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1. Introduction

Equilibrium problemwas first introduced by Blum and Oettli [1], which includes optimization
problems, fixed point problems, variational inequality problems, and complementarity prob-
lems as special cases. In the past ten years, equilibrium problem has been extensively studied
and generalized (see, e.g., [2, 3]).

It is well known that the well-posedness is very important for both optimization the-
ory and numerical methods of optimization problems, which guarantees that, for approxi-
mating solution sequences, there is a subsequence which converges to a solution. The well-
posedness of unconstrained and constrained scalar optimization problemswas first introduced
and studied by Tykhonov [4] and Levitin and Polyak [5], respectively. Since then, various con-
cepts of well-posedness have been introduced and extensively studied for scalar optimiza-
tion problems [6–13], best approximation problems [14–16], vector optimization problems
[17–23], optimization control problems [24], nonconvex constrained variational problems [25],
variational inequality problems [26, 27], and Nash equilibrium problems [28–31]. The study
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of Levitin-Polyak well-posedness for convex scalar optimization problems with functional
constraints started by Konsulova and Revalski [32]. Recently, Huang and Yang generalized
those results to nonconvex (vector) optimization problems with both abstract and functional
constraints [33, 34]. Very recently, Huang and Yang [35] studied Levitin-Polyak-type well-
posedness for generalized variational inequality problems with abstract and functional con-
straints. They introduced several types of generalized Levitin-Polyak well-posednesses and
obtained some criteria and characterizations for these types of well-posednesses.

Motivated and inspired by the numerical method introduced by Mastroeni [36] and the
works mentioned above, the purpose of this paper is to generalize the results in [35] to equi-
librium problems. We introduce several types of Levitin-Polyak well-posedness for equilib-
rium problems with abstract and functional constraints. Necessary and sufficient conditions
for these types of well-posedness are obtained. Some relations among these types of well-
posedness are also established under some suitable conditions.

2. Preliminaries

Let (X, ‖·‖) be a normed space, and let (Y, d) be a metric space. Let K ⊆ X and D ⊆ Y be
nonempty and closed. Let f from X ×X to R ∪ {±∞} be a bifunction satisfying f(x, x) = 0 for
any x ∈ X and let g from K to Y be a function. Let S = {x ∈ K : g(x) ∈ D}.

In this paper, we consider the following explicit constrained equilibrium problem: find-
ing a point x ∈ S such that

f(x, y) ≥ 0, ∀y ∈ S. (EP)

Denote by Γ the solution set of (EP). Throughout this paper, we always assume that S/=∅ and
g is continuous on K.

Let (W,d) be a metric space and W1 ⊂ W . We denote by dW1(p) = inf{d(p, p′) : p′ ∈ W1}
the distance from the point p to the set W1.

Definition 2.1. A sequence {xn} ⊂ K is said to be as follows:

(i) type I Levitin-Polyak (LP in short) approximating solution sequence if there exists a se-
quence εn > 0 with εn → 0 such that

dS

(
xn

) ≤ εn, (2.1)

f
(
xn, y

)
+ εn ≥ 0, ∀y ∈ S; (2.2)

(ii) type II LP approximating solution sequence if there exists a sequence εn > 0 with εn → 0
and {yn} ⊂ S such that (2.1) and (2.2) hold, and

f
(
xn, yn

) ≤ εn; (2.3)

(iii) a generalized type I LP approximating solution sequence if there exists a sequence εn > 0
with εn → 0 such that

dD

(
g
(
xn

)) ≤ εn (2.4)

and (2.2) hold;
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(iv) a generalized type II LP approximating solution sequence if there exists a sequence εn > 0
with εn → 0 and {yn} ⊂ S such that (2.2), (2.3), and (2.4) hold.

Definition 2.2. The explicit constrained equilibrium problem (EP) is said to be of type I (resp.,
type II, generalized type I, generalized type II) LP well-posed if the solution set Γ of (EP)
is nonempty, and for any type I (resp., type II, generalized type I, generalized type II) LP
approximating solution sequence {xn} has a subsequence which converges to some point of Γ.

Remark 2.3. (i) If f(x, y) = 〈F(x), y − x〉 for all x, y ∈ K, where F : K → X∗ is a mapping and
X∗ denotes the topological dual of X, then type I (resp., type II, generalized type I, generalized
type II) LP well-posedness for (EP) defined in Definition 2.2 reduces to type I (resp., type II,
generalized type I, generalized type II) LP well-posedness for the variational inequality with
functional constraints.

(ii) It is easy to see that any (generalized) type II LP approximating solution sequence
is a (generalized) type I LP approximating solution sequence. Thus, (generalized) type I LP
well-posedness implies (generalized) type II LP well-posedness.

(iii) Each type of LP well-posedness for (EP) implies that the solution set Γ is nonempty
and compact.

(iv) Let g be a uniformly continuous function on the set

S
(
δ0
)
=
{
x ∈ K : dS(x) ≤ δ0

}
(2.5)

for some δ0 > 0. Then, generalized type I (type II) LP well-posedness implies type I (type II)
LP well-posedness.

It is well known that an equilibrium problem is closely related to aminimization problem
(see, e.g., [36]). Thus, we need to recall some notions of LP well-posedness for the following
general constrained optimization problem:

minh(x) s.t. x ∈ K, g(x) ∈ D, (P)

where h : K → R ∪ {+∞} is lower semicontinuous. The feasible set of (P) is still denoted by
S. The optimal set and optimal value of (P) are denoted by Γ and v, respectively. If Dom(h) ∩
S/=∅, then v < +∞, where

Dom(h) =
{
x ∈ K : h(x) < +∞}

. (2.6)

In this paper, we always assume that v > −∞. In [33], Huang and Yang introduced the follow-
ing LP well-posed for generalized constrained optimization problem (P).

Definition 2.4. A sequence {xn} ⊂ K is said to be

(i) type I LP minimizing sequence for (P) if

dS

(
xn

) −→ 0, (2.7)

lim sup
n→+∞

h
(
xn

) ≤ v; (2.8)
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(ii) type II LP minimizing sequence for (P) if

lim
n→+∞

h
(
xn

)
= v (2.9)

and (2.7) holds;

(iii) a generalized type I LP minimizing sequence for (P) if (2.8) holds and

dD

(
g
(
xn

)) −→ 0; (2.10)

(iv) a generalized type II LP minimizing sequence for (P) if (2.9) and (2.10) hold.

Definition 2.5. The generalized constrained optimization problem (P) is said to be type I (resp.,
type II, generalized type I, generalized type II) LP well-posed if v is finite, Γ/=∅ and for any
type I (resp., type II, generalized type I, generalized type II) LP minimizing sequence {xn} has
a subsequence which converges to some point of Γ.

Mastroeni [36] introduced the following gap function for (EP):

h(x) = sup
y∈S

{ − f(x, y)
}
, ∀x ∈ K. (2.11)

It is clear that h is a function from K to (−∞,+∞]. Moreover, if Γ/=∅, then Dom(h) ∩ S/=∅.

Lemma 2.6 (see [36]). Let h be defined by (2.11). Then

(i) h(x) ≥ 0 for all x ∈ S;

(ii) h(x) = 0 if and only if x ∈ Γ.

Remark 2.7. By Lemma 2.6, it is easy to see that x0 ∈ Γ if and only if x0 minimizes h(x) over S
with h(x0) = 0.

Now, we show the following lemmas.

Lemma 2.8. Let h be defined by (2.11). Suppose that f is upper semicontinuous onK×K with respect
to the first argument. Then h is lower semicontinuous on K.

Proof. Let α ∈ R and let the sequence {xn} ⊂ K satisfy xn → x0 ∈ K and h(xn) ≤ α. It follows
that, for any ε > 0 and each n, −f(xn, y) ≤ α + ε for all y ∈ S. By the upper semicontinuity of f
with respect to the first argument, we know that −f(x0, y) ≤ α+ε. This implies that h(x0) ≤ α+ε.
From the arbitrariness of ε > 0, we have h(x0) ≤ α and so h is lower semicontinuous onK. This
completes the proof.

Remark 2.9. Lemma 2.8 implies that h is lower semicontinuous. Therefore, if Dom(h) ∩ S/=∅,
then it is easy to see that Theorems 2.1 and 2.2 of [33] are true.

Lemma 2.10. Let Γ/=∅. Then, (EP) is type I (resp., type II, generalized type I, generalized type II) LP
well-posed if and only if (P) is type I (resp., type II, generalized type I, generalized type II) LP well-posed
with h defined by (2.11).
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Proof. Since Γ/=∅, it follows from Lemma 2.6 that x0 is a solution of (EP) if and only if x0 is an
optimal solution of (P) with v = h(x0) = 0, where h is defined by (2.11). It is easy to check that
a sequence {xn} is a type I (resp., type II, generalized type I, generalized type II) LP approxi-
mating solution sequence of (EP) if and only if it is a type I (resp., type II, generalized type I,
generalized type II) LPminimizing sequence of (P). Thus, the conclusions of Lemma 2.10 hold.
This completes the proof.

Consider the following statement:
{
Γ/=∅ and, for any type I (resp., type II, generalized type I, generalized type II)

LP approximating solution sequence {xn}, we have dΓ(xn) −→ 0
}
.

(2.12)

It is easy to prove the following lemma by Definition 2.2.

Lemma 2.11. If (EP) is type I (resp., type II, generalized type I, generalized type II) LP well-posed, then
(2.12) holds. Conversely, if (2.12) holds and Γ is compact, then (EP) is type I (resp., type II, generalized
type I, generalized type II) LP well-posed.

3. Metric characterizations of LP well-posedness for (EP)

In this section, we give some metric characterizations of various types of LP well-posedness
for (EP) defined in Section 2.

Given two nonempty subsets A and B of X, the Hausdorff distance between A and B is
defined by

H(A,B) = max
{
e(A,B), e(B,A)

}
, (3.1)

where e(A,B) = supa∈Ad(a, B) with d(a, B) = infb∈Bd(a, b).
For any ε > 0, two types of the approximating solution sets for (EP) are defined, respec-

tively, by

M1(ε) =
{
x ∈ K : f(x, y) + ε ≥ 0, ∀y ∈ S, dS(x) ≤ ε

}
,

M2(ε) =
{
x ∈ K : f(x, y) + ε ≥ 0, ∀y ∈ S, dD

(
g(x)

) ≤ ε
}
.

(3.2)

Theorem 3.1. Let (X, ‖·‖) be a Banach space. Then, (EP) is type I LP well-posed if and only if the
solution set Γ of (EP) is nonempty, compact, and

e
(
M1(ε),Γ

) −→ 0 as ε −→ 0. (3.3)

Proof. Let (EP) be type I LP well-posed. Then Γ is nonempty and compact. Now, we prove that
(3.3) holds. Suppose to the contrary that there exist γ > 0, {εn} with εn → 0, and xn ∈ M1(εn)
such that

dΓ
(
xn

) ≥ γ. (3.4)

Since {xn} ⊂ M1(εn), we know that {xn} is a type I LP approximating solution sequence for
(EP). By the type I LP well-posedness of (EP), there exists a subsequence {xnk

} of {xn} con-
verging to some point of Γ. This contradicts (3.4) and so (3.3) holds.
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Conversely, suppose that Γ is nonempty, compact, and (3.3) holds. Let {xn} be a type I
LP approximating solution sequence for (EP). Then there exists a sequence {εn} with εn > 0
and εn → 0 such that f(xn, y) + εn ≥ 0 for all y ∈ S and dS(xn) ≤ εn. Thus, {xn} ⊂ M1(εn). It
follows from (3.3) that there exists a sequence {zn} ⊂ Γ such that

∥
∥xn − zn

∥
∥ = d

(
xn,Γ

) ≤ e
(
M1

(
εn
)
,Γ
) −→ 0. (3.5)

Since Γ is compact, there exists a subsequence {znk
} of {zn} converging to x0 ∈ Γ, and so the

corresponding subsequence {xnk
} of {xn} converges to x0. Therefore, (EP) is type I LP well-

posed. This completes the proof.

Example 3.2. Let X = Y = R, K = [0, 2], and D = [0, 1]. Let

g(x) = x, f(x, y) = (x − y)2, ∀x, y ∈ X. (3.6)

Then it is easy to compute that S = [0, 1], Γ = [0, 1], and M1(ε) = [0, 1 + ε]. It follows that
e(M1(ε),Γ) → 0 as ε → 0. By Theorem 3.1, (EP) is type I LP well-posed.

The following example illustrates that the compactness condition in Theorem 3.1 is es-
sential.

Example 3.3. Let X = Y = R, K = [0,+∞), D = [0,+∞), and let g and f be the same as in
Example 3.2. Then, it is easy to compute that S = [0,+∞), Γ = [0,+∞), M1(ε) = [0,+∞), and
e(M1(ε),Γ) → 0 as ε → 0. Let xn = n for n = 1, 2, . . . . Then, {xn} is an approximating solution
sequence for (EP), which has no convergent subsequence. This implies that (EP) is not type I
LP well-posed.

Furi and Vignoli [8] characterized well-posedness of the optimization problem (defined
in a complete metric space (S, d1)) by the use of the Kuratowski measure of noncompactness
of a subset A of X defined as

μ(A) = inf

{

ε > 0 : A ⊆
n⋃

i=1

Ai, diamAi < ε, i = 1, 2, . . . , n

}

, (3.7)

where diam Ai is the diameter of Ai defined by diam Ai = sup{d1(x1, x2) : x1, x2 ∈ Ai}.
Now, we give a Furi-Vignoli-type characterization for the various LP well-posed.

Theorem 3.4. Let (X, ‖·‖) be a Banach space and Γ/=∅. Assume that f is upper semicontinuous on
K ×K with respect to the first argument. Then, (EP) is type I LP well-posed if and only if

lim
ε→0

μ
(
M1(ε)

)
= 0. (3.8)
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Proof. Let (EP) be type I LP well-posed. It is obvious that Γ is nonempty and compact. As
proved in Theorem 3.1, e(M1(ε),Γ) → 0 as ε → 0. Since Γ is compact, μ(Γ) = 0 and the follow-
ing relation holds (see, e.g., [7]):

μ
(
M1(ε)

) ≤ 2H
(
M1(ε),Γ

)
+ μ(Γ) = 2H

(
M1(ε),Γ

)
= 2e

(
M1(ε),Γ

)
. (3.9)

Therefore, (3.8) holds.
In order to prove the converse, suppose that (3.8) holds. We first show that M1(ε) is

nonempty and closed for any ε > 0. In fact, the nonemptiness of M1(ε) follows from the fact
that Γ/=∅. Let {xn} ⊂ M1(ε) with xn → x0. Then

dS

(
xn

) ≤ ε, (3.10)

f
(
xn, y

)
+ ε ≥ 0, ∀y ∈ S. (3.11)

It follows from (3.10) that

dS

(
x0
) ≤ ε. (3.12)

By the upper semicontinuity of f with respect to the first argument and (3.11), we have
f(x0, y) + ε ≥ 0 for all y ∈ S, which together with (3.12) yields x0 ∈ M1(ε), and so M1(ε)
is closed. Now we prove that Γ is nonempty and compact. Observe that Γ =

⋂
ε>0M1(ε). Since

limε→0 μ(M1(ε)) = 0, by the Kuratowski theorem ([37], [38, page 318]), we have

H
(
M1(ε),Γ

) −→ 0 as ε −→ 0 (3.13)

and so Γ is nonempty and compact.
Let {xn} be a type I LP approximating solution sequence for (EP). Then, there exists a

sequence {εn} with εn > 0 and εn → 0 such that f(xn, y) + εn ≥ 0 for all y ∈ S and dS(xn) ≤ εn.
Thus, {xn} ⊂ M1(εn). This fact together with (3.13) shows that dΓ(xn) → 0. By Lemma 2.11,
(EP) is type I LP well-posed. This completes the proof.

In the similar way to Theorems 3.1 and 3.4, we can prove the following Theorems 3.5
and 3.6, respectively.

Theorem 3.5. Let (X, ‖·‖) be a Banach space. Then, (EP) is generalized type I LP well-posed if and
only if the solution set Γ of (EP) is nonempty, compact, and e(M2(ε),Γ) → 0 as ε → 0.

Theorem 3.6. Let (X, ‖·‖) be a Banach space and Γ/=∅. Assume that f is upper semicontinuous on
K ×K with respect to the first argument. Then, (EP) is generalized type I LP well-posed if and only if
limε→0 μ(M2(ε)) = 0.

In the following we consider a real-valued function c = c(t, s) defined for s, t ≥ 0 suffi-
ciently small, such that

c(t, s) ≥ 0, ∀t, s, c(0, 0) = 0,

sn −→ 0, tn ≥ 0, c
(
tn, sn

) −→ 0, imply tn −→ 0.
(3.14)

By using [33, Theorem 2.1] and Lemma 2.10, we have the following theorem.
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Theorem 3.7. Let (EP) be type II LP well-posed. Then there exists a function c satisfying (3.14) such
that

∣∣h(x)
∣∣ ≥ c

(
dΓ(x), dS(x)

)
, ∀x ∈ K, (3.15)

where h(x) is defined by (2.11). Conversely, suppose that Γ is nonempty and compact, and (3.15) holds
for some c satisfying (3.14). Then, (EP) is type II LP well-posed.

Similarly, we have the next theorem by applying [33, Theorem 2.2] and Lemma 2.10.

Theorem 3.8. Let (EP) be generalized type II LP well-posed. Then there exists a function c satisfying
(3.14) such that

∣∣h(x)
∣∣ ≥ c

(
dΓ(x), dD

(
g(x)

))
, ∀x ∈ K, (3.16)

where h(x) is defined by (2.11). Conversely, suppose that Γ is nonempty and compact, and (3.16) holds
for some c satisfying (3.14). Then, (EP) is generalized type II LP well-posed.

4. Sufficient conditions of LP well-posedness for (EP)

In this section, we derive several sufficient conditions for various types of LP well-posedness
for (EP).

Definition 4.1. Let Z be a topological space and let Z1 ⊂ Z be a nonempty subset. Suppose that
G : Z → R ∪ {+∞} is an extended real-valued function. The function G is said to be level-
compact on Z1 if, for any s ∈ R, the subset {z ∈ Z1 : G(z) ≤ s} is compact.

Proposition 4.2. Suppose that f is upper semicontinuous onK ×K with respect to the first argument
and Γ/=∅. Then, (EP) is type I LP well-posed if one of the following conditions holds:

(i) there exists δ1 > 0 such that S(δ1) is compact, where

S
(
δ1
)
=
{
x ∈ K : dS(x) ≤ δ1

}
; (4.1)

(ii) the function h defined by (2.11) is level-compact on K;

(iii) X is a finite-dimensional normed space and

lim
x∈K, ‖x‖→+∞

max
{
h(x), dS(x)

}
= +∞; (4.2)

(iv) there exists δ1 > 0 such that h is level-compact on S(δ1) defined by (4.1).

Proof. (i) Let {xn} be a type I LP approximating solution sequence for (EP). Then, there exists
a sequence {εn} with εn > 0 and εn → 0 such that

dS

(
xn

) ≤ εn, (4.3)

f
(
xn, y

)
+ εn ≥ 0, ∀y ∈ S. (4.4)
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From (4.3), without loss of generality, we can assume that {xn} ⊂ S(δ1). Since S(δ1) is compact,
there exists a subsequence {xnj

} of {xn} and x0 ∈ S(δ1) such that xnj
→ x0. This fact combined

with (4.3) yields x0 ∈ S. Furthermore, it follows from (4.4) that f(xnj
, y) ≥ −εnj

for all y ∈ S.
By the upper semicontinuity of f with respect to the first argument, we have f(x0, y) ≥ 0 for
all y ∈ S and so x0 ∈ Γ. Thus, (EP) is type I LP well-posed.

It is easy to see that condition (ii) implies condition (iv). Now, we show that condition
(iii) implies condition (iv). Since X is a finite-dimensional space and the function h is lower
semicontinuous on S(δ1), we need only to prove that, for any s ∈ R and δ1 > 0, the set B = {x ∈
S(δ1) : h(x) ≤ s} is bounded, and thus B is closed. Suppose by contradiction that there exist
s ∈ R and {xn} ⊂ S(δ1) such that ‖x‖ → +∞ and h(xn) ≤ s. It follows from {xn} ⊂ S(δ1) that
dS(xn) ≤ δ1 and so

max
{
h
(
xn

)
, dS

(
xn

)} ≤ max
{
s, δ1

}
, (4.5)

which contradicts (4.2).
Therefore, we need only to prove that if condition (iv) holds, then (EP) is type I LP well-

posed. Suppose that condition (iv) holds. From (4.3), without loss of generality, we can assume
that {xn} ⊂ S(δ1). By (4.4), we can assume without loss of generality that {xn} ⊂ {x ∈ K :
h(x) ≤ m} for somem > 0. Since h is level-compact on S(δ1), the subset {x ∈ S(δ1) : h(x) ≤ m}
is compact. It follows that there exist a subsequence {xnj

} of {xn} and x0 ∈ S(δ1) such that
xnj

→ x0. This together with (4.3) yields x0 ∈ S. Furthermore, by the upper semicontinuity of
f with respect to the first argument and (4.4), we obtain x0 ∈ Γ. This completes the proof.

Similarly, we can prove the next proposition.

Proposition 4.3. Assume that f is upper semicontinuous onK ×K with respect to the first argument
and Γ/=∅. Then, (EP) is generalized type I LP well-posed if one of the following conditions holds:

(i) there exists δ1 > 0 such that S1(δ1) is compact, where

S1
(
δ1
)
=
{
x ∈ K : dD

(
g(x)

) ≤ δ1
}
; (4.6)

(ii) the function h defined by (2.11) is level-compact on K;

(iii) X is a finite-dimensional normed space and

lim
x∈K, ‖x‖→+∞

max
{
h(x), dD

(
g(x)

)}
= +∞; (4.7)

(iv) there exists δ1 > 0 such that h is level-compact on S1(δ1) defined by (4.6).

Proposition 4.4. Let X be a finite-dimensional space, f an upper semicontinuous function on K ×K
with respect to the first argument, and Γ/=∅. Suppose that there exists y0 ∈ S such that

lim
‖x‖→+∞

− f
(
x, y0

)
= +∞. (4.8)

Then, (EP) is type I LP well-posed.
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Proof. Let {xn} be a type I LP approximating solution sequence for (EP). Then, there exists a
sequence {εn}with εn > 0 and εn → 0 such that

dS

(
xn

) ≤ εn, (4.9)

f
(
xn, y

)
+ εn ≥ 0, ∀y ∈ S. (4.10)

By (4.9), without loss of generality, we can assume that {xn} ⊂ S(δ1), where S(δ1) is defined
by (4.1) with some δ1 > 0. Now, we claim that {xn} is bounded. Indeed, if {xn} is unbounded,
without loss of generality, we can suppose that ‖xn‖ → +∞. By (4.8), we obtain limn→+∞ −
f(xn, y0) = +∞,which contradicts (4.10)when n is sufficiently large. Therefore, we can assume
without loss of generality that xn → x0 ∈ K. This fact together with (4.9) yields x0 ∈ S. By the
upper semicontinuity of f with respect to the first argument and (4.10), we get x0 ∈ Γ. This
completes the proof.

Example 4.5. Let X = Y = R, K = [0, 2], and D = [0, 1]. Let

g(x) =
1
2
x, f(x, y) = y(y − x), ∀x, y ∈ X. (4.11)

Then it is easy to see that S = [0, 2] and condition (4.8) in Proposition 4.4 is satisfied.

In view of the generalized type I LPwell-posedness, we can similarly prove the following
proposition.

Proposition 4.6. Let X be a finite-dimensional space, f an upper semicontinuous function on K ×K
with respect to the first argument, and Γ/=∅. If there exists y0 ∈ S such that lim‖x‖→+∞ − f(x, y0) =
+∞, then (EP) is generalized type I LP well-posed.

Now, we consider the case when Y is a normed space, D is a closed and convex cone
with nonempty interior intD. Let e ∈ intD. For any δ ≥ 0, denote

S2(δ) =
{
x ∈ K : g(x) ∈ D − δe

}
. (4.12)

Proposition 4.7. Let Y be a normal space, let D be a closed convex cone with nonempty interior intD
and e ∈ intD. Assume that f is upper semicontinuous onK ×K with respect to the first argument and
Γ/=∅. If there exists δ1 > 0 such that the function h(x) defined by (2.11) is level-compact on S2(δ1),
then (EP) is generalized type I LP well-posed.

Proof. Let {xn} be a generalized type I LP approximating solution sequence for (EP). Then,
there exists a sequence {εn} with εn > 0 and εn → 0 such that

dD

(
g
(
xn

)) ≤ εn, (4.13)

f
(
xn, y

)
+ εn ≥ 0, ∀y ∈ S. (4.14)

It follows from (4.13) that there exists {sn} ⊂ D such that ‖g(xn) − sn‖ ≤ 2εn and so

g
(
xn

) − sn ∈ 2εnB, (4.15)
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where B is a closed unit ball of Y . Now, we show that there exists M0 > 0 such that

B ⊂ D −M0e. (4.16)

Suppose by contradiction that there exist bn ∈ B and 0 < Mn → +∞ such that bn +Mne/∈D for
n = 1, 2, . . . . Then bn +Mne/∈ intD and so

bn
Mn

+ e /∈ intD, n = 1, 2, . . . . (4.17)

Taking the limit in (4.17), we obtain e /∈ intD. This gives a contradiction to the assumption.
Thus, the combination of (4.15) and (4.16) yields g(xn) − sn ∈ D − 2M0εne and so g(xn) ∈
D − 2M0εne. By (4.12), we can assume without loss of generality that

xn ∈ S2
(
δ1
)

(4.18)

for 2M0εn → 0 as n → +∞. It follows from (4.14) that

h
(
xn

) ≤ εn, n = 1, 2, . . . . (4.19)

By (4.18), (4.19), and the level-compactness of h on S2(δ1), we know that there exist a subse-
quence {xnj

} of {xn} and x0 ∈ S2(δ1) such that xnj
→ x0. Taking the limit in (4.13) (with n

replaced by nj), we obtain x0 ∈ S. Furthermore, we get f(x0, y) ≥ 0 for all y ∈ S. Therefore,
x0 ∈ Γ. This completes the proof.

5. Relations among various type of LP well-posedness for (EP)

In this section, we will investigate further relationships among the various types of LP well-
posedness for (EP).

By definition, it is easy to see that the following result holds.

Theorem 5.1. Assume that there exist δ1, α > 0 and c > 0 such that

dS(x) ≤ cdα
D

(
g(x)

)
, ∀x ∈ S1

(
δ1
)
, (5.1)

where S1(δ1) is defined by (4.6). If (EP) is type I (type II) LP well-posed, then (EP) is generalized type
I (type II) LP well-posed.

Definition 5.2 (see [6]). LetW be a topological space. A set-valued mapping F : W → 2X is said
to be upper Hausdorff semicontinuous at w ∈ W if, for any ε > 0, there exists a neighborhood
U ofw such that F(U) ⊂ B(F(w), ε), where, for Z ⊂ X and r > 0, B(Z, r) = {x ∈ X : dZ(x) ≤ r}.

Clearly, S1(δ1) given by (4.6) is a set-valued mapping from R+ to X.

Theorem 5.3. Suppose that the set-valued mapping S1(δ1) defined by (4.6) is upper Hausdorff semi-
continuous at 0 ∈ R+. If (EP) is type I (type II) LP well-posed, then (EP) is generalized type I (type II)
LP well-posed.
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Proof. We prove only type I case, the other case can be proved similarly. Let {xn} be a general-
ized type I LP approximating solution sequence for (EP). Then there exists a sequence εn → 0
such that

dD

(
g
(
xn

)) ≤ εn, (5.2)

f
(
xn, y

)
+ εn ≥ 0, ∀y ∈ S. (5.3)

Note that S1(δ1) is upper Hausdorff semicontinuous at 0. This fact together with (5.2) yields
that dS(xn) ≤ εn, which combining (5.3) implies that {xn} is type I LP approximating solution
sequence. Since (EP) is type I LP well-posed, there exists a subsequence {xnj

} of {xn} converg-
ing to some point of Γ. Therefore, (EP) is generalized type I LP well-posed. This completes the
proof.

Let Y be a normed space and set

S3(y) =
{
x ∈ K : g(x) ∈ D + y

}
, ∀y ∈ Y. (5.4)

Clearly, S3(y) is a set-valued mapping from Y toX. Similar to the proof of Theorem 5.3, we can
prove the following result.

Theorem 5.4. Assume that the set-valued mapping S3(y) defined by (5.4) is upper Hausdorff semi-
continuous at 0 ∈ Y . If (EP) is type I (type II) LP well-posed, then (EP) is generalized type I (type II)
LP well-posed.

Corollary 5.5. LetD be a closed and convex cone with nonempty interior intD and e ∈ intD. Suppose
that the set-valued mapping S2(δ) defined by (4.12) is upper Hausdorff semicontinuous at 0 ∈ R+. If
(EP) is type I (type II) LP well-posed, then (EP) is generalized type I (type II) LP well-posed.
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