
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2007, Article ID 36845, 9 pages
doi:10.1155/2007/36845

Research Article
System of Generalized Implicit Vector
Quasivariational Inequalities

Jian-Wen Peng and Xiao-Ping Zheng

Received 14 February 2007; Revised 21 June 2007; Accepted 5 October 2007

Recommended by Kok Lay Teo

We will introduce a system of generalized implicit vector quasivariational inequalities (in
short, SGIVQVI) which generalizes and unifies the system of generalized implicit varia-
tional inequalities, the system of generalized vector quasivariational-like inequalities, the
system of generalized vector variational inequalities, the system of variational inequali-
ties, the generalized implicit vector quasivariational inequality, as well as various exten-
sions of the classic variational inequalities in the literature, and we present some existence
results of a solution for the SGIVQVI without any monotonicity conditions.
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1. Introduction

The vector variational inequality (in short, VVI) in a finite-dimensional Euclidean space
has been introduced in [1] and applications have been given. Chen and Cheng [2] studied
the VVI in infinite-dimensional space and applied it to vector optimization problem (in
short, VOP). Since then, many authors [3–11] have intensively studied the VVI on differ-
ent assumptions in infinite-dimensional spaces. Lee et al. [12, 13], Lin et al. [14], Konnov
and Yao [15], Daniilidis and Hadjisavvas [16], Yang and Yao [17], and Oettli and Schläger
[18] studied the generalized vector variational inequality and obtained some existence re-
sults. Chen and Li [19] and Lee et al. [20] introduced and studied the generalized vector
quasivariational inequality and established some existence theorems. Ansari [21, 22] and
Ding and Tarafdar [23] studied the generalized vector variational-like inequalities. Ding
[24] studied the generalized vector quasivariational-like inequality. Ansari et al. [25] stud-
ied the generalized implicit vector variational inequality and Chiang et al. [26] studied the
implicit vector quasivariational inequality. Pang [27], Cohen and Chaplais [28], Bianchi
[29], and Ansari and Yao [30] considered the system of scalar variational inequalities
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and Pang showed that the traffic equilibrium problem, the spatial equilibrium problem,
the Nash equilibrium problem, and the general equilibrium programming problem can
be modeled as a system of variational inequalities. Ansari and Yao [31] introduced and
studied the system of generalized implicit variational inequalities and the system of gen-
eralized variational-like inequalities. Ansari et al. [32] introduced and studied the system
of vector variational inequalities. Allevi et al. [33] introduced the system of generalized
vector variational inequalities with set-valued mappings and got its several existence re-
sults which are based on some monotonicity-type conditions. Peng [34] introduced the
system of generalized vector quasivariational-like inequalities with set-valued mappings
and got its several existence results without any monotonicity conditions.

In this paper, a system of generalized implicit vector quasivariational inequalities (in
short, SGIVQVI) which generalizes and unifies the system of generalized implicit varia-
tional inequalities, the system of variational-like inequalities, the system of vector vari-
ational inequalities, the system of vector quasivariational-like inequalities, the system of
variational inequalities, the generalized implicit vector quasivariational inequality, as well
as various extensions of the classic variational inequalities in the literature will be intro-
duced, and some existence results of a solution for the SGIVQVI without any monotonic-
ity conditions will be shown.

2. Problem statement and preliminaries

Let intA denote the interior of a set A and let I be an index set, for each i∈ I . Let Zi be
a Hausdorff topological vector space, and let Ei and Fi be two locally convex Hausdorff

topological vector spaces. Let L(Ei,Fi) denote the space of the continuous linear operators
from Ei to Fi and let Di be a nonempty subset of L(Ei,Fi). Consider a family of nonempty
convex subsets {Xi}i∈I with Xi ⊂ Ei. Let X =∏i∈IXi, and let E =∏i∈IEi. An element
of the set Xi =∏ j∈I\iXi will be denoted by xi; therefore, x ∈ X will be written as x =
(xi,xi)∈ Xi×Xi. For each i∈ I , let fi : Di×Xi×Xi→Zi be a single-valued mapping and
let Ci : X→2Zi be a set-valued mapping such that Ci(x) is a closed, pointed, and convex
cone with intCi(x) �=∅ for each x ∈ X . Let Si : X→2Xi and Ti : X→2Di be two set-valued
mappings. Then, we introduce a system of generalized implicit vector quasivariational
inequalities (in short, SGIVQVI) which is to find x = (xi,xi) in X such that, for each
i∈ I , xi ∈ Si(x):

∀yi ∈ Si
(
x
)
, ∃vi ∈ Ti

(
x
)

: fi
(
vi,xi, yi

) �∈ −intCi
(
x
)
. (2.1)

Then, the point x is said to be a solution of the SGIVQVI.
It is easy to see that x is a solution of the SGIVQVI which, for each i∈ I , is equivalent

to

xi ∈ Si
(
x
)
, ∀yi ∈ Si

(
x
)

: fi
(
Ti
(
x
)
,xi, yi

) �⊆ −intCi
(
x
)
, (2.2)

where

fi
(
Ti
(
x
)
,xi, yi

)=
⋃

vi∈Ti(x)

fi
(
vi,xi, yi

)
. (2.3)
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The following problems are some special cases of the SGIVQVI.
(i) For each i∈ I , if Si(x)= Xi for every x ∈ X , then the SGIVQVI reduces to the system

of generalized implicit vector variational inequalities (in short, SGIVVI) which is to find
x = (xi,xi) in X such that, for each i∈ I , xi ∈ Xi:

∀yi ∈ Xi, ∃vi ∈ Ti
(
x
)

: fi
(
vi,xi, yi

) �∈ −intCi
(
x
)
. (2.4)

For each i ∈ I , let Zi = R and let Ci(x) = R+ = {r ∈ R | r ≥ 0}. Then, the SGIVVI
reduces to the system of generalized implicit variational inequalities (in short, SGIVI)
which is to find x = (xi,xi) in X such that, for each i∈ I , xi ∈ Xi:

∀yi ∈ Xi, ∃vi ∈ Ti
(
x
)

: fi
(
vi,xi, yi

)≥ 0. (2.5)

This problem was studied by Ansari and Yao [31].
(ii) For each i ∈ I , let ηi : Xi × Xi→Ei be a function and let fi(Ti(x),xi, yi) =

〈vi,ηi(yi,xi)〉 : vi ∈ Ti(x)}. Then, the SGIVQVI reduces to the system of generalized vec-
tor quasivariational-like inequalities (in short, SGVQVLI) which is to find x = (xi,xi) in
X such that, for each i∈ I , xi ∈ Si(x):

∀yi ∈ Si
(
x
)
, ∃vi ∈ Ti

(
x
)

:
〈
vi,ηi

(
yi,xi

)〉 �∈ −intCi
(
x
)
, (2.6)

where 〈si,xi〉 denotes the evaluation of si ∈ L(Ei,Fi) at xi ∈ Ei.
The SGVQVLI was introduced and studied by Peng [34], and it contains many math-

ematical models as special cases, for example, consider the following cases.
For each i ∈ I , let Si(x) = Xi, then the SGVQVLI reduces to a system of generalized

vector variational-like inequalities (in short, SGVVLI) which is to find x = (xi,xi) in X
such that, for each i∈ I ,

∀yi ∈ Xi, ∃vi ∈ Ti
(
x
)

:
〈
vi,ηi

(
yi,xi

)〉 �∈ −intCi
(
x
)
. (2.7)

For each i ∈ I , let Zi = R and let Ci(x) = R+ = {r ∈ R | r ≥ 0} for all x ∈ X , then
the SGVVLI reduces to the system of generalized variational-like inequalities studied by
Ansari and Yao [31].

For each i∈ I , let ηi(yi,xi)= yi− xi. Then, the SGVQVLI reduces to a system of gener-
alized vector quasivariational inequalities (in short, SGVQVI) which is to find x = (xi,xi)
in X such that, for each i∈ I , xi ∈ Si(x):

∀yi ∈ Si
(
x
)
, ∃vi ∈ Ti

(
x
)

:
〈
vi, yi− xi

〉 �∈ −intCi
(
x
)
. (2.8)

For each i ∈ I , let Si(x) = Xi, then the SGVQVI reduces to the system of generalized
vector variational inequalities (for short, SGVVI) which is to find x = (xi,xi) in X such
that, for each i∈ I ,

∀yi ∈ Xi, ∃vi ∈ Ti
(
x
)

:
〈
vi, yi− xi

〉 �∈ −intCi
(
x
)
. (2.9)

For each i ∈ I , for all xi ∈ Xi, if Yi ≡ Y and Ci(x) ≡ C, where C is a convex, closed,
and pointed cone in Y with intC �=∅, then the SGVVI reduces to the system of set-valued
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variational inequalities (in short, SSVI) which is to find x = (xi,xi) in X such that

∀yi ∈ Xi, ∃vi ∈ Ti
(
x
)

:
〈
vi, yi− xi

〉 �∈ −intC. (2.10)

This was introduced and studied by Allevi et al. [33].
If Ti is single-valued function, then the SSVI reduces to the system of vector variational

inequalities (in short, SVVI) which is to find x = (xi,xi) in X such that

〈
Ti
(
x
)
, yi− xi

〉 �∈ −intC, ∀yi ∈ Xi. (2.11)

This was considered by Ansari et al. [32].
For each i∈ I , for all xi ∈ Xi, let Zi = R and let Ci(x)= R+ = {r ∈ R : r ≥ 0}. Let Ti be

replaced by fi : X→R, then the SVVI reduces to the system of scalar variational inequali-
ties which is finding x = (xi,xi) in X such that

〈
fi
(
x
)
, yi− xi

〉≥ 0, ∀yi ∈ Xi. (2.12)

This problem was considered by several authors in [27–30].
(iii) If I is a singleton, then the SGIVQVI reduces to the generalized implicit vector

quasivariational inequality (in short, GIVQVI) which is to find x in X such that x ∈ S(x):

∀y ∈ S
(
x
)
, ∃v ∈ T

(
x
)

: f
(
v,x, y

) �∈ −intC
(
x
)
. (2.13)

This new problem contains the generalized implicit vector variational inequality in
[25], the implicit vector quasivariational inequality in [26], the generalized set-valued
quasivariational-like inequality in [24], the generalized vector variational-like inequality
in [21–23], the set-valued quasivariational inequality in [19, 20], the generalized vector
variational inequality in [12–18], and the vector variational inequality in [1–11] as special
cases.

In order to prove the main results, we need the following definitions and lemmas.

Definition 2.1 [35]. Let X and Y be two topological spaces and let T : X→2Y be a set-
valued mapping. Then,

(1) T is said to be upper semicontinuous if, for any x0 ∈ X and for each open set U
in Y containing T(x0), there is a neighborhood V of x0 in X such that T(x)⊂U
for all x ∈V ;

(2) T is said to have open lower sections if the set T−1(y) = {x ∈ X : y ∈ T(x)} is
open in X for each y ∈ Y ;

(3) T is said to be closed, if the set {(x, y)∈ X ×Y : y ∈ T(x)} is closed in X ×Y .

Lemma 2.2 [36]. Let X be a paracompact Hausdorff space and let Y be a linear topological
space. Suppose that T : X→2Y is a set-valued mapping such that

(i) for each x ∈ X , T(x) is nonempty,
(ii) for each x ∈ X , T(x) is convex,

(iii) T has open lower sections.

Then, there exists a continuous function f : X→Y such that f (x)∈ T(x) for all x ∈ X .
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Lemma 2.3 [35]. Let X and Y be topological spaces. If T : X→2Y is an upper semicontinuous
set-valued mapping with closed values, then T is closed.

Lemma 2.4 [37]. Let X and Y be topological spaces and let T : X→2Y be an upper semicon-
tinuous set-valued mapping with compact values. Suppose that {xα} is a net in X such that
xα→x0. If yα ∈ T(xα) for each α, then there are a y0 ∈ T(x0) and a subset {yβ} of {yα} such
that yβ→y0.

Lemma 2.5 [36]. Let X and Y be two topological spaces. Suppose that T : X→2Y and K :
X→2Y are set-valued mappings having open lower sections, then (i) the set-valued mapping
F : X→2Y defined by F(x)= Co(T(x)), for each x ∈ X , has open lower sections. (ii) the set-
valued mapping θ : X→2Y defined by θ(x)= T(x)∩ K(x), for each x ∈ X , has open lower
sections.

Lemma 2.6 [38]. Let E be a locally convex topological linear space and let X be a compact
convex subset in E. Suppose that T : X→2X is a set-valued mapping such that

(i) for each x ∈ X , T(x) is nonempty,
(ii) for each x ∈ X , T(x) is convex and closed,

(iii) T is upper semicontinuous.

Then, there exists a x ∈ X such that x ∈ T(x).

3. Existence results

In this section, we will present some existence results of a solution for the SGIVQVI with-
out any monotonicity conditions.

Theorem 3.1. Let I be an index set and let I be countable. For each i ∈ I , let Zi be a
Hausdorff topological vector space, let Ei and Fi be two locally convex Hausdorff topologi-
cal vector spaces, let Di be a nonempty subset of L(Ei,Fi), let Xi be a nonempty, compact,
convex, and metrizable set in Ei, let fi : Di ×Xi ×Xi→Zi be a single-valued mapping, and
let Ci : X→2Zi be a set-valued mapping such that Ci(x) is a closed, pointed, and convex cone
with intCi(x) �=∅ for each x ∈ X . Let Si : X→2Xi and Ti : X→2Di be two set-valued map-
pings. For each i∈ I , assume that

(i) Si : X→2Xi is an upper semicontinuous set-valued mapping with nonempty convex
closed values and open lower sections;

(ii) the set-valued mapping Mi = Yi \ (−intCi) : Xi→2Zi is upper semicontinuous;
(iii) Ti : X→2Di is an upper semicontinuous set-valued mapping with nonempty com-

pact values;
(iv) for all x ∈ X , ∃vi ∈ Ti(x), fi(vi,xi,xi) �∈ −intCi(x);
(v) for each x ∈ X , Pi(x) = {yi ∈ Xi : fi(vi,xi, yi) ∈−intCi(x),∀vi ∈ Ti(x)} is a con-

vex set;
(vi) for all yi ∈ Xi, the map (vi,xi) �→ fi(vi,xi, yi) is continuous on Di×Xi.

Then, there exists x = (xi,xi) in X such that, for each i∈ I ,

xi ∈ Si
(
x
)
, ∀yi ∈ Si

(
x
)
,

∃vi ∈ Ti
(
x
)

: fi
(
vi,xi, yi

) �∈ −intCi
(
x
)
.

(3.1)

That is, the SGIVQVI has a solution x ∈ X .
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Proof. We first prove that xi �∈ Co(Pi(x)) for all x = (xi,xi) ∈ X . To see this, suppose,
by way of contradiction, that there exist some i ∈ I and some point x = (xi,xi) ∈ X
such that xi ∈ Co(Pi(x)). Then, there exist finite points yi1 , yi2 , . . . , yin in Xi, and αj ≥ 0
with

∑n
j=1αj = 1 such that xi =

∑n
j=1αj yij and yij ∈ Pi(x) for all vi ∈ Ti(x) and for all

j = 1,2, . . . ,n. Since Pi(x) = {yi ∈ Xi : fi(vi,xi, yi) ∈ −intCi(x),∀vi ∈ Ti(x)} is a convex
set, xi ∈ Pi(x). That is, for all vi ∈ Ti(x), fi(vi,xi,xi) ∈ −intCi(x) which contradicts the
condition (iv). �

Now, we prove that the set

P−1
i

(
yi
)= {x ∈ X : fi

(
vi,xi, yi

)∈−intCi(x),∀vi ∈ T(x)
}

(3.2)

is open for each i ∈ I and for each yi ∈ Xi. That is, Pi has open lower sections in X . We
only need to prove that Qi(yi)= {x ∈ X : ∃vi ∈ Ti(x) such that fi(vi,xi, yi) �∈ −intCi(x)}
is closed for all yi ∈ Xi.

In fact, consider a net xt ∈Qi(yi) such that xt→x ∈ X , then xit→xi ∈ Xi for each i∈ I .
Since xt ∈Qi(yi), there exists vt ∈ Ti(xt) such that

fi
(
vt,xit , yi

) �∈ −intCi
(
xt
)
. (3.3)

From the upper semicontinuous and compact values of Ti and Lemma 2.4, it suffices
to find a subset {vtj} which converges to some v ∈ Ti(x). By assumption (iv), the map
(vi,xi) �→ fi(vi,xi, yi) is continuous on Di×Xi:

fi
(
vtj ,xit j , yi

)−→ fi
(
v,xi, yi

)
. (3.4)

By Lemma 2.3 and upper semicontinuity of Mi, we have fi(v,xi, yi) �∈ −intCi(x), and
hence x ∈Qi(yi) and Qi(yi) is closed.

For each i∈ I , also define another set-valued mapping, Gi : X→2Xi , by Gi(x)= Si(x)∩
Co(Pi(x)), for all x ∈ X . Let the set Wi = {x ∈ X : Gi(x) �=∅}. Since Si and Pi have open
lower sections in X , and by Lemma 2.5, we know that Co(Pi) and Gi also have open lower
sections in X . Hence, Wi =∪yi∈XiG

−1
i (yi) is an open set in X . Then, the set-valued map-

ping Gi|Wi : Wi→2Xi has open lower sections in Wi, and for all x ∈Wi, Gi(x) is nonempty
and convex. Also, since X is a metrizable space [39, page 50], Wi is paracompact [40,
page 831]. Hence, by Lemma 2.2, there is a continuous function fi : Wi→Xi such that
fi(x)∈Gi(x)⊂ Si(x) for all x ∈Wi. Define Hi : X→2Xi by

Hi(x)=
⎧
⎨

⎩

fi(x) if x ∈Wi,

Si(x) if x �∈Wi.
(3.5)

Now, we prove that Hi is upper semicontinuous. In fact, for each open set Vi in Xi, the
set

{
x ∈ X : Hi(x)⊂Vi

}= {x ∈Wi : fi(x)∈Vi
}∪ {x ∈ X \Wi : Si(x)⊂Vi

}

⊂ {x ∈Wi : fi(x)∈Vi
}∪ {x ∈ X : Si(x)⊂Vi

}
.

(3.6)
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On the other hand, when x ∈Wi, and fi(x) ∈ Vi, we have Hi(x) = fi(x) ∈ Vi. When
x ∈ X and Si(x)⊂Vi, since fi(x)∈ Si(x) if x ∈Wi, we know that Hi(x)⊂Vi and so

{
x ∈Wi : fi(x)∈Vi

}∪ {x ∈ X : Si(x)⊂Vi
}⊂ {x ∈ X : Hi(x)⊂Vi

}
. (3.7)

Therefore,

{
x ∈ X : Hi(x)⊂Vi

}= {x ∈Wi : fi(x)∈Vi
}∪ {x ∈ X : Si(x)⊂Vi

}
. (3.8)

Since fi is continuous and Si is upper semicontinuous, the sets {x ∈Wi : fi(x) ∈ Vi}
and {x ∈ X : Si(x) ⊂ Vi} are open. It follows that {x ∈ X : Hi(x) ⊂ Vi} is open and so
the mapping Hi : X→2Xi is upper semicontinuous. Now, define H : X→2X by H(x) =
∏

i∈IHi(x) for each x ∈ X . By [38, Lemma 3, page 124], H is upper semicontinuous.
Since for each x ∈ X , H(x) is convex, closed, and nonempty, by Lemma 2.6, there is x ∈
X such that x ∈ H(x). Note that for each i ∈ I , x �∈Wi. Otherwise, there is some i ∈ I
such that x ∈Wi. Then, xi = fi(x) ∈ Co(Pi(x)) which contradicts xi ∈ Co(Pi(x)) for all
x = (xi,xi)∈ X .

Thus, xi∈Si(x) and Gi(x)=∅ for each i∈I . That is, xi∈Si(x) and Si(x)∩Co(Pi(x))=
∅ for each i ∈ I , which implies xi ∈ Si(x) and Si(x)∩ Pi(x) =∅ for each i ∈ I . Conse-
quently, there exists x = (xi,xi) in X such that, for each i∈ I ,

xi ∈ Si
(
x
)
, ∀yi ∈ Si

(
x
)
,

∃vi ∈ Ti
(
x
)

: fi
(
vi,xi, yi

) �∈ −intCi
(
xi
)
.

(3.9)

Hence, the solution set of the SGIVQVI is nonempty.

Remark 3.2. By Theorem 3.1, it is easy to obtain the existence results for all of the special
models of the SGIVQVI mentioned in Section 2. Hence, Theorem 3.1 is a generalization
of the main results in [24–26, 32, 34].
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