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The purpose of this expository paper is to collect some (mainly recent) inequalities, conjectures,
and open questions closely related to isoperimetric problems in real, finite-dimensional Banach
spaces (= Minkowski spaces). We will also show that, in a way, Steiner symmetrization could be
used as a useful tool to prove Petty’s conjectured projection inequality.

1. Introductory General Survey

In Geometric Convexity, but also beyond its limits, isoperimetric inequalities have always
played a central role. Applications of such inequalities can be found in Stochastic Geometry,
Functional Analysis, Fourier Analysis, Mathematical Physics, Discrete Geometry, Integral
Geometry, and various further mathematical disciplines.

We will present a survey on isoperimetric inequalities in real, finite-dimensional
Banach spaces, also called Minkowski spaces. In the introductory part a very general survey
on this topic is given, where we refer to historically important papers and also to results
from Euclidean geometry that are potential to be extended to Minkowski geometry, that is, to
the geometry of Minkowski spaces of dimension d ≥ 2. The second part of the introductory
survey then refers already to Minkowski spaces.

1.1. Historical Aspects and Results Mainly from Euclidean Geometry

Some of the isoperimetric inequalities have a long history, but many of them were also
established in the second half of the 20th century. The most famous isoperimetric inequality
is of course the classical one, establishing that among all simple closed curves of given length
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in the Euclidean plane the circle of the same circumference encloses maximum area; the
respective inequality is given by

L2 ≥ 4πA, (1.1)

with A being the area enclosed by a curve of length L and, thus, with equality if and only if
the curve is a circle. In 3-space the analogous inequality states that if S is the surface area of a
compact (convex) body of volume V , then

S3 ≥ 36πV 2 (1.2)

holds, with equality if and only if the body is a ball. Note already here that the extremal
bodies with respect to isoperimetric problems are usually called isoperimetrices.

Osserman [1] gives an excellent survey of many theoretical aspects of the classical
isoperimetric inequality, explaining it first in the plane, extending it then to domains in
R

n, and describing also various applications (the reader is also referred to [2–4]). In the
survey [5] the historical development of the classical isoperimetric problem in the plane
is presented, and also different solution techniques are discussed. The author of [6] goes
back to the early history of the isoperimetric problem. The paper [7] of Ritoré and Ros is
a survey on the classical isoperimetric problem in R

3, and the authors give also a modified
version of this problem in terms of “free boundary”. A further historical discussion of the
isoperimetric problem is presented in [8]. In Chapters 8 and 9 of the book [9] many aspects
and applications of isoperimetric problems are discussed, including also related inequalities,
the Wulff shape (see the references given there and, in particular, of [10, Chapter 10]), and
equilibrium capillary surfaces.

Isoperimetric inequalities appear in a large variety of contexts and have been proved in
different ways; the occurringmethods are often purely technical, but very elegant approaches
exist, too. And also new isoperimetric inequalities are permanently obtained, even nowadays.
In [11] (see also [12]), the authors prove Lp versions of Petty’s projection inequality and the
Busemann-Petty centroid inequality (see [13] and below for a discussion of these known
inequalities) by using the method of Steiner symmetrization with respect to smooth Lp-
projection bodies. In [14] equivalences of some affine isoperimetric inequalities, such as
“duals” of Lp versions of Petty’s projection inequality and “duals” of Lp versions of the
Busemann-Petty inequality, are established; see also [15]. Here we also mention the paper
[16], where the method of Steiner symmetrization is discussed and many references are
given.

If K is a convex body in R
d with surface area S and volume V , then for d = 2 the

Bonnesen inequality states that S2 − 4πV ≥ π2(R − r)2, where S is length, V is area, and
r and R stand for in- and circumradius of K relative to the Euclidean unit ball (see also the
definitions below), with equality if and only ifK is a ball. In [17], Diskant extends Bonnesen’s
inequality (estimating the isoperimetric deficit, (S(K)/dεdrd−1)

d−(V (K)/εdrd)
d−1, from below)
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for higher-dimensional spaces. Osserman establishes in [2] the following versions of the
isoperimetric deficit in R

d:

(
S

dεdrd−1

)d/(d−1)
− V

εdrd
≥
[(

S

dεdrd−1

)1/(d−1)
− 1

]d
,

(
S

dεdrd−1

)d

−
(

V

εdrd

)d−1
≥
[(

S

dεdrd−1

)1/(d−1)
− 1

]d(d−1)
.

(1.3)

It is well known that a convex n-gon Pn with perimeter L(Pn) and area A(Pn)
satisfies the isoperimetric inequality L2(Pn)/A(Pn) ≥ 4n tan(π/n). In [18] it is shown that
this inequality can be embedded into a larger class of inequalities by applying a class of
certain differential equations. Another interesting recent paper on isoperimetric properties of
polygons is [19].

In [20] it is proved that if P is a simplicial polytope (i.e., a convex polytope all of whose
proper faces are simplices) in R

d and ζk(P) is the total k-dimensional volume of the k-faces
of P with k ∈ {1, . . . , d}, then

ζ1/ss (P)

ζ1/rr (P)
≤

⎛
⎜⎝
(

d−r
d−s

)
(

s+1

r+1

)
⎞
⎟⎠

1/r (
(1/s!)

√
(s + 1)/2s

)1/s
(
(1/r!)

√
(r + 1)/2r

)1/r , (1.4)

where r and s are integers with 1 ≤ r ≤ s ≤ d, with equality if and only if P is a regular
s-simplex.

The authors of [21] study the problem of maximizing A/L2 for smooth closed curves
C in R

d, where L is again the length of C and A is an expression of signed areas which is
determined by the orthogonal projections of C onto the coordinate-planes. They prove that
L2 − (4π/λ)|A| ≥ 0, where λ is the largest positive number such that iλ is an eigenvalue of the
skew symmetric matrix with entries 0, 1, and −1.

An interesting and natural reverse isoperimetric problem was solved by Ball (see [22, 23,
Lecture 6]). Namely, given a convex body K ⊂ R

d, how small can the surface area of K
be made by applying affine, volume-preserving transformations? In the general case the
extremal body (with largest surface area) is the simplex, and for centrally symmetric K
it is the cube. In [23, Lecture 5] a consequence of the Brunn-Minkowski inequality (see
below) involving parallel bodies is discussed, and it is shown how it yields the isoperimetric
inequality. Further important results in the direction of reverse isoperimetric inequalities
are given in [11, 24]. The latter paper deals with Lp analogues of centroid and projection
inequalities; a direct approach to the reverse inequalities for the unit balls of subspaces of Lp

is given, with complete clarification of the extremal cases.
In [25] the authors prove that if K and M are compact, convex sets in the Euclidean

plane, then V (K,M) ≤ L(K)L(M)/8 with equality if and only if K and M are orthogonal
segments or one of the sets is a point (here V (K,M) denotes the mixed volume of K and M,
defined below). They also show that V (K,−K) ≤ (

√
3/18)L2(K); the equality case is known

only when K is a polygon.
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1.2. The Isoperimetric Problem in Normed Spaces

For (normed or) Minkowski planes the isoperimetric problem can be stated in the following
way: among all simple closed curves of given Minkowski length (= length measured in the
norm) find those enclosing largest area. Here the Minkowski length of a closed curve C
can also be interpreted as the mixed area of C and the polar reciprocal of the Minkowskian
unit circle with respect to the Euclidean unit circle rotated through 90◦. In [26] (as well as
in [27]) the solution of the isoperimetric problem for Minkowski planes is established. Namely,
these extremal curves, called isoperimetrices IB, are translates of the rotated polar reciprocals
as described above. Conversely, the same applies to curves of minimal Minkowski length
enclosing a given fixed area.

In [28] it is proved that for theMinkowski metric ds = (dxn+dyn)1/n, where n ≥ 2 is an
integer, the solutions of the isoperimetric problem have the form (x−A)n/(n−1)+(B−y)n/(n−1) =
c, and in [29] the particular case of taxicab geometry is studied.

In [30] the following isoperimetric inequality for a convex n-gon P in a Minkowski
plane with unit disc B and isoperimetrix IB is obtained: if P ∗ is the n-gon whose sides are
parallel to those of P and which is circumscribed about IB, then L2(P) − 4A(P)A(P ∗) ≥ 0,
with equality if and only if P is circumscribed about an anticircle of radius r, where L stands
for the Minkowskian perimeter and A for area. (An anticircle of radius r is any translate of a
homothetical copy of IB with homothety ratio r.)

In [31] the isoperimetric problem in Minkowski planes is discussed for the case that
the isoperimetrix is the polar reciprocal of unit discs related to duals of Lp-spaces.

In [32] some families of smooth curves in Minkowski planes are studied. It is shown
that if C is a closed convex curve with length L(C) enclosing areaA(C), and C′ is an anticircle
with radius r > 0 enclosing area A(C′), then r2L2(C) ≥ 4A(C)A(C′). This inequality is also
extended to closed nonconvex curves.

In [33] star-shaped domains in R
d, presented in polar coordinates by equations of the

formR = 1+u(e), are investigated, with e being vector from the unit sphere. The isoperimetric
deficit Δ := (S/dεd)(V/εd)

−(d−1)/d − 1 of these domains is estimated for various norms of u,
where again S and V denote surface area and volume of the domain and εd stands for the
volume of the standard Euclidean ball.

Since a Minkowski space is a normed space, the given norm defines a usual metric
m in such a space. In [34] it is proved that if J is a rectifiable Jordan curve of Minkowski
length Lm(J), that is, with respect to the Minkowski metricm, then there is, up to translation,
a centrally symmetric curve CJ such that Lm(CJ) = Lm(J) for all m. Also, the isoperimetric
problem for rectifiable Jordan curves is solved here. Here CJ encloses the largest area in the
class of rectifiable Jordan curves {K ∈ R

2 : Lm(K) = Lm(J), for any m}.
In [35] the notion of Minkowski space is extended by considering unit spheres as

closed, but in general nonsymmetric hypersurfaces, also called gauges. The author gives a
suitable definition of volume and applies this definition for solving this generalized form of
the isoperimetric problem.

Strongly related to isoperimetric problems, in [36] the lower bound for the geometric
dilation of a rectifiable simple closed curve C in Minkowski planes is obtained; note that
the geometric dilation is the supremum of the quotient between the Minkowski length of the
shorter part of C between two different points p and q of it, and the normed distance between
these points. In [36] it is proved that for rectifiable simple closed curves in a Minkowski
plane M

2 this lower bound is a quarter of the circumference of the unit circle of M
2, and

that (in contrast to the Euclidean subcase) this lower bound can also be attained by curves



Journal of Inequalities and Applications 5

that are not Minkowskian circles. Furthermore, it is shown that precisely in the subcase of
strictly convex normed planes only Minkowskian circles can reach that bound. If p, q split
C into two parts of equal Minkowskian lengths, then the normed distance of these points
is called halving distance of C in direction p − q. In [37] several inequalities are established
which show the relation between halving distances of a simple rectifiable closed curve C in
Minkowski planes and otherMinkowskian quantities, such asminimumwidth, inradius, and
circumradius of C.

Conversely considered, generalized classes of isoperimetric problems in higher-
dimensional Minkowski spaces refer to all convex bodies of given mixed volume having
minimum surface area. In d-dimensional Minkowski spaces, d ≥ 3, there are several notions
of surface area and volume, for each combination of which there is, up to translation, a unique
solution of the corresponding isoperimetric problem. Again, this convex body is called the
respective isoperimetrix and also denoted by IB; see [38, Chapter 5], for a broad representation
of the isoperimetric problem in M

d, d ≥ 3, and types of isoperimetrices for correspondingly
different definitions of surface area and volume. In [39] the stability of the solution of the
isoperimetric problem in d-dimensional Minkowski spaces M

d is verified (see also [40]).
Namely, some upper estimate for the term μd

B(∂K) − ddμB(IB)μd−1
B (K) is obtained when

μB(K) = μB(IB) holds. Here μB(∂K) and μB(K) stand for surface area and volume of a convex
body K in a Minkowski space M

d, respectively. In [41] sharpenings of the isoperimetric
problem in M

d are established. For instance, one of them is given by

μ
d/(d−1)
B (∂K) −

(
ddμB(IB)

)1/(d−1)
μB(K)

≥
(
μ
1/(d−1)
B (∂K) − ρ

(
dμB(IB)

)1/(d−1))d − (ddμB(IB)
)1/(d−1)

μB

(
Kρ(IB)

)
,

(1.5)

where Kρ(IB) is the inner parallel body of K relative to IB at distance ρ (see [42, page 134],
for more about inner/outer parallel bodies).

In the recent book [43] one can find a discussion on how to involve the following
version of the isoperimetric inequality into the theory of partial differential equations: let Ω
be a bounded domain in R

d, and let S(∂Ω) be a suitable (d − 1)-dimensional area measure of
the boundary ∂Ω of Ω. Then

S(∂Ω) ≥ dε1/dd V (Ω)1−1/d, (1.6)

with equality only for the ball. The relation to Sobolev’s inequality is also discussed. Another
side of isoperimetric inequalities is presented in [44]: namely, the isoperimetric problem for
product probability measures is investigated there.

Finally we mention once more that the monograph [38] contains a wide and deep
discussion of the isoperimetric problem for different definitions of surface area and volume
in higher dimensions, showing (also with many nice figures) that the isoperimetrices for
the Holmes-Thompson definition and the Busemann definition given below belong to
important classes of convex bodies known as projection bodies (= centered zonoids) and
intersection bodies, respectively; see Section 2 for definitions of these notions. Corresponding
isoperimetric inequalities are discussed there, too.

We will continue by discussing recently established isoperimetric inequalities for
Minkowski spaces more detailed, also in view of their applications, and we will also pose
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related conjectures and open questions. Our attention will be restricted to affine isoperimetric
inequalities in Minkowski spaces; we will almost ignore (with minor exceptions) asymptotic
affine inequalities.

2. Definitions and Preliminaries

Recall that a convex body K is a compact, convex set with nonempty interior in R
d, and thatK

is said to be centered if it is symmetric with respect to the origin o of R
d.

Let (Rd, ‖ · ‖) =: M
d, d ≥ 2, be a d-dimensional real Banach space, that is, a (normed

linear or)Minkowski spacewith unit ball B, where B is a convex body centered at the origin. The
unit sphere of M

d is the boundary of B and denoted by ∂B. The standard Euclidean unit ball
of R

d will be denoted by Ed, its volume by εd, and as usual we denote by Sd−1 the standard
Euclidean unit sphere in R

d.
Let λ be the Lebesgue measure induced by the standard Euclidean structure in R

d. We
will refer to this measure as d-dimensional volume (area in R

2) and denote it by λ(·). The
measure λ gives rise to consider a dual measure λ∗ on the family of convex subsets of the dual
space R

d∗ (i.e., the vector space of linear functionals on R
d, i.e., all linear mappings from R

d

into R with the usual pointwise operations; see [38, Chapter 0]). However, using the standard
basis we will identify R

d and R
d∗, and in that case λ and λ∗ coincide in R

d. We write λi for
the i-dimensional Lebesgue measure in R

d, with 1 ≤ i ≤ d, and therefore we simply write λ
instead of λd; again the identification of R

d and R
d∗ via the standard basis implies that λi

and λ∗i coincide in R
d as well. If u ∈ Sd−1, we denote by u⊥ the (d − 1)-dimensional subspace

orthogonal to u, and by lu the line through the origin parallel to u. By λ1(K,u) we denote the
usual one-dimensional inner cross-section measure or maximal chord length of K in direction
u.

One of the well-known inequalities regarding volumes of convex bodies under (vector
or)Minkowski addition, defined byK1+K2 := {x+y : x ∈ K1, y ∈ K2} for convex bodiesK1, K2

in R
d, is the Brunn-Minkowski inequality which states that, for 0 ≤ t ≤ 1,

λ1/d((1 − t)K1 + tK2) ≥ (1 − t)λ1/d(K1) + tλ1/d(K2) (2.1)

holds. Here equality is obtained if and only ifK1 andK2 are homothetic to each other. In [45],
Gardner gives an excellent survey on this inequality, its applications, and extensions.

A Minkowski space M
d possesses a Haar measure μ, and this measure is unique up to

multiplication of the Lebesgue measure with a positive constant, that is,

μ = σBλ. (2.2)

Choosing the “correct” multiple, which can depend on orientation, is not as easy as it seems
at first glance, but the two measures μ and λ have, of course, to coincide in the standard
Euclidean space.

For a convex body K in R
d, we define the polar body K◦ of K by

K◦ =
{
y ∈ R

d :
〈
x, y
〉 ≤ 1, x ∈ K

}
. (2.3)
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If K is a convex body in R
d, then the support function hK of K is defined by

hK(u) = sup
{〈
u, y
〉
: y ∈ K

}
, u ∈ Sd−1, (2.4)

giving the distance from o to the supporting hyperplane of K with outward normal u. Note
that K1 ⊂ K2 if and only if hK1 ≤ hK2 for any u ∈ Sd−1.

If o ∈ K, then its radial function ρK(u) is defined by

ρK(u) = max{α ≥ 0 : αu ∈ K}, u ∈ Sd−1, (2.5)

giving the distance from o to lu ∩ ∂K in direction u. Note again that K1 ⊂ K2 if and only if
ρK1 ≤ ρK2 for any u ∈ Sd−1. For α1, α2 ≥ 0 and any direction u these functions satisfy

hα1K1+α2K2(u) = α1hK1(u) + α2hK2(u),

ρα1K1+α2K2(u) ≥ α1ρK1(u) + α2ρK2(u) .
(2.6)

In view of the latter inequality, we always have ραK = αρK.
We mention the relation

ρK◦(u) =
1

hK(u)
, u ∈ Sd−1, (2.7)

between the support function of a convex bodyK and the inverse of the radial function ofK◦

(see [38, 42, 46, 47] for properties of and results on support and radial functions).
For convex bodies K1, . . . , Kn−1, Kn in R

d we denote by V (K1, . . . , Kn) their mixed
volume, defined by

V (K1, . . . , Kn) =
1
d

∫
Sd−1

hKndS(K1, . . . , Kn−1, u) (2.8)

with dS(K1, . . . , Kn−1, ·) being mixed surface area element ofK1, . . . , Kn−1; see [38, 42, 46–48] for
many interesting properties of mixed volumes.

Note that we have V (K1, K2, . . . , Kn) ≤ V (L1, K2, . . . , Kn) if K1 ⊂ L1, that
V (αK1, . . . , Kn) = αV (K1, . . . , Kn) if α ≥ 0, and that V (K,K, . . . , K) = λ(K). Furthermore,
we will write V (K[d − i], L[i]) instead of V (K,K, . . . , K︸ ︷︷ ︸

d−i

, L, L, . . . , L︸ ︷︷ ︸
i

).

We would also like to mention Steiner’s formula for mixed volumes (see, e.g., [42, Section
4]), given by

λ(K + αEd) =
n∑
i=0

(
n

i

)
V (K[d − i], Ed[i])αi. (2.9)
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Minkowski’s inequality for mixed volumes states that if K1 and K2 are convex bodies in
R

d, then

V d(K1[d − 1], K2) ≥ λd−1(K1)λ(K2), (2.10)

with equality if and only if K1 and K2 are homothetic (see [38, 42, 46–48]). If K2 is the
standard unit ball in R

d, then this inequality becomes the standard isoperimetric inequality.
Another inequality referring to mixed volumes is the Aleksandrov-Fenchel inequality,

stating that for convex bodies K1, K2, . . . , Kd in R
d

λ(K1, K2, . . . , Kd)2 ≥ λ(K1[2], K3, . . . , Kd)λ(K2[2], K3, . . . , Kd) (2.11)

holds. Here one has equality ifK1 andK2 are homothetic. In general, the equality case is still
an open question (see [42, Section 6]).

IfK is a convex body in R
d, then the projection body ΠK ofK is defined via its support

function by

hΠK(u) = λd−1
(
K | u⊥

)
(2.12)

for each u ∈ Sd−1, where K | u⊥ is the orthogonal projection of K onto u⊥, and λd−1(K | u⊥) is
called the (d−1)-dimensional outer cross-section measure or brightness ofK at u. We note that any
projection body is a centered zonoid, and that for centered convex bodiesK1, K2 the equality
ΠK1 = ΠK2 implies K1 = K2; see [42, 47] for more information about projection bodies.
(Zonoids are the limits, in the Hausdorff sense, of zonotopes, i.e., of vector sums of finitely
many line segments.)

The intersection body IK of a convex body K in R
d is defined via its radial function by

ρIK(u) = λd−1
(
K ∩ u⊥

)
(2.13)

for each u ∈ Sd−1. Note that if K1 and K2 are centered convex bodies in R
d, then from IK1 =

IK2 it follows that K1 = K2 (see [47, 49]).
We should also say that any projection body is dual to some intersection body, and

that the converse is not true. The reader can also consult the book [50] of Koldobsky about a
Fourier analytic characterization of intersection bodies.

Let K and L be convex bodies in R
d. Then the relative inradius r(K,L) and the relative

circumradius R(K,L) of K with respect to L are defined by

r(K,L) := sup
{
α : ∃x ∈ R

d, αL + x ⊆ K
}
,

R(K,L) := inf
{
α : ∃x ∈ R

d, αL + x ⊇ K
}
,

(2.14)

respectively.



Journal of Inequalities and Applications 9

3. Surface Areas, Volumes, and Isoperimetrices in Minkowski Spaces

As already announced, there are different definitions of measures in higher-dimensional
Minkowski spaces (see [38, 51, 52], but also [53] for a variant). We define now the most
important ones.

Definition 3.1. IfK is a convex body in M
d, then the d-dimensional Holmes-Thompson volume of

K is defined by

μHT
B (K) =

λ(K)λ(B◦)
εd

, that is, σB =
λ(B◦)
εd

. (3.1)

Definition 3.2. If K is a convex body in R
d, then the d-dimensional Busemann volume of K is

defined by

μBus
B (K) =

εd
λ(B)

λ(K), that is, σB =
εd

λ(B)
. (3.2)

Note that these definitions coincide with the standard notion of volume if the space is
Euclidean, and that μBus

B (B) = εd.
Let M be a surface in R

d with the property that at each point x of M there is a unique
tangent hyperplane, and that ux is the unit normal vector to this hyperplane at x. Then the
Minkowski surface area of M is defined by

μB(M) :=
∫
M

σB(ux)dS(x). (3.3)

For the Holmes-Thompson surface area, the quantity σB(u) is defined by

σB(u) =
λ
((

B ∩ u⊥)◦)
εd−1

. (3.4)

For the Busemann surface area, σB(u) is defined by

σB(u) =
εd−1

λ
(
B ∩ u⊥) . (3.5)

If K is a convex body in M
d, then the Minkowski surface area of K can also be defined

by

μB(∂K) = dV (K[d − 1], IB), (3.6)

where IB is that convex body whose support function is σB. The convex body IB plays the
central role regarding the solution of the isoperimetric problem in Minkowski spaces; see again
[38] and the definitions below. Recall once more that in two-dimensional Minkowski spaces
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IB is the polar reciprocal of B with respect to the Euclidean unit circle, rotated through 90◦

(see [38, 54–56]).
For the Holmes-Thompson measure, IB is defined by

IHT
B =

Π(B◦)
εd−1

(3.7)

and therefore a centered zonoid. For the Busemann measure we have

IBusB = εd−1(IB)◦. (3.8)

Among the homothetic images of IB we want to specify a unique one, called the
isoperimetrix ÎB and determined by μB(∂ÎB) = dμB(ÎB) (see [38]).

Definition 3.3. The isoperimetrix for the Holmes-Thompson measure is defined by

ÎHT
B =

εd
λ(B◦)

IHT
B . (3.9)

Definition 3.4. The isoperimetrix for the Busemann measure is defined by

ÎBusB =
λ(B)
εd

IBusB . (3.10)

4. Inequalities in Minkowski Spaces

One of the fundamental theorems in geometric convexity refers to the Blaschke-Santaló
inequality and states that if K is a centrally symmetric convex body in R

d, then

λ(K)λ(K◦) ≤ ε2d (4.1)

with equality if and only if K is an ellipsoid. See also [57, 58] for some new results in this
direction.

The sharp lower bound on the product λ(K)λ(K◦) is known only for certain classes of
convex bodies, for example, yielding the Mahler-Reisner Theorem. This theorem states that if
K is a zonoid in R

d, then

4d

d!
≤ λ(K)λ(K◦), (4.2)

with equality if and only if K is a parallelotope. Mahler proved this inequality for d = 2, and
Reisner established it for the class of zonoids (see [59]). In [60], Saint-Raymond established
this inequality for convex bodies with d hyperplanes of symmetry whose normals are linearly
independent.
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In [61] it is proved that there is a constant c, independent of d, such that λ(K)λ(K◦) ≥
cdε2

d
. In recent years, there have been attempts to extend the Mahler-Reisner Theorem to all

convex bodies (see, e.g., [62, 63]).
If K is a convex body in R

d, then

(
2d

d

)
d−d ≤ λd−1(K)λ

(
(ΠK)◦

) ≤
(

εd
εd−1

)d

(4.3)

holds, with equality on the right side if and only ifK is an ellipsoid, and with equality on the
left side if and only if K is a simplex.

The right inequality is called Petty’s projection inequality, and the left one was
established by Zhang (see [47, 64]).

The following question has been raised several times and is still open (see [65]).

Problem 1. What is the sharp lower bound on λd−1(K)λ((ΠK)◦), when K is a centrally
symmetric convex body in R

d?

In [66], it was conjectured that this sharp lower bound is attained when K is a
parallelotope.

In [67] (see also [68]), Schmuckenschläger defines the convolution square FK of K as
the convolution of the indicator function IK ofK and I−K, and the distribution function VK(δ)
of this convolution is defined by

VK(δ) : = λ(FK > δ) := λ
({

x ∈ R
d : FK(x) > δ

})

= λ
({

x ∈ R
d : λ(K ∩ (K + x)) > δ

})
.

(4.4)

Based on this, Schmuckenschläger proves that if K is a convex body in R
d, then

lim
δ→λ(K)

VK(δ)

(λ(K) − δ)d
= λ
(
(ΠK)◦

)
. (4.5)

Furthermore, he proves the following version of Petty’s projection inequality: ifK is a
convex body in R

d such that λ(K) = λ(Ed), then

λ
(
(ΠK)◦

) ≤ λ
(
(ΠEd)◦

)
. (4.6)

Another proof of this inequality is given in [69]. In this proof one has to take n
random segments in K and to consider then their Minkowski average D (recall that the
Minkowski average of the segments [xi, yi] ⊂ K with 1 ≤ i ≤ n is the zonotope defined by
D(x1, y1, . . . , xn, yn) := (1/n)([x1, y1] + · · · + [xn, yn])). Then it is shown that, for λ(K) fixed,
the supremum of λ(D) is minimal for K an ellipsoid. This result implies Petty’s projection
inequality referring to max λ((ΠK)◦).
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Setting K = B◦ in Petty’s projection inequality, one obtains

λ
((

ÎHT
B

)◦) ≤ λ(B◦), (4.7)

with equality if and only if B is an ellipsoid (see also [38]).
Petty’s conjectured projection inequality states that ifK is a convex body in R

d with d ≥ 3,
then

ε−2d λ(ΠK)λ1−d(K) ≥
(
εd−1
εd

)d

(4.8)

with equality if and only if K is an ellipsoid; see [70]. In [71] (see also [13]) Lutwak says
that this conjectured inequality is one of the major open problems in the field of affine
isoperimetric inequalities. In [72], Schneider discusses applications of this conjecture in
Stochastic Geometry. In [73] (see also [74]) Brannen proves that this inequality holds for
3-dimensional convex cylindrical bodies.

In [75] it is proved that Petty’s conjectured projection inequality is equivalent
to another open problem (namely the isoperimetric problem for the Holmes-Thompson
measure) over the class of origin-symmetric convex bodies, since the following statement
is proved there.

Theorem 4.1. Let B be the unit ball of M
d. Then Petty’s conjectured projection inequality is true for

B if and only if

μd
B

(
∂IHT

B

)
μd−1
B

(
IHT
B

) ≥ ddεd, (4.9)

and equality holds if and only if B is an ellipsoid.

Similar to (4.7), we state the following conjecture that would also follow from Petty’s
conjectured projection inequality (see [75]).

Conjecture 4.2. If B is the unit ball of M
d, then we have

λ
(
ÎHT
B

)
≥ λ(B), (4.10)

with equality if and only if B is an ellipsoid.

This conjecture as well as Petty’s conjectured projection inequality would easily solve
the following problem (see also [75, 76]).

Problem 2. Let B be the unit ball of M
d. Is it then true that

μHT
B (∂B)

μHT
B (B)

≥ d? (4.11)
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Also in [75] it is shown that μHT
B (∂B)/μHT

B (B) = d if and only if B is an ellipsoid.
Furthermore, the affirmative answer of the following question would solve this ratio

problem as well.

Problem 3. Let B be a centered convex body in R
d. Is it then true that

V (B[d − 1],ΠB◦) ≥
(
εd−1
εd

)
λ(B)λ(B◦)? (4.12)

We should also mention that for d ≥ 3 the sharp bounds on μHT
B (∂B) are still unknown,

thus yielding a challenging open problem. Thompson (private communication) informed us
to have a proof that the sharp lower bound on μHT

B (∂B) for d = 3 equals 36/π in the case
when B is either a rhombic dodecahedron or its dual, that is, a cuboctahedron in M

3.
Since the quantity λ(ΠK)λ1−d(K) is not changed under dilation, we obtain, setting

λ(K) = λ(Ed) in Petty’s conjectured projection inequality, the following version of this
conjecture which is similar to (4.6).

Conjecture 4.3. If K is a convex body in R
d with λ(K) = λ(Ed), then

λ(ΠK) ≥ λ(ΠEd) (4.13)

with equality if and only if K is an ellipsoid.

For the class of centered convex bodies this conjecturewould follow from the following
question which involves Steiner symmetrization. Recall that if u is a unit vector, the Steiner
symmetral StK of a convex body K with respect to the hyperplane u⊥ is the convex body
obtained as union of all translates of chords of K parallel to u, where these chords are
translated in their own affine hull such that, in their final position, they intersect u⊥ at their
midpoints. The respective procedure is usually called Steiner symmetrization.

Problem 4. LetK be a centered convex body in R
d. Is it true that the Steiner symmetral StK of

K, created with respect to a given hyperplane through the origin, satisfies the inequality

λ(ΠK) ≥ λ(Π(StK)) (4.14)

with equality for each hyperplane through the origin if and only if K is an ellipsoid?

Remark 4.4. SinceK is a centered convex body, it suffices to take this hyperplane to beHd−1 =
{x ∈ R

d : xd = 0}.

Recall that Steiner symmetrization does not change the volume of a given convex body.
In addition we note that there is a sequence of convex bodies obtained from a given convex
body by finitely many successive Steiner symmetrizations such that this sequence converges
to an ellipsoid (see [9]). Also, the following interesting property of Steiner symmetrization
should be noticed (see [9, 77, 78]).
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Proposition 4.5. LetK be a centered convex body in R
d. Then the Steiner symmetral StK ofK with

respect to a given hyperplane through the origin satisfies the inequality

λ
(
(StK)◦

) ≥ λ(K◦). (4.15)

From this proposition it follows that IHT
B /⊆StIHT

B and IBusB /⊆StIBusB , unless B is an
ellipsoid.

Favard’s Theorem (see [79] or [80]) states that λ(K) = V (K[d−1], L) holds if and only
if K is a (d − 1)-tangent body of a convex body L. (Recall that a convex body K is a (d − 1)-
tangent body of a convex body L if and only if through each boundary point of K there exists
a supporting hyperplane of K that also supports L; see [46, page 19] or [42, pages 75-76 and
136], for the definition of tangent bodies.)

Setting K = B and L = ÎBusB in Favard’s Theorem, we obtain λ(B) = V (B[d − 1], ÎBusB ).
Hence μBus

B (∂B) = dεd if and only if B is a (d − 1)-tangent body of ÎBusB .
In [81], Thompson shows that if the unit ball of a Minkowski space M

3 is an affine
regular rhombic dodecahedron, then μBus

B (∂B) = dεd = 4π. Thus, if B is an affine regular
rhombic dodecahedron in M

3, then ÎBusB ⊆ B and r(B, ÎBusB ) = 1. Furthermore, this is a
counterexample to Problem 7.4.2 posed in [38].

Finding the sharp lower bound on μBus
B (∂B) is still an open question.

Busemann’s intersection inequality states that if K is a convex body in R
d, then

λ(IK) ≤ εdd−1
εd−2d

λd−1(K) (4.16)

with equality if and only if K is an ellipsoid; see [82].
In [83] it is also proved that Busemann’s intersection inequality cannot be strength-

ened to

λd−1(K)λ
(
(IK)◦

) ≥
(

εd
εd−1

)d

(4.17)

when K is an affine regular rhombic dodecahedron in R
3.

We should also mention that sharp bounds on r(B, ÎB) and R(B, ÎB) for some cases are
known. Namely, it is known that 2εd−1/dεd ≤ r(B, ÎHT

B ) ≤ 1 with equality on the left if and
only if B is a cube or cross polytope, and on the right if and only if B is an ellipsoid; see
[38, 84]. In M

2, for R(B, ÎHT
B ) we have R(B, ÎHT

B ) ≥ 3/π with equality if and only if B is a
regular hexagon (see [38, 76]). In M

d, R(B, ÎHT
B ) ≤ dεd/2εd−1 holds with equality if and only

if B is a parallelotope (see [84]).
Also, the relations r(B, ÎHT

B ) ≤ 1 or ÎHT
B ⊆ B, with equality if and only if B is an ellipsoid,

play an essential role for the proof of a conjecture of Rogers and Shephard (given in [84]),
leading to the following theorem.
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Theorem 4.6. If K is a convex body in R
d, then there exists a direction u ∈ Sd−1 such that

λd−1
(
K | u⊥)λ1(K,u)

λ(K)
≥ 2εd−1

εd
. (4.18)

Furthermore, equality for each u ∈ Sd−1 holds if and only if K is an ellipsoid.

One could also raise the following question.

Problem 5. Does there exist a centered convex body K in R
d such that

λd−1
(
K ∩ u⊥)λ1(K | lu)

λ(K)
>

2εd−1
εd

(4.19)

for each u ∈ Sd−1.

Our guess is that such a body does not exist.
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873–877, 1973 (Russian).

[18] H. T. Ku, M. C. Ku, and X. M. Zhang, “Analytic and geometric isoperimetric inequalities,” Journal of
Geometry, vol. 53, no. 1-2, pp. 100–121, 1995.

[19] A. Siegel, “An isoperimetric theorem in plane geometry,” Discrete & Computational Geometry, vol. 29,
no. 2, pp. 239–255, 2003.

[20] L. Dalla and N. K. Tamvakis, “An isoperimetric inequality in the class of simplicial polytopes,”
Mathematica Japonica, vol. 44, no. 3, pp. 569–572, 1996.

[21] A. P. Burton and P. Smith, “Isoperimetric inequalities and areas of projections in R
n,”ActaMathematica

Hungarica, vol. 62, no. 3-4, pp. 395–402, 1993.
[22] K. Ball, “Volume ratios and a reverse isoperimetric inequality,” Journal of the London Mathematical

Society, vol. 44, no. 2, pp. 351–359, 1991.
[23] K. Ball, “An elementary introduction to modern convex geometry,” in Flavors of Geometry, vol. 31 of

Mathematical Sciences Research Institute Publications, pp. 1–58, CambridgeUniversity Press, Cambridge,
UK, 1997.

[24] F. Barthe, “On a reverse form of the Brascamp-Lieb inequality,” Inventiones Mathematicae, vol. 134, no.
2, pp. 335–361, 1998.

[25] U. Betke and W. Weil, “Isoperimetric inequalities for the mixed area of plane convex sets,” Archiv der
Mathematik, vol. 57, no. 5, pp. 501–507, 1991.

[26] H. Busemann, “The isoperimetric problem in the Minkowski plane,” American Journal of Mathematics,
vol. 69, pp. 863–871, 1947.

[27] W. Süss, “Affine und Minkowskische Geometrie eines ebenen Variationsproblems,” Archiv der
Mathematik, vol. 5, pp. 441–446, 1954.
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[68] M. Schmuckenschläger, “The distribution function of the convolution square of a convex symmetric

body in R
n,” Israel Journal of Mathematics, vol. 78, no. 2-3, pp. 309–334, 1992.



18 Journal of Inequalities and Applications

[69] E. Makai Jr. and H. Martini, “The cross-section body, plane sections of convex bodies and
approximation of convex bodies. II,” Geometriae Dedicata, vol. 70, no. 3, pp. 283–303, 1998.

[70] C. M. Petty, “Isoperimetric problems,” in Proceedings of the Conference on Convexity and Combinatorial
Geometry (Univ. Oklahoma, Norman, Okla., 1971), pp. 26–41, Department of Mathematics, University of
Oklahoma, Norman, Okla, USA, 1971.

[71] E. Lutwak, “On a conjectured projection inequality of Petty,” in Integral Geometry and Tomography
(Arcata, CA, 1989), vol. 113 of Contemporary Mathematics, pp. 171–182, AmericanMathematical Society,
Providence, RI, USA, 1990.

[72] R. Schneider, “Geometric inequalities for Poisson processes of convex bodies and cylinders,” Results
in Mathematics, vol. 11, no. 1-2, pp. 165–185, 1987.

[73] N. S. Brannen, “Volumes of projection bodies,”Mathematika, vol. 43, no. 2, pp. 255–264, 1996.
[74] N. S. Brannen, “Three-dimensional projection bodies,” Advances in Geometry, vol. 5, no. 1, pp. 1–13,

2005.
[75] H. Martini and Z. Mustafaev, “Extensions of a Bonnesen-style inequality to Minkowski spaces,”

Mathematical Inequalities & Applications, vol. 11, no. 4, pp. 739–748, 2008.
[76] Z. Mustafaev, “The ratio of the length of the unit circle to the area of the unit disc in Minkowski

planes,” Proceedings of the American Mathematical Society, vol. 133, no. 4, pp. 1231–1237, 2005.
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