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1. Introduction

In recent years, the theory of almost automorphic functions has been developed extensively
(see, e.g., Bugajewski and N’guérékata [1], Cuevas and Lizama [2], and N’guérékata [3]
and the references therein). However, literature concerning pseudo-almost automorphic
functions is very new (cf. [4]). It is well known that the study of composition of two
functions with special properties is important and basic for deep investigations. Recently
an interesting article has appeared by Liang et al. [5] concerning the composition of pseudo-
almost automorphic functions. The same authors in [6] have applied the results to obtain
pseudo-almost automorphic solutions to semilinear differentail equations (see also [7]). On
the other hand, in article by Blot et al. [8], the authors have obtained existence and uniqueness
of pseudo-almost automorphic solutions to some classes of partial evolutions equations.

In this work, we study the existence and uniqueness of almost automorphic and
pseudo-almost automorphic solutions for a class of abstract differential equations described
in the form

x′(t) = Ax(t) + f(t, x(t)), t ∈ R, (1.1)
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where A is an unbounded linear operator, assumed to be Hille-Yosida (see Definition 2.5)
of negative type, having the domain D(A), not necessarily dense, on some Banach space
X; f : R×X0 → X is a continuous function, whereX0 = D(A). The regularity of solutions for
(1.1) in the space of pseudo-almost periodic solutions was considered in Cuevas and Pinto
[9] (see [10–12]). We note that pseudo-almost automorphic functions are more general and
complicated than pseudo-almost periodic functions (cf. [5]).

The existence of almost automorphic and pseudo-almost automorphic solutions for
evolution equations with linear part dominated by a Hille-Yosida type operator constitutes
an untreated topic and this fact is the main motivation of this paper.

2. Preliminaries

Let (Z, ‖ · ‖), (W, ‖ · ‖) be Banach spaces. The notations C(R;Z) and BC(R;Z) stand for the
collection of all continuous functions from R into Z and the Banach space of all bounded
continuous functions fromR intoZ endowedwith the uniform convergence topology. Similar
definitions as above apply for both C(R × Z;W) and BC(R × Z;W). We recall the following
definition (cf. [7]).

Definition 2.1. (1) A continuous function f : R → Z is called almost automorphic if for
every sequence of real numbers (s′n)n∈N

there exists a subsequence (sn)n∈N
⊂ (s′n)n∈N

such
that g(t) := limn→∞f(t + sn) is well defined for each t ∈ R, and f(t) = limn→∞g(t − sn), for
each t ∈ R. Since the range of an almost automorphic function is relatively compact, then
it is bounded. Almost automorphic functions constitute a Banach space, AA(Z), when it is
endowed with the supremum norm.

A continuous function f : R×W → Z is called almost automorphic if f(t, x) is almost
automorphic in t ∈ R uniformly for all x in any bounded subset of W . AA(R × W,Z) is the
collection of those functions.

(2) A continuous function f : R → Z (resp., R × W → Z) is called pseudo-almost
automorphic if it can be decomposed as f = g + φ, where g ∈ AA(Z) (resp., AA(R ×W,Z))
and φ is a bounded continuous function with vanishing mean value, that is,

lim
T →∞

1
2T

∫T

−T

∥∥φ(t)∥∥dt = 0, (2.1)

(resp., φ(t, x) is a bounded continuous function with

lim
T →∞

1
2T

∫T

−T

∥∥φ(t, x)∥∥dt = 0, (2.2)

uniformly for x in any bounded subset ofW). Denote by PAA(R, Z) (resp., PAA(R ×W,Z))
the set of all such functions. In both cases above, g and φ are called, respectively, the principal
and the ergodic terms of f .
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We define

AA0(R, Z) :=

{
φ ∈ BC(R, Z) : lim

T →∞
1
2T

∫T

−T

∥∥φ(t)∥∥dt = 0

}
,

AA0(R ×W,Z) :=

⎧⎨
⎩
φ ∈ BC(R ×W,Z) : lim

T →∞
1
2T
∫T
−T
∥∥φ(t, x)∥∥dt = 0,

uniformly for x in any bounded subset of W

⎫⎬
⎭.

(2.3)

Remark 2.2. (PAA(R, Z), ‖ · ‖∞) is a Banach space, where ‖ · ‖∞ is the supremum norm (see
[6]).

Lemma 2.3 (see [13]). Let f : R × W → Z be an almost automorphic function in t ∈ R for each
x ∈ W and assume that f satisfies a Lipschitz condition in x uniformly in t ∈ R. Let φ : R → W
be an almost automorphic function. Then the function Φ : R → Z defined by Φ(t) = f(t, φ(t)) is
almost automorphic.

Lemma 2.4 (see [5, 7]). Let f ∈ PAA(R×W,Z) and assume that f(t, x) is uniformly continuous in
any bounded subsetK ⊂ W uniformly in t ∈ R. If φ ∈ PAA(R,W), then the function t → f(t, φ(t))
belongs to PAA(R, Z).

We recall some basic properties of extrapolation spaces for Hille-Yosida operators
which are a natural tool in our setting. The abstract extrapolation spaces have been used from
various purposes, for example, to study Volterra integro differential equations and retarded
differential equations (see [14]).

Definition 2.5. Let X be a Banach space, and let A be a linear operator with domain D(A).
One says that (A,D(A)) is a Hille-Yosida operator on X if there exist ω ∈ R and a positive
constant M ≥ 1 such that (ω,∞) ⊂ ρ(A) and sup{(λ −ω)n‖(λ −A)−n‖ : n ∈ N, λ > ω} ≤ M.
The infinimum of such ω is called the type of A. If the constant ω can be chosen smaller than
zero, A is called of negative type.

Let (A,D(A)) be a Hille-Yosida operator on X, and let X0 = D(A); D(A0) = {x ∈
D(A) : Ax ∈ X0}, and let A0 : D(A0) ⊂ X0 → X0 be the operator defined by A0x = Ax. The
following result is well known.

Lemma 2.6 (see [12]). The operator A0 is the infinitesimal generator of a C0-semigroup (T0(t))t≥0
on X0 with ‖T0(t)‖ ≤ Meωt for t ≥ 0. Moreover, ρ(A) ⊂ ρ(A0) and R(λ,A0) = R(λ,A)|X0

, for
λ ∈ ρ(A).

For the rest of paper we assume that (A,D(A)) is a Hille-Yosida operator of negative
type on X. This implies that 0 ∈ ρ(A), that is, A−1 ∈ L(X). We note that the expression
‖x‖−1 = ‖A−1

0 x‖defines a norm on X0. The completion of (X0, ‖ · ‖−1), denoted by X−1, is
called the extrapolation space of X0 associated with A0. We note that X is an intermediary
space between X0 and X−1 and that X0 ↪→ X ↪→ X−1(see [12]). Since A−1

0 T0(t) = T0(t)A−1
0 ,

we have that ‖T0(t)x‖−1 ≤ ‖T0(t)‖L(X0)‖x‖−1 which implies that T0(t) has a unique bounded
linear extension T−1(t) toX−1. The operator family (T−1(t))t≥0 is a C0-semigroup onX−1, called
the extrapolated semigroup of (T0(t))t≥0. In the sequel, (A−1, D(A−1)) is the generator of
(T−1(t))t≥0.
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Lemma 2.7 (see [12]). Under the previous conditions, the following properties are verified.

(i) D(A−1) = X0 and ‖T−1(t)‖L(X−1) = ‖T0(t)‖L(X0) for every t ≥ 0.

(ii) The operator A−1 : X0 → X−1 is the unique continuous extension of A0 : D(A0) ⊂
(X0, ‖ · ‖) → (X−1, ‖ · ‖−1), and λ −A−1 is an isometry from (X0, ‖ · ‖) into (X−1, ‖ · ‖−1).

(iii) If λ ∈ ρ(A0), then (λ−A−1)
−1 exists and (λ−A−1)

−1 ∈ L(X−1). In particular, λ ∈ ρ(A−1)
and R(λ,A−1)|X0

= R(λ,A0).

(iv) The space X0 = D(A) is dense in (X−1, ‖ · ‖−1). Thus, the extrapolation space X−1 is also
the completion of (X, ‖ · ‖−1) and X ↪→ X−1. Moreover, A−1 is an extension of A to X−1. In
particular, if λ ∈ ρ(A), then R(λ,A−1)|X = R(λ,A) and R(λ,A−1)X = D(A).

Lemma 2.8 (see [12]). Let f ∈ BC(R;X). Then the following properties are valid.

(i) T−1∗f(t) =
∫ t
−∞T−1(t − s)f(s)ds ∈ X0, for every t ∈ R.

(ii) ‖T−1∗f(t)‖ ≤ Cewt
∫ t
−∞e

−ws‖f(s)‖ds where C > 0 is independent of t and f .

(iii) The linear operator Γ : BC(R, X) → BC(R, X0) defined by Γ(f)(t) = T−1∗f(t) is
continuous.

(iv) limt→ 0‖T−1∗f(t) −
∫0
−∞T−1(−s)f(s)ds‖ = 0, for every t ∈ R.

(v) x(t) = T−1∗f(t) is the unique bounded mild solution in X0 of x′(t) = Ax(t) + f(t), t ∈ R.

3. Existence Results

3.1. Almost Automorphic Solutions

The following property of convolution is needed to establish our result.

Lemma 3.1. If f : R → Z is an almost automorphic function and Γf is given by

(
Γf
)
(t) :=

∫ t

−∞
T−1(t − s)f(s)ds, t ∈ R, (3.1)

then Γf ∈ AA(X0).

Proof. Let (s′n)n∈N
be a sequence of real numbers. There exist a subsequence (sn)n∈N

⊂ (s′n)n∈N
,

and a continuous functions g ∈ BC(R, X) such that f(t + sn) converges to g(t) and g(t − sn)
converges to f(t) for each t ∈ R. Since

(
Γf
)
(t + sn) :=

∫ t

−∞
T−1(t − s)f(s + sn)ds, t ∈ R, n ∈ N. (3.2)

Using the Lebesgue dominated convergence theorem, it follows that Γf(t + sn)
converges to z(t) =

∫ t
−∞T−1(t − s)g(s)ds for each t ∈ R. Proceeding as previously, one can

prove that z(t − sn) converges to Γf(t), for each t ∈ R. This completes the proof.

Theorem 3.2. Assume that f : R × X0 → Xis an almost automorphic function in t ∈ R for each
x ∈ X0 and assume that satisfies a L-Lipschitz condition in x ∈ X0 uniformly in t ∈ R. If CL < −ω,
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where C > 0 is the constant in Lemma 2.8, then (1.1) has a unique almost automorphic mild solution
which is given by

y(t) =
∫ t

−∞
T−1(t − s)f

(
s, y(s)

)
ds, t ∈ R. (3.3)

Proof. Let y be a function inAA(X0), from Lemma 2.3 the function g(·) := f(·, y·) is inAA(X).
From Lemma 2.8 and taking into account Lemma 3.1, the equation

x′(t) = Ax(t) + g(t), t ∈ R (3.4)

has a unique solution x in AA(X0), which is given by

x(t) = Γ0u(t) :=
∫ t

−∞
T−1(t − s)f

(
s, y(s)

)
ds, t ∈ R. (3.5)

It suffices now to show that the operator Γ0 has a unique fixed point in AA(X0). For
this, let u and v be in AA(X0), and we can infer that

‖Γ0u − Γ0v‖∞ ≤ CL

−ω‖u − v‖∞. (3.6)

This proves that Γ0 is a contraction, so by the Banach fixed point theorem there exists a unique
y ∈ AA(X0) such that Γ0y = y. This completes the proof of the theorem.

3.2. Pseudo-Almost Automorphic Solutions

To prove our next result, we need the following result.

Lemma 3.3. Let f ∈ PAA(R, X), and let Γfbe the function defined in Lemma 3.1. Then Γf ∈
PAA(R, X0).

Proof. It is clear that Γf ∈ BC(R, X0). If f = g + Φ, where g ∈ AA(X) and Φ ∈ AA0(R, X).
From Lemma 3.1 Γg ∈ AA(X0). To complete the proof, we show that ΓΦ ∈ AA0(R, X0). For
T > 0 we see that

∫T

−T
ewt

∫ t

−∞
e−ws‖Φ(s)‖dsdt ≤ 1

−w
∫−T

−∞
e−w(T+s)‖Φ(s)‖ds + 1

−w
∫T

−T
‖Φ(s)‖ds. (3.7)

The preceding estimates imply that

1
2T

∫T

−T
‖ΓΦ(t)‖dt ≤ C‖Φ‖∞

2Tw2
+

C

−2Tw
∫T

−T
‖Φ(t)‖dt. (3.8)

The proof is now completed.
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Now, we are ready to state and prove the following result.

Theorem 3.4. Assume that f : R ×X0 → Xis a pseudo-almost automorphic function and that there
exists a bounded integrable function Lf : R → [0,∞) satisfying

∥∥f(t, x) − f
(
t, y
)∥∥ ≤ Lf(t)

∥∥x − y
∥∥, t ∈ R, x, y ∈ X0. (3.9)

Then (1.1) has a unique pseudo-almost automorphic (mild) solution.

Proof. Let y be a function in PAA(R, X0), from Lemma 2.4 the function t → f(t, y(t)) belongs
to PAA(R, X). From Lemmas 2.8 and 3.3, (3.4) has a unique solution in PAA(R, X0)which is
given by (3.5). Let u and v be in PAA(R, X0), then we have

‖Γ0u(t) − Γ0v(t)‖ ≤ C

∫ t

−∞
ew(t−s)Lf(s)ds‖u − v‖∞

≤ C

∫ t

−∞
Lf(s)ds‖u − v‖∞

≤ C
∥∥Lf

∥∥
1‖u − v‖∞,

(3.10)

hence,

∥∥∥(Γ20u
)
(t) −

(
Γ20v
)
(t)
∥∥∥ ≤ C2

(∫ t

−∞
Lf(s)

(∫ s

−∞
Lf(τ)dτ

)
ds

)
‖u − v‖∞

≤ C2

2

(∫ t

−∞
Lf(τ)dτ

)2

‖u − v‖∞

≤

(
C
∥∥Lf

∥∥
1

)2
2

‖u − v‖∞.

(3.11)

In general, we get

∥∥(Γn0u)(t) − (Γn0v)(t)∥∥ ≤

(
C
∥∥Lf

∥∥
1

)n
n!

‖u − v‖∞. (3.12)

Hence, since (C‖Lf‖1)
n/n! < 1 for n sufficiently large, by the contraction principle Γ0 has a

unique fixed point u ∈ PAA(R, X0). This completes the proof.

A different Lipschitz condition is considered in the following result.

Theorem 3.5. Let f : R×X0 → X be a pseudo-almost automorphic function. Assume that f verifies
the Lipschitz condition (3.9) with Lf a bounded continuous function. Let μ(t) =

∫ t
−∞e

w(t−s)Lf(s)ds.
If there is a constant α > 0 such that Cμ(t) ≤ α < 1 for all t ∈ R where C > 0 is the constant in
Lemma 2.8, then (1.1) has a unique pseudo-almost automorphic (mild) solution.
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Proof. We define the map Γ0 on PAA(R, X0) by (3.5). By Lemmas 2.4 and 3.3, Γ0 is well
defined. On the other hand, we can estimate

‖Γ0u(t) − Γ0v(t)‖ ≤ C

∫ t

−∞
ew(t−s)Lf(s)‖u(s) − v(s)‖ds ≤ Cμ(t)‖u − v‖∞, (3.13)

Therefore Γ0 is a contraction.

The following consequence is now immediate.

Corollary 3.6. Let f : R×X0 → X be a pseudo-almost automorphic function. Assume that f verifies
the uniform Lipschitz condition:

∥∥f(t, x) − f
(
t, y
)∥∥ ≤ k

∥∥x − y
∥∥, t ∈ R, x, y ∈ X0. (3.14)

If Ck/ − ω < 1, where C > 0 is the constant in Lemma 2.8, then (1.1) has a unique pseudo-almost
automorphic (mild) solution.

3.3. Application

In this section, we consider a simple application of our abstract results. We study the existence
and uniqueness of pseudo-almost automorphic solutions for the following partial differential
equation:

∂tu(t, x) = ∂2xu(t, x) − u(t, x) + αu(t, x) sin
1

cos2t + cos2πt

+ αmax
k∈Z

{
exp
(
−
(
t ± k2

)2)}
sinu(t, x), t ∈ R, x ∈ [0, π],

(3.15)

with boundary initial conditions

u(t, 0) = u(t, π) = 0, t ∈ R. (3.16)

Let X = C([0, π];R), and let the operator Abe defined on X by Au = u′′ − u, with
domain

D(A) =
{
u ∈ X : u′′ ∈ X, u(0) = u(π) = 0

}
. (3.17)

It is well known that A is a Hille-Yosida operator of type-1 with domain nondense (cf. [15]).
Equation (3.15) can be rewritten as an abstract system of the form (1.1), where u(t)(s) =
u(t, s),

f
(
t, φ
)
(s) = αφ(s) sin

1
cos2t + cos2πt

+ αmax
k∈Z

{
exp
(
−
(
t ± k2

)2)}
sinφ(s), (3.18)
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for all φ ∈ X, t ∈ R, s ∈ [0, π] and α ∈ R. By [5, Example 2.5], f is a pseudo-almost
automorphic function. If we assume that |α| < −ω/2C, then, by Corollary 3.6, (3.15) has a
unique pseudo-almost automorphic mild solution.
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