We again used the facts that B(xi,Ri)⊂Uλ and the cubes 2Qi, i= 1,2, . . . , are of bounded
overlap. This implies

∥∥Djuλ
∥∥
Lp(·)(Uλ) ≤ c

∥∥�
(|Du|χUλ

)∥∥
Lp(·)(Uλ) ≤ c

∥∥�
(|Du|χUλ

)∥∥
Lp(·)(Rn)

≤ c∥∥|Du|χUλ

∥∥
Lp(·)(Rn) = c‖Du‖Lp(·)(Uλ).

(5.49)

This completes the proof of Step 5.4.
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Step 5.5. We show that uλ ∈W1,p(·)(Rn). We know that uλ ∈W1,p(·)(Uλ) and that it is
Hölder continuous in Rn. Moreover, u ∈W1,p(·)(Rn) and u = uλ in Rn \Uλ by (i). This
implies that

w = u−uλ ∈W1,p(·)(Uλ
)

(5.50)

and that w = 0 in Rn \Uλ. By the ACL-property, u is absolutely continuous on almost
every line segment parallel to the coordinate axes. Take any such line. Noww is absolutely
continuous on the part of the line segment which intersectsUλ. On the other hand, w = 0
in the complement of Uλ. Hence, the continuity of w in the line segment implies that w
is absolutely continuous on the whole line segment. This completes the proof of Step 5.5.

By the claim (i) and Steps 5.4 and 5.5, we obtain

∥∥u−uλ∥∥W1,p(·)(Rn) =
∥∥u−uλ∥∥W1,p(·)(Uλ) ≤ ‖u‖W1,p(·)(Uλ) +

∥∥uλ∥∥W1,p(·)(Uλ)

≤ c‖u‖W1,p(·)(Uλ).
(5.51)

This completes the proof of the claim (ii).
Finally, we remove the assumption that the support of the function is contained in a

ball B(x0,2) for some x0 ∈ Rn. Let B(xi,2), i = 1,2, . . . , be a family of balls which are of
bounded overlap and which cover Rn. Then we construct a partition of unity as before
and we obtain functions ψi ∈ C∞0 (B(xi,2)), i= 1,2, . . . , such that

∞∑
i=1

ψi(x)= 1 (5.52)

for every x ∈Rn.
If u∈W1,p(·)(Rn), then

u(x)=
∞∑
i=1

u(x)ψi(x) (5.53)

for every x ∈ Rn. Let ε > 0. Now the support of uψi is contained in B(xi,2) for every
i= 1,2, . . .. For every i= 1,2, . . . , let vi be a Hölder continuous function with the exponent
1−α/q such that

∥∥vi−uψi∥∥W1,p(·)(Rn) ≤ 2−iε (5.54)

and that the support of vi is contained in B(xi,3). Since every bounded set can be covered
by finitely many balls B(xi,2), it is easy to see that the function

v(x)=
∞∑
i=1

vi(x) (5.55)

has the desired properties. This completes the proof. �



Petteri Harjulehto et al. 15

6. Size of the exceptional set

In this section, we give a sharper estimate for the size of the set Uλ in Theorem 5.2 in the
case 1 < p− ≤ p+ < n and p is globally log-Hölder continuous.

Theorem 6.1. Let 1 < p− ≤ p+ < n, 1≤ α < q < p−. Assume that (4.2) and (4.3) hold. Let
u∈W1,p(·)(Rn) and

t(x)= np(x)
nq− (α− 1)p(x)

. (6.1)

Then

Capt(·)
({
x ∈Rn : �α/q|Du|(x) > λ

})−→ 0 (6.2)

as λ→∞.

Proof. By Hölder’s inequality,

�α/q|Du|(x)≤ c(n,q)
(
�α|Du|q(x)

)1/q
(6.3)

for every x ∈Rn. It follows that

{
x ∈Rn : �α/q|Du|(x) > λ

}⊂ {x ∈Rn : �α|Du|q(x) > λq
}
. (6.4)

Since |Du| ∈ Lp(·)(Rn), we have |Du|q ∈ Lp(·)/q(Rn). Let

t(x)= np(x)
nq− (α− 1)p(x)

, t∗(x)= np(x)
nq−αp(x)

. (6.5)

Since p(·) satisfies (4.2) and (4.3), the exponent p(·)/q does it as well. Hence, the frac-
tional maximal function �α : Lp(·)/q(Rn)→ Lt(·)(Rn) is bounded. From this, we conclude
as in (4.6) and (4.7) that

�α|Du|q ∈ Lt∗(·)(Rn
)
, D�α|Du|q ∈ Lt(·)

(
Rn
)
. (6.6)

Moreover, we have

∥∥�α|Du|q
∥∥
Lt∗(·)(Rn) ≤ c

∥∥|Du|q∥∥Lp(·)/q(Rn) = c‖Du‖Lp(·)(Rn),

∥∥D�α|Du|q
∥∥
Lt(·)(Rn) ≤ c

∥∥�α−1|Du|q
∥∥
Lt(·)(Rn)

≤ c∥∥|Du|q∥∥Lp(·)/q(Rn) = c‖Du‖Lp(·)(Rn).

(6.7)

Let

Fλ =
{
x ∈Rn : �α|Du|q(x) > λq

}
. (6.8)
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Since the fractional maximal function is lower semicontinuous, the set Fλ is open. By (4.6)
and (4.7), the function λ−1�α|Du|q is an admissible function for Capt(·)(Fλ). Hence, we
have

Capq(·)
(
Uλ
)≤

∫
Rn

(
λ−t

∗(x)(�α|Du|q(x)
)t∗(x)

+ λ−t(x)
∣∣D�α|Du|q(x)

∣∣t(x))
dx

≤ λ−np−/(nq−αp−)
∫
Rn

(
�α|Du|q(x)

)t∗(x)
dx

+ λ−np
−/(nq−(α−1)p−)

∫
Rn

∣∣D�α|Du|q(x)
∣∣t(x)

dx.

(6.9)

Since by (6.7) the integrals in the right-hand side are finite and since the exponents are
negative, we find that the right-hand side tends to zero as λ tends to infinity. �

By Theorem 5.2 and Theorem 6.1, we obtain the following theorem.

Theorem 6.2. Let 1 < p− ≤ p+ < n, 1 < α < q < p−. Assume that p satisfies conditions (4.2)
and (4.3). Let u ∈W1,p(·)(Rn) be defined pointwisely by (3.8). Then for each ε > 0, there
exist an open set U and a function v so that

(i) u(x)= v(x) for every x ∈Rn \U ,
(ii) ‖u− v‖W1,p(·)(Rn) ≤ ε,

(iii) v is (1−α/q)-Hölder continuous,
(iv)

Capnp(·)/(nq−(α−1)p(·))(U)≤ ε. (6.10)

Proof. By Theorem 5.2 and Theorem 6.1, we can choose U=Uλ for sufficiently large λ.
�
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[7] M. Růžička, “Modeling, mathematical and numerical analysis of electrorheological fluids,” Ap-
plications of Mathematics, vol. 49, no. 6, pp. 565–609, 2004.

[8] Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restora-
tion,” SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383–1406, 2006.



Petteri Harjulehto et al. 17

[9] V. V. Zhikov, “On some variational problems,” Russian Journal of Mathematical Physics, vol. 5,
no. 1, pp. 105–116, 1997.

[10] B. Bojarski, P. Hajłasz, and P. Strzelecki, “Improved Ck,λ approximation of higher order Sobolev
functions in norm and capacity,” Indiana University Mathematics Journal, vol. 51, no. 3, pp.
507–540, 2002.

[11] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Ad-
vanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1992.

[12] S. Gutiérrez, “Lusin approximation of Sobolev functions by Hölder continuous functions,” Bul-
letin of the Institute of Mathematics. Academia Sinica, vol. 31, no. 2, pp. 95–116, 2003.
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Revista Matemática Iberoamericana, vol. 14, no. 3, pp. 601–622, 1998.

[14] F. C. Liu, “A Luzin type property of Sobolev functions,” Indiana University Mathematics Journal,
vol. 26, no. 4, pp. 645–651, 1977.
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