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1. Introduction

Variational inequalities introduced by Stampacchia [1] in the early sixties have witnessed
explosive growth in theoretical advances, algorithmic development, and applications ac-
ross all disciplines of pure and applied sciences (see [1, 2] and the references therein).
It combines novel theoretical and algorithmic advances with new domain of applica-
tions. Analysis of these problems requires a blend of techniques from convex analysis,
functional analysis, and numerical analysis. In recent years, variational inequality theory
has been extended and generalized in several directions, using new and powerful meth-
ods, to study a wide class of unrelated problems in a unified and general framework. In
1988, Noor [3] introduced and studied a new class of variational inequalities involving
two operators, which is known as general variational inequality. We remark that the gen-
eral variational inequalities are also called Noor variational inequalities. It turned out
that oddorder, nonsymmetric obstacle, free, unilateral, nonlinear equilibrium, and mov-
ing boundary problems arising in various branches of pure and applied sciences can be
studied via Noor variational inequalities (see [3–5]). On the other hand, in 1997, Verma
considered the solvability of a new class of variational inequalities involving multivalued
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relaxed monotone operators (see [6]). Relaxed monotone operators have applications
to constrained hemivariational inequalities. Since in the study of constrained problems
in reflexive Banach spaces E the set of all admissible elements is nonconvex but star-
shaped, corresponding variational formulations are no longer variational inequalities.
Using hemivariational inequalities, one can prove the existence of solutions to the fol-
lowing type of nonconvex constrained problems (P): find u in C such that

〈Au− g,v〉 ≥ 0, ∀v∈ TC(u), (1.1)

where the admissible set C ⊂ E is a star-shaped set with respect to a certain ball BE(u0,ρ),
and TC(u) denotes Clarke’s tangent cone of C at u in C. It is easily seen that when C is
convex, (1.1) reduces to the variational inequality of finding u in C such that

〈Au− g,v−u〉 ≥ 0, ∀v ∈ C. (1.2)

Example 1.1 [7]. Let A : E→E∗ be a maximal monotone operator from a reflexive Ba-
nach space E into E∗ with strong monotonicity and let C ⊂ E be star-shaped with respect
to a ball BE(u0,ρ). Suppose that Au0 − g 
=0 and that distance function dC satisfies the
condition of relaxed monotonicity

〈
u∗ − v∗,u− v

〉≥ − c‖u− v‖2, ∀u,v ∈ E, (1.3)

and for any u∗∈ ∂dC(u) and v∗ ∈ ∂dC(v) with c satisfying 0 < c < 4a2ρ/‖Au0− g‖2, where
a is the constant for strong monotonicity of A. Here, ∂dC is a relaxed monotone operator.
Then, the problem (P) has at least one solution.

As a result of interaction between different branches of mathematical and engineer-
ing sciences, we now have a variety of techniques to suggest and analyze various numer-
ical methods including projection technique and its variant forms, auxiliary principle
and Wiener-Hopf equations for solving variational inequalities and related optimization
problems. In this paper, using essentially the projection technique, we show that the gen-
eral variational inequalities are equivalent to the general Wiener-Hopf equations, whose
origin can be traced back to Shi [8]. It has been shown [4, 8–10] that the Wiener-Hopf
equations are more flexible and general than the projection methods. Noor [4, 9] has used
the Wiener-Hopf equations technique to study the sensitivity analysis and the dynamical
systems as well as to suggest and analyze several iterative methods for solving variational
inequalities.

Related to the variational inequalities, we have the problem of finding the fixed points
of the nonexpansive mappings, which is the subject of current interest in functional anal-
ysis. It is natural to consider a unified approach to these two different problems.

Motivated and inspired by the research going on in this direction, we first introduce
a new class of the general Wiener-Hopf equations involving. Using the projection tech-
nique, we show that the general Wiener-Hopf equations are equivalent to the general
variational inequalities. We use this alterative equivalence from the numerical and ap-
proximation viewpoints to suggest and analyze an new iterative scheme for finding the
common element of the set of fixed points of nonexpansive mappings and the set of so-
lutions of the general variational inequalities.



Yongfu Su et al. 3

2. Preliminaries

Let K be a nonempty closed convex subset of a real Hilbert space H , whose inner product
and norm are denoted by 〈·,·〉 and ‖·‖, respectively. Let T ,g : H→H be two nonlinear
operators, A : H→2H a multivalued relaxed monotone operator, and S1, S2 two nonex-
pansive self-mappings of K . Let PK be the projection of H into the convex set K .

We now consider the problem of finding u∈H : g(u)∈ K such that

〈
Tu+w,g(v)− g(u)

〉≥ 0, ∀v ∈H : g(v)∈ K , w ∈Au. (2.1)

Note what follows.
(1) If g ≡ I , the identity operator, then problem (2.1) is equivalent to finding u∈ K

such that

〈Tu+w,v−u
〉≥ 0, ∀v ∈ K , w ∈Au, (2.2)

which is considered as the Verma general variational inequality introduced and
studied by Verma [6] in 1997. Next, we will denote the set of solutions of the
general variational inequality (2.2) by GVI(K ,T ,A).

(2) If w ≡ 0, then problem (2.1) reduces to finding u∈H : g(u)∈ K such that

〈Tu,g(v)− g(u)
〉≥ 0, ∀v ∈H : g(v)∈ K , (2.3)

which is known as the general variational inequality introduced and studied by
Noor [3] in 1988.

(3) If w ≡ 0 and g ≡ I , the identity operator, then problem (2.1) collapses to finding
u∈ K such that

〈Tu,v−u〉 ≥ 0, ∀v ∈ K , (2.4)

which is known as the variational inequality problem, originally introduced and
studied by Stampacchia [1] in 1964. Next, we will denote the set of solutions of
the variational inequality (2.4) by VI(K ,T).

Related to the variational inequalities, we have the problems of solving the Wiener-
Hopf equations. To be more precise, Let QK = I − SPK , where PK is the projection of H
onto the closed convex set K , I is the identity operator, and S is a nonexpansive self-
mapping of K . If g−1 exists, then we consider the problem of finding z ∈H such that

Tg−1SPKz+w+ ρ−1QKz = 0, ∀w ∈ Ag−1SPKz, (2.5)
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where ρ > 0 is a constant, which is called the general Wiener-Hopf equation involving
nonexpansive mappings and multivalued relaxed monotone operators. Next, we denote
by GWHE(H ,T ,g,S,A) the set of solutions of the general Wiener-Hopf equation (2.5).

If w ≡ 0, then (2.5) reduces to

Tg−1SPKz+ ρ−1QKz = 0, (2.6)

which is called the general Wiener-Hopf equation involving nonexpansive mappings.
If w ≡ 0 and S≡ I , the identity operator, then (2.5) is equivalent to

Tg−1PKz+ ρ−1QKz = 0, (2.7)

where QK = I − PK . Equation (2.7) is considered as the classical general Wiener-Hopf
equation (see [4]).

If w ≡ 0 and S≡ g ≡ I , the identity operator, then (2.5) collapses to

TPKz+ ρ−1QKz = 0, (2.8)

which is known as the original Wiener-Hopf equation, introduced by Shi [8]. It is well
known that the variational inequalities and Wiener-Hopf equations are equivalent. This
equivalence has played a fundamental and basic role in developing some efficient and
robust methods for solving variational inequalities and related optimization problems.

We now recall some well-known concepts and results.

Definition 2.1. A mapping T : K→H is said to be relaxed (γ,r)-coercive if there exist two
constants γ,r > 0 such that

〈Tx−Ty,x− y〉 ≥ (−γ)‖Tx−Ty‖2 + r‖x− y‖2, ∀x, y ∈ K. (2.9)

Definition 2.2. A mapping A : H→2H is called t-relaxed monotone if there exists a con-
stant t > 0 such that

〈
w1−w2,u− v

〉≥ − t‖u− v‖2, ∀w1 ∈ Au, w2 ∈Av. (2.10)

Definition 2.3. A multivalued mapping A : H→2H is said to be μ-Lipschitzian if there
exists a constant μ > 0 such that

∥
∥w1−w2

∥
∥≤ μ‖u− v‖, ∀w1 ∈Au, w2 ∈Av. (2.11)

Lemma 2.4 (Reich [11]). Suppose that {δk}∞k=0 is a nonnegative sequence satisfying the
following inequality:

δk+1 ≤
(
1− λk

)
δk + σk, k ≥ 0 (2.12)

with λk ∈ [0,1],
∑∞

k=0λk =∞, and σk = ◦(λk). Then, lim k→∞δk = 0.
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Lemma 2.5. For a given z ∈H , u∈ K satisfies the inequality

〈u− z,v−u〉 ≥ 0, ∀v ∈ K (2.13)

if and only if u= PKz, where PK is the projection of H into K .

It is well-known that the projection operator PK is nonexpansive.

Lemma 2.6. The function u∈H : g(u)∈ K satisfies the general variational inequality (2.1)
if and only if u∈H satisfies the relation

g(u)= PK
[
g(u)− ρ(Tu+w)

]
, ∀w ∈Au, (2.14)

where ρ > 0 is a constant and PK is the metric projection of H onto K .

Proof. The proof follows from Lemma 2.5. �

Remark 2.7. If u∈GVI(K ,T ,g,A) such that g(u)∈ F(S1)⊂ K , where S1 is nonexpansive
self-mapping of K , one can easily see that

g(u)= S1g(u)= PK
[
g(u)− ρ(Tu+w)

]= S1PK
[
g(u)− ρ(Tu+w)

]
, (2.15)

where ρ > 0 is a constant. If further, assume, u ∈ F(S2), where S2 is also a nonexpansive
self-mapping of K , then we obtain

u= (1− an
)
u+ anS2u, (2.16)

where the sequence {an} ⊂ [0,1] for all n≥ 0. If u∈H such that g(u)∈ F(S1) is a com-
mon element of F(S2) and GVI(K ,T ,g,A), then combining (2.15) with (2.16), we have

u= (1− an
)
u+ anS2

{
u− g(u) + S1PK

[
g(u)− ρ(Tu+w)

]}
, (2.17)

where ρ > 0 is a constant and the sequence {an} ⊂ [0,1] for all n > 0.

3. Main results

In this section, we use the general Wiener-Hopf equation (2.5) to suggest and analyze
a new iterative method for finding the common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the general variational inequality (2.1).
For this purpose, we need the following result.

Proposition 3.1. The general variational inequality (2.1) has a solution u∈H such that
g(u)∈ F(S1) if and only if the general Wiener-Hopf equation (2.5) involving a nonexpansive
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self-mapping S1 has a solution z ∈H , where

z = g(u)− ρ(Tu+w), w ∈Au,

g(u)= S1PKz,
(3.1)

where PK is the projection of H onto K and ρ > 0 is a constant.

Proof. Pick u∈GVI(K ,T ,g,A) such that g(u)∈ F(S1). Observe that (2.15) yields

g(u)= S1PK
[
g(u)− ρ(Tu+w)

]
, ∀w ∈ Au. (3.2)

Let

z = g(u)− ρ(Tu+w), ∀w ∈Au. (3.3)

Combining (3.2) with (3.3), we have

g(u)= S1PKz,

z = g(u)− ρ(Tu+w), ∀w ∈ Au,
(3.4)

which yields

z = S1PKz− ρ
(
Tg−1S1PKz+w

)
, ∀w ∈Ag−1S1PKz. (3.5)

It follows that

Tg−1S1PKz+w+ ρ−1QKz = 0, ∀w ∈ Ag−1S1PKz, (3.6)

where QK = I − S1PK .
So, z ∈H is a solution of the general Wiener-Hopf equation (2.5). This completes the

proof. �

Remark 3.2. Observing Proposition 3.1, one can easily see the general variational inequal-
ity (2.1) and the general Wiener-Hopf equation (2.5) are equivalent. This equivalence is
very useful from the numerical point of view. Using the equivalence and by an appro-
priate rearrangement, we suggest and analyze a new iterative algorithm for finding the
common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of the general variational inequality.

Algorithm 3.3. The approximate solution {un} is generated by the following iterative al-
gorithm: u0 ∈ K and

zn = g
(
un
)− ρ

(
Tun +wn

)
,

un+1 =
(
1− an

)
un + anS2

[
un− g

(
un
)

+ S1PKzn
]
,

(3.7)

where {an} is a sequence in [0,1] for all n ≥ 0 and S1 and S2 are two nonexpansive self-
mappings of K .

If {wn} ≡ 0 and S1 ≡ I , the identity operator, Algorithm 3.3 reduces to the following
algorithm, which is essentially a one-step iterative method refined from Noor [12].



Yongfu Su et al. 7

Algorithm 3.4. The approximate solution {un} is generated by the following iterative al-
gorithm: u0 ∈ K and

zn = g
(
un
)− ρTun,

un+1 =
(
1− an

)
un + anS2

[
un− g

(
un
)

+PKzn
]
,

(3.8)

where {an} is a sequence in [0,1] for all n≥ 0 and S2 is a nonexpansive self-mappings of
K .

If {wn} ≡ 0 and g ≡ S1 ≡ I , the identity operator, Algorithm 3.3 reduces to the follow-
ing algorithm.

Algorithm 3.5. The approximate solution {un} is generated by the following iterative al-
gorithm: u0 ∈ K and

zn = un− ρTun,

un+1 =
(
1− an

)
un + anS2PKzn,

(3.9)

where {an} is a sequence in [0,1] for all n≥ 0 and S2 is a nonexpansive self-mappings of
K .

If the mapping T is α-inverse strongly monotone mapping, then Algorithm 3.5 can be
viewed as Takahashi and Toyoda’s [2].

If {an} = 1, {wn} ≡ 0, and g = S1 = S2 = I , the identity operator, Algorithm 3.3 reduces
to the following algorithm, which was considered by Noor [4].

Algorithm 3.6. The approximate solution {un} is generated by the following iterative al-
gorithm: u0 ∈ K and

zn = un− ρTun,

un+1 = PKzn,
(3.10)

where {an} is a sequence in [0,1] for all n≥ 0.

If {an} = 1 and g = S1 = S2 = I , the identity operator, Algorithm 3.3 collapses to the
following algorithm, which was studied by Verma [6].

Algorithm 3.7. Given u0 ∈H , the approximate solution {un} is generated by the following
iterative algorithm:

un+1 = PK
[
un− ρ

(
Tun +wn

)]
. (3.11)

Theorem 3.8. Let K be a nonempty closed convex subset of a real Hilbert space H . Let
T : K→H be a relaxed (γ1,r1)-coercive and μ1-Lipschitz continuous mapping, g : K→H a
relaxed (γ2,r2)-coercive and μ2-Lipschitz continuous mapping, A : H→2H a t-relaxed mono-
tone and μ3-Lipschitz continuous mapping, and S1, S2 two nonexpansive self-mappings of K
such that F(S1) 
=∅, F(S2)∩GVI(K ,T ,g,A) 
=∅, and GWHE(H, T, g, S, A) 
=∅, respec-
tively. Let {zn},{un}, and {g(un)} be sequences generated by Algorithm 3.3, where {αn} is a
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sequence in [0,1]. Assume that the following conditions are satisfied:
(C1) θ = k1 + 2k2 < 1,

where k1 =
√

1 + 2ρ(γ1μ
2
1− r1 + t) + ρ2(μ1 +μ3)2 and k2 =

√
1 + 2μ2

2γ2− 2r2 +μ2
2;

(C2)
∑∞

n=0, an =∞.
Then, the sequences {zn}, {un}, and {g(un)} converge strongly to z ∈ GWHE(H,
T, g, S1, A), u∈ F(S2)∩GVI(K ,T ,g,A), and g(u)∈ F(S1), respectively.

Proof. Let z ∈H be an element of GWHE(H ,T ,g,S1,A) and u∈ F(S2)∩GVI(K ,T ,g,A)
such that g(u)∈ F(S1). From (2.17) and Proposition 3.1, we have

z = g(u)− ρ(Tu +w),

u= (1− an
)
u+ anS2

[
u− g(u) + S1PKz

]
.

(3.12)

First, we estimate that ||un+1−u||. From (3.7) and (3.12), we obtain

∥
∥un+1−u

∥
∥

= ∥∥(1− an
)
un + anS2

[
un− g

(
un
)

+ S1PKzn
]−u

∥
∥

≤ (1− an
)∥∥un−u

∥
∥+ an

∥
∥S2
[
un− g

(
un
)

+ S1PKzn
]− S2

[
u− g(u) + S1PKz

]∥∥

≤ (1− an
)∥∥un−u

∥
∥+ an

∥
∥(un−u

)− [g(un
)− g(u)

]∥∥+ an
∥
∥zn− z

∥
∥.

(3.13)

Next, we evaluate ‖(un− u)− [g(un)− g(u)‖. By the relaxed (γ2,r2)-coercive and μ2-
Lipschitzian definition on g, we have

∥
∥(un−u

)− [g(un
)− g(u)

]∥∥2

= ∥∥un−u
∥
∥2− 2

〈
g
(
un
)− g(u),un−u

〉
+
∥
∥g
(
un
)− g(u)

∥
∥2

≤ ∥∥un−u
∥
∥2− 2

[
− γ2

∥
∥g
(
un
)− g(u)

∥
∥2

+ r2
∥
∥un−u

∥
∥2
]

+μ2
2

∥
∥un−u

∥
∥2

≤ (1 + 2μ2
2γ2− 2r2 +μ2

2

)∥∥un−u
∥
∥2 = k2

2

∥
∥un−u

∥
∥2

,

(3.14)

where k2 =
√

1 + 2μ2
2γ2− 2r2 +μ2

2. Next, we evaluate ||zn− z||. In a similar way, using the
relaxed (γ1,r1)-coercive and μ1-Lipschitzian definition on Tand the t-relaxed monotone
and μ3-Lipschitzian definition on A, we have

∥
∥(un−u

)− ρ
[(
Tun +wn

)− (Tu +w
)]∥∥2

= ∥∥un−u
∥
∥2− 2ρ

〈
Tun +wn− (Tu+w),un−u

〉
+ ρ2

∥
∥(Tun +wn

)− (Tu+w)
∥
∥2

≤ ∥∥un−u
∥
∥2− 2ρ

(〈
Tun−Tu,un−u

〉
+
〈
wn−w,un−u

〉)

+ ρ2(∥∥Tun−Tu
∥
∥+

∥
∥wn−w

∥
∥)2

≤
[

1 + 2ρ
(
γ1μ

2
1− r1 + t

)
+ ρ2(μ1 +μ3

)2
]∥
∥un−u

∥
∥2 = k2

1

∥
∥un−u

∥
∥2

,
(3.15)
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where k1 =
√

1 + 2ρ(γ1μ
2
1− r1 + t) + ρ2(μ1 +μ3)2. From (3.7) and (3.12), we have

∥
∥zn− z

∥
∥= ∥∥g(un

)− g(u)− ρ
[(
Tun +wn

)− (Tu+w)
]∥∥

≤ ∥∥un−u− [g(un
)− g(u)

]∥∥+
∥
∥un−u− ρ

[(
Tun +wn

)− (Tu+w)
]∥∥.

(3.16)

Now, substituting (3.14) and (3.15) into (3.16), we have

∥
∥zn− z

∥
∥≤ (k1 + k2

)∥∥un−u
∥
∥. (3.17)

Substituting (3.14) and (3.17) into (3.13), we have

∥
∥un+1−u

∥
∥≤ [1− (1− k1− 2k2

)
an
]∥∥un−u

∥
∥

= [1− (1− θ)an
]∥∥un−u

∥
∥,

(3.18)

where θ = k1 + 2k2 < 1. Thus, from (C1), (C2) and Lemma 2.4, we have limn→∞‖un −
u‖ = 0. Also from (3.17), we have limn→∞‖zn− z‖ = 0. On the other hand, we have

∥
∥g
(
un
)− g(u)

∥
∥≤ μ2

∥
∥un−u

∥
∥. (3.19)

It follows that limn→∞‖g(un)− g(u)‖ = 0. This completes the proof. �

Remark 3.9. In this paper, we show that the general variational inequalities involving
three nonlinear operators are equivalent to a new class of general Wiener-Hopf equa-
tions. The iterative methods suggested and analyzed in this paper are very convenient
and are reasonably easy to use for the computation. It is interesting to use the technique
in this paper to develop other new iterative methods for solving the general variational
inequalities in different directions.
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