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Let (un) be a sequence of real numbers and let L be any (C,1) regular limitable method.
We prove that, under some assumptions, if a sequence (un) or its generator sequence

(V (0)
n (Δu)) generated regularly by a sequence in a class � of sequences is a subsequential

convergence condition for L, then for any integer m ≥ 1, the mth repeated arithmetic

means of (V (0)
n (Δu)), (V (m)

n (Δu)), generated regularly by a sequence in the class �(m), is
also a subsequential convergence condition for L.
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1. Introduction

Let (un) be a sequence of real numbers. Let co, �∞, �, and � denote the space of sequences
converging to 0, bounded, slowly oscillating, and moderately oscillating, respectively.

The classical control modulo of the oscillatory behavior of (un) is denoted by ω(0)
n (u)=

nΔun, where Δun = un − un−1 and u−1 = 0 and the general control modulo of the os-

cillatory behavior of integer order m of (un) is defined [1] inductively by ω(m)
n (u) =

ω(m−1)
n (u)− σ (1)

n (ω(m−1)(u)), where σ (1)
n (u)= (1/(n+ 1))

∑n
k=0uk.

The Kronecker identity un−σ (1)
n (u)=V (0)

n (Δu), where V (0)
n (Δu)=(1/(n+1))

∑n
k=0 kΔuk,

is well known and used in various steps of proofs of theorems. For each integer m ≥ 1
and for all nonnegative integers n, we inductively define sequences related to (un) such as

V (m)
n (Δu)= σ (1)

n (V (m−1)(Δu)) and σ (m)
n (u)= σ (1)

n (σ (m−1)(u)), where σ (0)
n (u)= un.

Throughout this work, a different definition of slow oscillation better tailored for
our purposes will be used. A sequence u = (un) is slowly oscillating [2] if
limλ→1+ limn maxn+1≤k≤[λn] |uk − un| = 0, where [λn] denotes the integer part of λn. See

[3, 4] for more on slow oscillation. A sequence u= (un)∈� if and only if (V (0)
n (Δu))∈�
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and (V (0)
n (Δu)) ∈ �∞ (see [5]). A sequence u = (un) is moderately oscillating [2] if for

λ > 1, limn maxn+1≤k≤[λn] |uk −un| <∞. It is proved in [5] that if a sequence u= (un)∈�,

then (V (0)
n (Δu))∈ �∞.

A sequence u= (un) is Abel limitable to s if the limit limx→1−(1− x)
∑∞

n=0unx
n = s and

(C,1) limitable to s if limn σ
(1)
n (u)= s.

Let L be any limitation method. If u= (un) is L limitable to s, we write L− limn un = s.
The limitation method L is said to be regular if limn un = s implies L− limn un = s. The

limitation method L is said to be (C,1) regular if L− limn un = s implies L− limn σ
(1)
n (u)=

s. A sequence u= (un) is called subsequentially convergent [6] if there exists a finite inter-
val I(u) such that all accumulation points of u= (un) are in I(u) and every point of I(u)
is an accumulation point of u= (un).

Let � be any linear space of sequences and let � be a subclass of �. For each integer

m≥ 1, define the class �(m) = {(a(m)
n ) | a(m)

n =∑n
k=1(a(m−1)

k /k)}, where (a(0)
n ) := (an)∈�.

Let u= (un)∈�. If

un = a(m)
n +

n∑

k=1

a(m)
k

k
(1.1)

for some a(m) = (a(m)
n )∈�(m), we say that the sequence (un) is regularly generated by the

sequence (a(m)
n ) and (a(m)

n ) is called a generator of (un). The class of all sequences regularly
generated by sequences in �(m) is denoted by U(�(m)). We note that �(0) =�.

Tauber [7] proved that an Abel limitable sequence u= (un) is convergent if

(
ω(0)
n (u)

)∈ co. (1.2)

A condition such as (1.2) is called a Tauberian condition, after A. Tauber.
Tauber [7] further proved that the condition

(
σ (1)
n

(
ω(0)(u)

))∈ co (1.3)

is also a Tauberian condition. It was later shown by Littlewood [8] that the condition
(1.2) could be replaced by

(
ω(0)
n (u)

)∈ �∞. (1.4)

Rényi [9] observed that the condition

(
σ (1)
n

(
ω(0)(u)

))∈ �∞ (1.5)

is no longer a Tauberian condition for Abel limitable method.
Stanojević [1] investigated behaviors of some subsequences of an Abel limitable se-

quence u= (un) adding a mild condition on (un), together with (1.5).
Dik [6] obtained the following theorem.
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Theorem 1.1. Let (un) be Abel limitable and ΔV (0)
n (Δu)= o(1). If

(
V (0)
n (Δu)

)∈U(�), (1.6)

then (un) is subsequentially convergent.

Later several improvements of Dik’s theorem were obtained.
A condition that subsequential convergence of (un) is recovered out of its Abel lim-

itability is called a subsequential convergence condition.
We list the subsequential convergence conditions for Abel limitable method that (1.6)

can be replaced by

(i) (V (m)
n (Δu))∈U(�(m)) (see [10]),

(ii) (V (0)
n (Δu))∈U(�∞) (see [6]),

(iii) (V (m)
n (Δu))∈U(�(m)∞ ) (see [10]),

(iv) (un)∈U(�) (see [11]),
(v) (un)∈U(�∞) (see [6]).

In this work, we prove that under the assumptions if a sequence (un) or its generator

sequence (V (0)
n (Δu)) generated regularly by a sequence in a class � of sequences is a

subsequential convergence condition for a (C,1) regular limitable method L, then for any

integer m ≥ 1, the mth repeated arithmetic means of (V (0)
n (Δu)), (V (m)

n (Δu)), generated
regularly by a sequence in the class �(m) is also a subsequential convergence condition for
L.

2. Results

Throughout this section, we require L to be (C,1) regular.
We prove the following theorems.

Theorem 2.1. For a sequence u = (un), let L − limn un = s and ΔV (0)
n (Δu) = o(1). If

(V (0)
n (Δu)) ∈ U(�) is a subsequential convergence condition for L, then (V (m)

n (Δu)) ∈
U(�(m)) for each integer m≥ 1 is also a subsequential convergence condition for L.

Theorem 2.2. For a sequence u = (un), let L − limn un = s and ΔV (0)
n (Δu) = o(1). If

(V (0)
n (Δu)) ∈ U(�∞) is a subsequential convergence condition for L, then (V (m)

n (Δu)) ∈
U(�(m)∞ ) for each integer m≥ 1 is also a subsequential convergence condition for L.

Theorem 2.3. For a sequence u= (un), let L− limn un = s and ΔV (0)
n (Δu)= o(1). If (un)∈

U(�) is a subsequential convergence condition for L, then (V (m)
n (Δu))∈U(�(m)) for each

integer m≥ 1 is also a subsequential convergence condition for L.

Theorem 2.4. For a sequence u= (un), let L− limn un = s and ΔV (0)
n (Δu)= o(1). If (un)∈

U(�∞) is a subsequential convergence condition for L, then (V (m)
n (Δu)) ∈ U(�(m)∞ ) for each

integer m≥ 1 is also a subsequential convergence condition for L.

To prove these theorems, we need the following lemma and the observation.

Lemma 2.5 [12]. Let u= (un)∈� and k,m≥ 0 be any integers. If (V (k)
n (Δu))∈U(�(m)),

then (nΔ)m+1V
(k+1)
n (Δu)= an, where (an)∈�.
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Proof. If (V (k)
n (Δu))∈U(�(m)), it then follows that

V (k)
n (Δu)= σ (k−1)

n (u)− σ (k)
n (u)= b(m)

n +
n∑

j=1

b(m)
j

j
(2.1)

for some (b(m)
n )∈�(m). From (2.1), we obtain

V (k−1)
n (Δu)−V (k)

n (Δu)= nΔb(m)
n + b(m)

n . (2.2)

Subtracting (2.2) from the arithmetic mean of (2.2), we have

(
V (k−1)
n

(
Δu)−V (k)

n (Δu)
)− (V (k)

n

(
Δu)−V (k+1)

n (Δu)
)= b(m−1)

n . (2.3)

Equation (2.3) can be expressed as

nΔV (k)
n (Δu)−nΔV (k+1)

n (Δu)= b(m−1)
n , (2.4)

which implies (nΔ)2V
(k+1)
n (Δu) = b(m−1)

n . By repeating the same reasoning, we have

σ (1)
n (ω(k+1)(u))= (nΔ)m+1V

(k+1)
n (Δu)= b(0)

n = bn. �

For a sequence (un) and for each integer m≥ 1, we define

(nΔ)mun = nΔ
(
(nΔ)m−1un

)
, (2.5)

where (nΔ)0un = un and (nΔ)1un = nΔun.

Observation 1 [13]. For each integer m≥ 1,

ω(m)
n (u)= (nΔ)mV (m−1)

n (Δu). (2.6)

The proof of Observation 1 easily follows from the mathematical induction.

Proof of Theorem 2.1. Assume that (V (0)
n (Δu)) ∈ U(�) is a subsequential convergence

condition for L. Since (V (0)
n (Δu))∈ U(�), V (0)

n (Δu)= bn +
∑n

k=1(bk/k) for some (bn)∈
�. Hence, we have

nΔV (0)
n (Δu)= nΔbn + bn. (2.7)

Taking the (C,1) mean of both sides of (2.7), we obtain nΔV (1)
n (Δu)=V (0)

n (Δb) + σ (1)
n (b)=

bn. Since (bn)∈�,

V (0)
n (Δb)=O(1) (2.8)

by a result in [5]. Notice that (2.8) can be rewritten as V (0)
n (Δb) = (nΔ)2V

(2)
n (Δu) =

O(1) in terms of the sequence u = (un). Let (V (m)
n (Δu)) ∈ U(�(m)). By Lemma 2.5,

(σ (1)
n (ω(m+1)(u))) ∈ �. From the last statement, we conclude that σ (1)

n (ω(m+2)(u)) =
(nΔ)m+2V

(m+2)
n (Δu)=O(1), or equivalently

σ (1)
n

(
ω(m+2)(u)

)= (nΔ)2V
(2)
n

(
Δσ (1)(ω(m−1)(u)

))=O(1). (2.9)
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It easily follows from the existence of L-limitability of (un) to s that

L− lim
n
σ (1)
n

(
ω(m−1)(u)

)= 0. (2.10)

The condition ΔV (0)
n (Δu)= o(1) implies that

Δ
(
(nΔ)mV (m)

n (Δu)
)= ΔV (0)

n

(
Δσ (1)(ω(m−1)(u)

))= o(1). (2.11)

Taking into account (2.9), (2.10), and (2.11), we obtain that (σ (1)
n (ω(m−1)(u))) is sub-

sequentially convergent. By the fact that every subsequentially convergent sequence is

bounded, σ (1)
n (ω(m−1)(u))=O(1), or equivalently

σ (1)
n

(
ω(m−1)(u)

)= (nΔ)2V
(2)
n

(
Δσ (1)(ω(m−4)(u)

))=O(1). (2.12)

As in obtaining (2.10) and (2.11), we also have

L− lim
n
σ (1)
n

(
ω(m−4)(u)

)= 0,

Δ
(
(nΔ)m−3V

(m−3)
n (Δu)

)= ΔV (0)
n

(
Δσ (1)(ω(m−4)(u)

))= o(1),
(2.13)

respectively.

Again taking into account (2.12) and (2.13), we obtain that (σ (1)
n (ω(m−4)(u))) is subse-

quentially convergent. Continuing in this manner, if m ≡ 0 (mod 3), we have that

((nΔ)2V
(2)
n (Δu))= (σ (1)

n (ω(2)(u))) is subsequentially convergent and then

(nΔ)2V
(2)
n (Δu)=O(1). (2.14)

Since L− limn un = s, we have

L− lim
n
σ (1)
n

(
ω(2)(u)

)= 0. (2.15)

Again it follows from the conditions ΔV (0)
n (Δu) = o(1), (2.14), and (2.15) that (un) is

subsequentially convergent.

If m≡ 1 (mod 3), we have that ((nΔ)0V
(0)
n (Δu))= (V (0)

n (Δu))= (σ (1)
n (ω(0)(u))) is sub-

sequentially convergent and then

V (0)
n (Δu)=O(1). (2.16)

Clearly, the condition (2.16) implies (2.14).

Again it follows from the conditions ΔV (0)
n (Δu) = o(1), (2.14) and (2.15) that (un) is

subsequentially convergent.

If m≡ 2 (mod 3), we conclude that (nΔV (1)
n (Δu))= (σ (1)

n (ω(1)(u))) is subsequentially
convergent and then

nΔV (1)
n (Δu)=O(1). (2.17)

Clearly, the condition (2.17) implies (2.14).
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From the conditions ΔV (0)
n (Δu)= o(1), (2.14) and (2.15) it follows that (un) is subse-

quentially convergent. �

Proof of Theorem 2.2. Assume that (V (0)
n (Δu)) ∈ U(�∞) is a subsequential convergence

condition for L. Since (V (0)
n (Δu)) ∈ U(�∞), by similar calculations in the proof of

Theorem 2.1 we have (nΔV (1)
n (Δu)) ∈ �∞, or equivalently nΔV (1)

n (Δu) = σ (1)
n (ω(1)(u)) =

O(1). Let (V (m)
n (Δu))∈U(�(m)∞ ). Then by Lemma 2.5, (σ (1)

n (ω(m+1)(u)))∈ �∞, or equiva-
lently

σ (1)
n

(
ω(m+1)(u)

)= nΔV (1)
n

(
Δσ (1)(ω(m−1)(u)

))=O(1). (2.18)

Since L− limn un = s,

L− lim
n
σ (1)
n

(
ω(m−1)(u)

)= 0. (2.19)

The condition ΔV (0)
n (Δu)= o(1) implies that

Δ
(
(nΔ)mV (m)

n (Δu)
)= ΔV (0)

n

(
Δσ (1)(ω(m−1)(u)

))= o(1). (2.20)

Taking into account (2.18), (2.19), and (2.20), we conclude that (σ (1)
n (ω(m−1)(u))) is sub-

sequentially convergent, and then σ (1)
n (ω(m−1)(u))=O(1), or equivalently

σ (1)
n

(
ω(m−1)(u)

)= nΔV (1)
n

(
Δσ (1)(ω(m−3)(u)

))=O(1). (2.21)

As in obtaining (2.19) and (2.20), we have

L− lim
n
σ (1)
n

(
ω(m−3)(u)

)= 0,

Δ
(
(nΔ)m−2V

(m−2)
n (Δu)

)= ΔV (0)
n

(
Δσ (1)(ω(m−3)(u)

))= o(1).
(2.22)

Taking into account (2.21) and (2.22), we conclude that from the assumption

(σ (1)
n (ω(m−3)(u))) is subsequentially convergent. Continuing in this manner, if m ≡

0 (mod 2), we have (nΔV (1)
n (Δu)) = (σ (1)

n (ω(1)(u))) is subsequentially convergent and
then,

nΔV (1)
n (Δu)=O(1). (2.23)

Since L− limn un = s, we have

L− lim
n
σ (1)
n

(
ω(1)(u)

)= 0. (2.24)

It follows from the condition ΔV (0)
n (Δu)= o(1), (2.23), and (2.24) that (un) is subsequen-

tially convergent.
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If m≡ 1 (mod 2), we have that ((nΔ)0V
(0)
n (Δu))= (V (0)

n (Δu))= (σ (1)
n (ω(0)(u))) is sub-

sequentially convergent, and then, we have

V (0)
n (Δu)=O(1). (2.25)

The condition (2.25) implies (2.23).
Taking into account ΔV (0)

n (Δu)= o(1), (2.23), and (2.24), we have that (un) is subse-
quentially convergent. �

Proof of Theorem 2.3. Assume that (un) ∈ U(�) is a subsequential convergence condi-
tion for L. Since (un)∈U(�), by similar reasoning in the proof of Theorem 2.1, we have

(V (0)
n (Δu)) ∈ �. Thus, we have nΔV (1)

n (Δu) = O(1). The rest of the proof is as in the
proof of Theorem 2.2. �

Proof of Theorem 2.4. Assume that (un) ∈ U(�∞) is a subsequential convergence condi-
tion for L. Since (un) ∈ U(�∞), we have un = bn +

∑n
k=1(bk/k) for some (bn) ∈ �∞. Thus

V (0)
n (Δu) = O(1). Let (V (m)

n (Δu)) ∈ U(�(m)∞ ). By Lemma 2.5, (σ (1)
n (ω(m+1)(u))) ∈ �∞, or

equivalently

σ (1)
n

(
ω(m+1)(u)

)=V (0)
n

(
Δσ (1)(ω(m)(u)

))=O(1). (2.26)

L− limn un = s implies

L− lim
n
σ (1)
n

(
ω(m)(u)

)= 0 (2.27)

and from ΔV (0)
n (Δu)= o(1), we have

Δ
(
(nΔ)m+1V

(m+1)
n (Δu)

)= ΔV (0)
n

(
Δσ (1)(ω(m)(u)

))= o(1). (2.28)

Taking into account (2.26), (2.27), and (2.28), we conclude that (σ (1)
n (ω(m)(u))) is subse-

quentially convergent, and then σ (1)
n (ω(m)(u))=O(1), or equivalently

σ (1)
n

(
ω(m)(u)

)=V (0)
n

(
Δσ (1)(ω(m−1)(u)

))=O(1). (2.29)

As in obtaining (2.27) and (2.28), we have

L− lim
n
σ (1)
n

(
ω(m−1)(u)

)= 0,

Δ
(
(nΔ)mV (m)

n (Δu)
)= ΔV (0)

n

(
Δσ (1)(ω(m−1)(u)

))= o(1).
(2.30)

Again taking into account (2.29) and (2.30), from the assumption we obtain that

(σ (1)
n (ω(m−1)(u))) is subsequentially convergent. Continuing in this manner we have that

(σ (1)
n (ω(0)(u))) is subsequentially convergent, and then

σ (1)
n

(
ω(0)(u)

)=V (0)
n (Δu)=O(1). (2.31)

Since (un) is L-limitable to s, we have

L− lim
n
V (0)
n (Δu)= 0. (2.32)
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From the condition ΔV (0)
n (Δu)= o(1), (2.31), and (2.32), we conclude that (un) is subse-

quentially convergent. �
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[2] Č. V. Stanojević, Analysis of Divergence: Control and Management of Divergent Process, edited by
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[11] İ. Çanak, “Tauberian theorems for a generalized Abelian summability methods,” Mathematica
Moravica, vol. 2, pp. 21–66, 1998.
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