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This paper deals with a sequence of identically distributed random sets or fuzzy random sets with
ϕ(ϕ∗)-mixing dependence in a separable Banach space. The strong laws of large numbers for these
two sequences are derived under Kuratowski-Mosco sense.

1. Introduction

Recently, great progress has been made towards the theories and applications of random sets
and fuzzy random sets in the areas of information science, probability, and statistics. It is well
known that Robbins [1, 2] first proposed the concept of random sets and investigated the
relationships between random sets and geometric probabilities in his early work. After that,
Kendall [3] and Matheron [4] provided a comprehensive mathematical theory of random
sets which was greatly influenced by the geometric probability prospective. Their proposed
framework exerted a strong influence on the limit theorems developed in the recent decades.
Notice that strong laws of large numbers (SLLNs) play an important role in probability limit
theorems, and several variants of SLLNs were built by Artstein and Vitale [5], Puri and
Ralescu [6], Hiai [7], Inoue [8], Taylor et al. [9–11], Uemura [12], and so forth. Among them,
Artstein and Vitale [5] proved limit theorems concerning random sets in R and Rd. Puri and
Ralescu [6] were the first to obtain the SLLNs for independent identically distributed (i.i.d.)
Banach space-valued compact convex random sets. Among others, SLLNs were obtained
under more relaxed conditions, and a detailed survey of these results is available in Taylor
and Inoue [10].

The theory of fuzzy sets was introduced by Zadeh [13] (for an outline recently, one can
refer to [14, 15]), and the concept of fuzzy random variables was promoted by Kwakernaak
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[16], where useful basic properties were developed. Puri and Ralescu [17] used the concept
of fuzzy random variables in generalizing results for random sets to fuzzy random sets.
With respect to laws of large numbers, Kruse [18] proved an SLLN for i.i.d. fuzzy random
variables. Klement et al. [19] considered fuzzy versions of random sets in Euclidean spaces
and obtained an i.i.d. SLLN. Inoue [20] derived SLLNs for independent, tight fuzzy random
sets, and i.i.d. fuzzy random sets in a separable Banach space. Recently, SLLNs have been
established under various conditions, and one can refer to the following papers [8–11, 21–
26]. Also for more detailed results about limit theorems of random sets and fuzzy random
sets, we refer the readers to Li et al. [27] and references therein.

However, to the best of our knowledge, many limit theorems, especially the laws
of large numbers, were obtained for independent random sets or fuzzy random sets in the
past decades, and little is known of dependent random sets or fuzzy random sets except the
exchangeable dependence involved in Inoue [8, 28], Taylor et al. [11], and Terán [26]. In this
paper, we aim to propose a new kind of dependence for random sets and fuzzy random sets,
and then establish several strong laws of large numbers in Kuratowski-Mosco convergence
without the restriction of compactness, where random sets take values of closed subsets in
separable Banach spaces.

The layout of this paper is as follows. In Section 2, we give some basic definitions and
properties, and the new dependence is proposed in Section 3. In the last section we show
several SLLNs for a sequence of dependent random sets and fuzzy random sets, and their
proofs.

2. Definitions and Preliminaries

Throughout this paper, let S be a real separable Banach space with the norm ‖ · ‖ and the
dual space S∗. For each A ⊂ S, clA and coA denote the norm-closure and the closed convex
hull of A, respectively. Let K(S) (resp., Kc(S)) denote the collections of all nonempty closed
(resp., nonempty closed convex) subsets of S. Define the Minkowski’s addition and scalar
multiplication, respectively, in K(S) (or Kc(S)) by

A + B = {a + b | a ∈ A, b ∈ B},
λ ·A = {λa | a ∈ A},

(2.1)

where A,B ∈ K(S) (or Kc(S)) and λ is a real number. Note that neither K(S) nor Kc(S)
are linear spaces even when S = R, one-dimensional Euclidean space. For A,B ∈ K(S), the
distance d(y,A) of A and y ∈ S, the Hausdorff distance dH(A,B) of A and B, the norm ‖A‖
of A and the support function s(A, ·) of A are defined, respectively, by

d
(
y,A

)
= inf

a∈A

∥∥y − a
∥∥,

dH(A,B) = max

{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}

,
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‖A‖ = dH(A, {0}) = sup
a∈A

‖a‖,

s(A, a∗) = sup
a∈A

〈a, a∗〉, a∗ ∈ S∗.

(2.2)

Let {An} be a sequence of closed sets in K(S). We write An
H→ A if dH(An,A) → 0 for

someA ∈ K(S). Rather than this Hausdorff convergence, we here use the Kuratowski-Mosco
convergence. Let s− lim infAn be the set of all a ∈ S such that ‖an −a‖ → 0 for some an ∈ An,

that is, dH(a,An) → 0, and letw − lim supAn be the set of all a ∈ S such that ak
w→ a (i.e., ak

converges weakly to a) for some ak ∈ Ank and some subsequence {Ank} of {An}. It is easily
seen that s − lim infAn ⊂ w − lim supAn, and s − lim infAn ∈ K(S)(∈ Kc(S) if {An} ⊂ Kc(S)).
Thus we say An converges to A in the Kuratowski-Mosco sense if and only if

w − lim sup An ⊂ A ⊂ s − lim inf An. (2.3)

Clearly, the Hausdorff convergence is generally stronger than Kuratowski-Mosco conver-
gence, since the former implies the latter when S is infinite dimensional, and in finite
dimensional spaces they coincide with bounded sets (cf. [29]).

Let (Ω,F,P) denote a probability measure space. A random closed set is a Borel
measurable function F : Ω → K(S), that is, F−1(B) = {ω ∈ Ω;X(ω)

⋂
B /= ∅} ∈ F for each

B ∈ K(S). Moreover, we assume that the random closed sets are F − B(K(S)) measurable in
the sequel, where B(K(S))means the Borel subsets ofK(S). For a random set F inK(S),there
exists a corresponding set coF in Kc(S), which can be used in defining an expected value. A
measurable function f : Ω → S is called a measurable selection of F if f(ω) ∈ F(ω) for every
ω ∈ Ω. Denote by

SF =
{
f ∈ L1(Ω,S); f(ω) ∈ F(ω), a.e.

}
, (2.4)

where L1(Ω,S) denotes the space of measurable functions f : Ω → S such that
∫
Ω‖f(ω)‖dP <

∞. SF /= ∅ if and only if the random variable ‖F(ω)‖ is integrable. For each random set F, the
expectation of F, denoted by EF, is defined by

EF =
∫

Ω
FdP =

{∫

Ω
fdP; f ∈ SF

}
, (2.5)

where
∫
ΩfdP is the usual Bochner integral in L1(Ω,S). Define

∫
AFdP = {∫AfdP; f ∈ SF} for

A ∈ F. This definition was introduced by Aumann in 1965 as a natural generalization of the
integral of real-valued random variables in [30]. If E‖ coX‖ < ∞, a Bochner integral can be
defined as E(coX) =

∫
Ω coXdP and E(coX) ∈ K(S) (cf. [31]). The random set X is said to

be integrably bounded if the real-valued random variable ‖X(ω)‖ is integrable (cf. [27, 32]).
Hiai and Umegaki [32] showed that a random set is integrably bounded if and only if SX is
bounded in L1(Ω,S). Thus an integrably bounded random set may take unbounded sets.

Now we introduce some notions of fuzzy random sets. A fuzzy set in S is a function
u : S → [0, 1]. Let F(S) denote the family of the fuzzy subset u satisfying the following
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conditions:

(a) u is upper semicontinuous, that is, the α-level set of u, that is, uα = {x ∈ S;u(x) ≥ α}
is a closed subset of S for each α ∈ (0, 1],

(b) {x ∈ S : u(x) > 0} has compact closure,

(c) {x ∈ S : u(x) = 1}/= ∅.
A linear structure in F(S) is defined by the following operations:

(u + v)(x) = sup
y+z=x

min
[
u
(
y
)
, v(z)

]
,

(λu)(x)

⎧
⎨

⎩

u
(
λ−1x

)
if λ/= 0,

I0(x) if λ = 0,

(2.6)

where u, v ∈ F(S), λ ∈ R. This of course implies (u + v)α = uα + vα, and (λu)α = λuα. Then
we adopt the metric dr(d∞) (see [17, 19, 33]) as a generalization of the Hausdorffmetric from
K(S) to F(S),where

dr(u, v) =

[∫1

0
dr
H(uα, vα)dα

]1/r

if 1 ≤ r < ∞,

d∞(u, v) = sup
α∈(0,1]

dH(uα, vα) if r = ∞,

(2.7)

where u, v ∈ F(S). The concept of a fuzzy random set as a generation for a random set was
extensively studied by Puri and Ralescu [17]. A fuzzy random set is a function X : Ω →
F(S) such that for each α ∈ (0, 1], Xα = {x ∈ S;X(ω)(x) ≥ α} is a random closed set. The
expectation of a fuzzy random set X, denoted by E[X], is an element in F(S) such that for
each α ∈ (0, 1],

(E[X])α = cl
∫

Ω
XαdP = cl

{
E
(
f
)
; f ∈ SXα

}
, (2.8)

where the closure is taken in S and SXα = {f ∈ L1(Ω,S); f(ω) ∈ Xα(ω) a.e.}. By virtue of the
existence theorem (cf. [27]), we have an equivalent definition as follows:

E[X](x) = sup{α ∈ (0, 1];x ∈ E[Xα]}. (2.9)

Furthermore, (E[coX])α = E[(coX)α] for any α ∈ (0, 1].

3. Mixing Dependence

Many statistical results are concerned with independent and identically distributed (i.i.d.)
random sets or fuzzy random sets. While it is not always possible to assume that random
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sets or fuzzy random sets are independent, the sequence can be often dependent. However,
for dependent case, it seems that only the exchangeability is involved. In what follows, we
propose a new kind of dependence for random sets which is popular with random variables
and random elements. Similarly, it can be defined for fuzzy random sets.

Given two σ-fields U,V in F, write

ϕ(U,V) := sup{|P(B | A) − P(B)|;A ∈ U, B ∈ V,P(A)/= 0}. (3.1)

Let {Xn;n ≥ 1} be a sequence of random closed sets on (Ω,F,P).Denote SL =
∑

n∈L Xn,where
L ⊂ ℵ (the set of all nature numbers). For two nonempty disjoint sets S, T ⊂ ℵ, define dist(S, T)
as min{|j − k|; j ∈ S, k ∈ T}. Let σ(S) and σ(T) be the σ-fields generated by {Xn;n ∈ S}
and {Xn;n ∈ T}, respectively. Now we define two mixing coefficients for the sequence of
{Xn;n ≥ 1}. For any real number s ≥ 1, set

ϕ(s) = sup
{
ϕ(σ(S), σ(T));S, T ⊂ ℵ,dist(S, T) ≥ s

}
,

ϕ∗(s) = sup
{
max

(
ϕ(σ(S), σ(T)), ϕ(σ(T), σ(S))

)
;S, T ⊂ ℵ,dist(S, T) ≥ s

}
.

(3.2)

If ϕ(s) (resp. ϕ∗(s)) tends to zero as s → ∞, then we say that the sequence is ϕ-mixing
(resp., ϕ∗-mixing). Obviously, a ϕ∗-mixing sequence is a ϕ-mixing sequence. Also it is well
known that many limit results were derived for real-valued mixing random sequences and
random fields in the past thirty years (cf. [34, 35] and references therein). Zhang [36, 37]
extended them to the Banach space-valued mixing random fields and established some
moment inequalities. As far as we know, there is little concerning the dependent random
sets or fuzzy random sets except the exchangeability dependence. The main purpose of this
paper is to establish limit theorems for mixing dependent random sets or fuzzy random sets
which extend the results of independent case.

4. Limit Theorems

Lemma 4.1. Let AX,AY be the smallest sub-σ-filed of F to which X and Y are measurable,
respectively. Let X be a random closed set and F − B(K(S)) measurable. Then one has the following.

(1) For each X with SX /= ∅,

coE(X) = coEAX (X), (4.1)

where EAX (X) = {E(x) : x ∈ SX(AX)}.
(2) Let {Xn;n ≥ 1} be a sequence of ϕ-mixing and identically distributed random closed sets.

For each x1 ∈ SX1(AX1), where SX1(AX1) denotes the set of all AX1 measurable functions
in SX1 , there exists {xi ∈ SXi(AXi); i ≥ 2} such that {xn;n ≥ 1} is ϕ-mixing.

(3) For each ϕ-mixing and identically distributed random closed sets X1, X2 with SX1 /= ∅, one
has

EAX1
(X1) = EAX2

(X2). (4.2)
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Proof. Note that for X ∈ L1(Ω,S), the conditional expectation of X with respect to B ∈ F is
given as a function E(X | B) ∈ L1(Ω,B,S) such that

∫

B

E(X | B)dP =
∫

B

XdP ∀ B ∈ B. (4.3)

If X ∈ K(S) with SX /= ∅, then from Hiai and Umegaki [32] it follows that there exists a B-
measurable E(X | B) ∈ K(S) satisfying that

SE(X|B)(B) = cl{E(x | B) : x ∈ SX}in L1(Ω,S). (4.4)

(1) Noting that coX isAX measurable, it follows that

ScoX(AX) = {E(x | AX) : x ∈ ScoX}. (4.5)

Recall that ScoX = coSX and ScoX(AX) = coSX(AX), and hence

coE(X) = clE(coX)

= cl{E(E(x | AX)) : x ∈ ScoX}

= cl{E(x) : x ∈ ScoX(AX)}

= coEAX(X).

(4.6)

(2) Since S is separable and x1 is AX1 -measurable, there exists a (B(K(S), B(S)))-
measurable function Ψ : K(S) → S satisfying that x(ω) = Ψ(X(ω)) for every ω ∈
Ω,where B(S)means the Borel subsets of S.Now define xn(ω) = Ψ(Xn(ω)), ω ∈ Ω.
Note that {Xn;n ≥ 1} is an identically distributed sequence of ϕ-mixing random
sets, and this leads to {xn;n ≥ 1} that is also of mixing dependence, since the
definitions of mixing dependence rely on σ-fields. In fact, the mixing coefficients
of {xn;n ≥ 1} are less than those of {Xn;n ≥ 1}. Thus we have

∫

Ω
‖x1‖dP =

∫

K(S)
‖Ψ(X)‖dPX =

∫

K(S)
‖Ψ(Xn)‖dPXn =

∫

Ω
‖xn(ω)‖dP < ∞. (4.7)

Noting that the function d(x,X) of S × K(S) into R is (B(S), B(K(S)))-
measurable, thus {d(xn(·), Xn(·))} is ϕ-mixing and identically distributed. Hence,
d(x(ω), X(ω)) = 0 a.s. implies d(xn(ω), Xn(ω)) = 0 a.s., which leads to xn ∈
SXn(AXn).

(3) It follows from (2) easily.
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Remark 4.2. The lemma also holds for ϕ∗-mixing random closed sets in a similar way.

Hiai [7] proved a strong law of large numbers of i.i.d. random variables in K(S)
in Kuratowski-Mosco convergence. Recently, Inoue and Taylor [28] replaced i.i.d. by
exchangeability and obtain a strong law of large numbers. Here we replace the i.i.d. by ϕ(ϕ∗)-
mixing dependence which is a more extensive dependence and derive strong laws of large
numbers for random sets and fuzzy random sets, respectively.

Theorem 4.3. Let {Xn;n ≥ 1} be a sequence of mixing and identically distributed random closed sets
in K(S) with E‖X‖ < ∞. Suppose that one of the following conditions is satisfied:

(a) lim
τ →∞

ϕ∗(τ) <
1
2
, (b)

∞∑

i=1

ϕ1/2
(
2i
)
< ∞. (4.8)

Then one has

1
n

n∑

i=1

Xi −→ E coX1 in K-M sense. (4.9)

Proof. Here we only consider the ϕ-mixing case, since the ϕ∗-mixing case can be proved
similarly. By Lemma 4.1(2), for a sequence of ϕ-mixing random set {Xn;n ≥ 1} inK(S), there
exists a (B(K(S)), B(S))-measurable function f : K(S) → S and the corresponding random
elements {xn;n ≥ 1} such that xn(ω) = f(Xn(ω)) for all ω ∈ Ω.

Let D = coE(X1) and Gn(ω) = n−1 cl
∑n

i=1 Xi(ω). Since {Xn;n ≥ 1} is ϕ-mixing and
identically distributed random sets, it follows that {xn;n ≥ 1} is ϕ-mixing and identically
distributed. For any ε > 0 and d ∈ D, we can choose xi ∈ SXi(AXi), 1 ≤ i ≤ m, such that

∥∥∥∥∥
1
m

m∑

i=1

E(xi) − d

∥∥∥∥∥
< ε, (4.10)

where AXi is the smallest sub σ-field of F with respect to which Xi is measurable and
SXi(AXi) = cl{E(x | AXi);x ∈ SXi}. By Lemma 4.1, there exists a sequence {xn} of xn ∈
SXn(AXn), n ≥ 1 such that {x(k−1)m+j ; k ≥ 1} is ϕ-mixing and identically distributed for each
1 ≤ j ≤ m. Let di = E(xi). If n = (k − 1)m + l, where 1 ≤ l ≤ m, then we have

∥∥∥∥∥
1
n

n∑

i=1

xi(ω) − 1
m

m∑

i=1

di

∥∥∥∥∥
=

∥∥∥∥∥∥

1
n

m∑

j=1

k∑

i=1

x(i−1)m+j(ω) − 1
n

m∑

j=l+1

x(k−1)m+j(ω) − 1
m

m∑

i=1

di

∥∥∥∥∥∥
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≤ k

n

m∑

j=1

∥
∥
∥
∥
∥
1
k

k∑

i=1

x(i−1)m+j(ω) − dj

∥
∥
∥
∥
∥
+
k

n

m∑

j=1

∥
∥x(k−1)m+j(ω)

∥
∥

+
(
k

n
− 1
m

)∥
∥
∥
∥
∥

m∑

i=1

di

∥
∥
∥
∥
∥
−→ 0 a.s.

(4.11)

by a similar way of Theorem 3.2 of Hiai [7] and Theorem 3.1 of Zhang [37]. Note that
Gn(ω) are closed sets in K(S), which implies n−1 ∑n

i=1 xi(ω) ∈ Gn(ω) a.s. Thus, it follows
that m−1 ∑m

i=1 di ∈ s − lim infGn(ω) a.s., and hence D ⊂ s − lim infGn(ω) a.s.
In the following we show w − lim supGn(ω) ⊂ D a.s. Let {di, i ≥ 1} be a sequence

dense in S \ d. Since S is separable, by the separation theorem there exists a sequence {d∗
i } in

S∗ with ‖d∗
i ‖ = 1 such that

〈
di, d

∗
i

〉 ≤ s
(
D,d∗

i

)
, ∀i. (4.12)

Thus it follows d ∈ D if and only if 〈d, d∗
i 〉 ≤ s(D,d∗

i ), for all i ≥ 1. Notice for each i ≥ 1,
{s(Xn(·), d∗

i )} is a sequence of ϕ-mixing random variables in L1 since {Xn;n ≥ 1} is ϕ-mixing,
and hence there exists a P-null set N ∈ A such that for every ω ∈ Ω \N and i ≥ 1,

s
(
Gn(ω), d∗

i

)
=

1
n

n∑

i=1

s
(
Xi(ω), d∗

i

) −→ s
(
D,d∗

i

)
as n −→ ∞. (4.13)

If d ∈ w − lim supGn(ω) for ω ∈ Ω \ N, then dk
w→ d for some dk ∈ Gnk(ω). So, for

each i ≥ 1, we have

〈d, d∗
i 〉 = lim

k→∞
〈dk, d

∗
i 〉 ≤ lim

k→∞
s
(
Gnk(ω), d∗

i

)
= s

(
D,d∗

i

)
, (4.14)

which implies d ∈ D. Thus w − lim supGn(ω) ⊂ D a.s. follows.

Remark 4.4. If S is a finite dimensional Banach space and {Xn;n ≥ 1} are compact sets, then
Theorem 4.3 still holds in the Hausdorff convergence.

The next theorem describes a strong law of large numbers for mixing fuzzy random
sets in F(S).

Theorem 4.5. Let {Xn;n ≥ 1} be a sequence of mixing fuzzy random sets taking values in F(S). If
E‖X‖ < ∞, and one of the following conditions is satisfied:

(a) lim
τ →∞

ϕ∗(τ) <
1
2
, (b)

∞∑

i=1

ϕ1/2
(
2i
)
< ∞, (4.15)
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then

lim
n→∞

1
n

n∑

i=1

Xi = EX1 in K-M sense. (4.16)

Proof. Since {Xn;n ≥ 1} is a sequence of mixing fuzzy random sets in F(S), by the definitions
of mixing we have that {Xnα;n ≥ 1} is mixing random closed sets with SXnα /= ∅ for any
α ∈ (0, 1]. Thus the desired result follows from Theorem 4.3 immediately.

Remark 4.6. By the definitions of mixing dependence and σ-fields, it follows that the mixing
coefficients in Theorem 4.5 is less than those in Theorem 4.3.
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