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We introduce and study some new subclasses of p-valent starlike, convex, close-to-convex, and

quasi-convex functions defined by certain Srivastava-Attiya operator. Inclusion relations are
established, and integral operator of functions in these subclasses is discussed.

1. Introduction

Let A(p) denote the class of functions of the form

f(z) =2+ ian+pz"+’” (peN={1,23,..}), (1.1)
n=1

which are analytic and p-valent in the open unit disc U = {z : z € C and |z| < 1}. Also, let the
Hadamard product or (convolution) of two functions

fi(z) =2" + Zanw,jz"*” (j=1,2) (1.2)
n=1

be given by (f1 * f2)(2z) = 28 + 2021 Anip1nsp22" P = (f2 % f1)(2).
A function f(z) € A(p) is said to be in the class S (a) of p-valent functions of order
if it satisfies

Re<ZJ{(S)> >a (0<a<pzel). (1.3)

we write Sy 0) = S;, the class of p-valent starlike in U.
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A function f € A(p) is said to be in the class C,(a) of p-valent convex functions of
order a if it satisfies

Re<1+%>>a (0<a<p,zel). (1.4)

The class of p-valent convex functions in U is denoted by C, = C,(0).
It follows from (1.3) and (1.4) that

f(2) € Cy(a) iff zf 1’9(2) €Sy (0<a<p). (15)

The classes S, and C, were introduced by Goodman [1]. Furthermore, a function
f(z) € A(p) is said to be p-valent close-to-convex of order ff and type y in U if there exists a
function g(z) € S;‘,(y) such that

re( L2

e >>ﬁ (0<By<pzel). (1.6)

We denote this class by K, (f,y) The class K,(f,y) was studied by Aouf [2]. We note
that K1 (f,y) = K(B,y) was studied by Libera [3].

A function f € A(p) is called quasi-convex of order f3 type y, if there exists a function
g(z) € Cy(y) such that

{ (2f'(2))

e } B, zel, (1.7)

where 0 < B,y < p. We denote this class by K} (p,y). Clearly f(z) € K;(f,y) © zf'(z)/p €
K, (B,y).The generalized Srivastava-Attiya operator Jspf(z) : A(p) — A(p) in [4] is
introduced by

Jonf(2) = Gap(2) * f(2) <z €U :beC\Zy=1{0,-1,-2,-3,...}, s€C, pe N> (1.8)

where

Gsp(z) = (1+b)°[p(z,8,b) -b77],
zP zl+p (19)

9(zs,b) = bs 1+’  @+by

It is not difficult to see from (1.8) and (1.9) that

Jspf(z) = 2P + i( 1+b ) Apipz™*P. (1.10)

n+1+>b
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When p = 1, the operator J is well-known Srivastava-Attiya operator [5].
Using the operator J,, we now introduce the following classes:

Sio0 () = {fD) €AW : Jnf(2) €S0},

Cosp(v) = {f(2) € A(p) : Jonf(2) €Cp(¥) },
Kysp(BY) = {f(2) € A(p) : Jonf(2) € Kp(B,7) },

K;ou(B7) = {F(2) € Ap) : Jonf () € K3 (B) }-

(1.11)

In this paper, we will establish inclusion relation for these classes and investigate Srivastava-
Attiya operator for these classes.
We note that

(1) for s = 0, b =p, we get Jung-Kim-Srivastava ([6, 7]);
(2) fors =1, 1+b=c+p, we get the generalized Libera integral operator. [8, 9];

(3) for s = —k being any negative integer, b = 0, and p = 1, the operator J_xo = D*f(z)
was studied by Séldgean [10].

2. Inclusion Relation
In order to prove our main results, we will require the following lemmas.

Lemma 2.1 (see [11]). Let w(z)be reqular in U with w(0) = 0. If |w(z)| attains its maximum value
on the circle |z| = r at a given point zy € U, then zow'(zy) = kw(zo), where k is a real number and
k>1.

Lemma 2.2 (see [12]). Let u = uy + iup, v = vy + ivy, and let ¢(u,v) be a complex function,
¢:D — C, D cCxC. Suppose that ¢ satisfies the following conditions:

(i) ¢(u,v) is continuous in D,
(ii) (1,0) € D and Re{g(1,0)} >0,
(iii) Re{q(iug, v1)} <0 for al(iup, v1) € D such that v; < —(1 + u%)/Z.

Let h(z) = 1+ c1z + ¢12% + - - - be analytic in U, such that (h(z),zh (z)) € D for z € U. If
Re{g(h(z),zH (z))} >0,(z € U) then Re h(z) > 0 for z € U.

Our first inclusion theorem is stated as follows.
Theorem 2.3. S;/S.b (y) C S;,s+1,b(Y) for any complex number s.

Proof. Let f(z) € S;,s,b(y)’ and set

z(Jopf(2))

Tonfm VPR, @D
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where h(z) = 1+ ¢1z + c22% + - - - . Using the identity
2(Jspf(2) = (p= (146)) Jopf(2) + (1 +b)Jspf (2), (22)

we have

Jspf(2) B 1 <Z(]5+1,bf(Z))’ —p+b+ 1>’

]s+1,bf(z) S 1+b ]s+1,bf(z) (2.3)
s, 1
]]fff(Z) =510 (P-1h(z) —p+b+1).
Differentiating (2.3), logarithmically with respect to z, we obtain
z(Jspf(2)' (p-1)zh'(2)
———— —y=(p-71)h . 2.4
Jspf(z) y=@F-v (Z)+(p—y)h(z)+y—p+b+1 24)
Now, from the function ¢ (u, v), by taking u = h(z), v = zh'(z) in (2.4) as
puv)=(p-y)u+ (p=1)o (2.5)

(p-y)u+y-p+b+1’

it is easy to see that the function ¢(u, v) satisfies condition (i) and (ii) of Lemma 2.2, in D =
(C-{(y-p+b+1)/(y -p)}) x C. To verify condition (iii), we calculate as follows:

(p-1)o }

R iUy, =R
elg(iuz 1)} = Re (p-y)ita+y-p+b+1

(P—Y)Ul[(Y—P+b+1)—i(P—Y)”Z]}

=Re 3 3
(p-y) w5+ (1-p+b+y)

=Re (2.6)

(P—Y)(Y—P+b+1)vl—i(P—Y)Zvluz}
(p-1)'1d+(1-p+b+y)’

__ (-1 -p+b+hHu
(p-1)13+(1-p+b+y)’

NG oprbr DA 4w)
2[(p-)ig+ (1-prbry)]

<

where v; < —(1 + u%)/ 2 and (iup,v1) € D. Therefore, the function ¢(u,v) satisfies the
conditions of Lemma 2.2.
This shows that if Re(h(z), zh'(z)) > 0 (z € U), then

Re(h(z)) >0, (zeU). (2.7)
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if f € Si(y), then

S;,s,b (Y) c S;,s+1,b (Y) .

This completes the proof of Theorem 2.3.
Theorem 2.4. C,5,(y) C Cps11,6(y), for any complex number s.

Proof. Consider the following;:

f(2) € Cpan(y) & Jopf(2) € Co(y) = §<fs,bf<z>>’ e sy(y)

— ]s,b(
zf'(2)
P

zf'(2) " z2f'(2) _
D) esiin =L es 0

zf'(2)
p

=

)esm

= §<Jm £(2)) €S5(y) = Jonf(2) € Coly)

€ S;,s+1,b (Y) = ]S+1,b <

& f(2) € Cpss1p (Y)/

which evidently proves Theorem 2.4.
Theorem 2.5. Ky 5,(B,7) C Ky s1,6(B, ¥), for any complex number s.

Proof. Let f(z) € Kys5(B, y)- Then, there exists a function k(z) € S;,(y) such that

e 2Us f(2)
g(2)

}>p (zel).

(2.8)

(2.9)

(2.10)

Taking the function k(z) which satisfies J;pk(z) = g(z), we have k(z) € S;(y) and

Re{z(Jspf(2))'/ Jspk(z)} > p (z € U).

Now, put z(Js:16f(2))'/ Jss1,0k(2)) = p = (p — )h(z), where h(z) = 1+ c1z + coz% +- - .

Using the identity (2.2) we have

2(Jouf(2))  Jon(2f @)
Jopk(z)  Jopk(z)

_ 2(Jsnp(2f)(2) = (p = A+ b)) Jorip (2f) (2)
2(Js1pk(2) = (p = (1+ b)) Jusrpk(2)

2(Jero(2) @) Nerok(@) = (p = (1 +5) Jous (2F ) (2)/ Torak(2)

z(Jsr1pk(2))'/ Jss1pk(2) = (p = (1 + b))

(2.11)
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Since k(z) € S:J,s,b(Y) and S;’S’b(y) C S;,erl,b(Y)’ we let z(Jo1k(2)) / Joripk(2) = (p—y)H(2) +

y, where Re H(z) > 0 (z € U) thus (2.11) can be written as

2(/stf @) _ 2sip(2f)@) Jsrisk@) = (= A+ b) [+ (-PhE] 5 )

Jspk(2) (p-v)H(z) +y-[p- (1+D)]

Consider that
2(Jurpf(2)) = Jenk(2) [B + (p - P)(2)]. (2.13)
Differentiating both sides of (2.13), and multiplying by z, we have

z2(Jop(2f)(2)'
]s+1,bk(z)

=(p-p)zH (=) + B+ (p-PHh) - [(p-1)H (=) +7]- (214)
Using (2.14) and (2.12), we get

z(Jspf(2) (p-P)zH'(2)

Jork(@) p=(p-plkia)+ (p-y)HE=Z)+y- (p-(1+b))’ (2.15)
Taking u = h(z), v = zh'(z) in (2.15), we form the function ¢ (u, v) as
gu,0) = (p-pu+ (p=F)o (2.16)

(P-"HE) +y-[p-1+b)]

It is not difficult to see that ¢s(u, v) satisfies the conditions (i) and (ii) of Lemma 2.2 in D =
C x C. To verify condition (iii), we proceed as follows:

(p-Boi[(p-y)h(x,y) +y-[p- (1+b)] ,
[(p-7)m(xy) +7+ 1 +b) = p]” + [(p - Pha(x,y)]

Re ¢ (iup, v1) = (2.17)

where H(z) = hi(x,y) +ihx(x,y), hi(x,y) and hy(x, y) being the functions of x and y and
Re H(z) = h1(x,y) > 0.
By putting v1 < —(1/2)(1 + u3), we have

(p-B)(1+uw)[(p-y)h(x,y) +y-[p- (1+Db)]

- —<0. (218)
2{[(p-Nm(xy) +y+ A +0) =p]*+ [(p - ha(x, )]’}

Re ¢ (iup, v1) < -

Hence, Reh(z) > 0 (z € U) and f(z) € Kps:1,(f,y). The proof of Theorem 2.5 is complete.
O

Theorem 2.6. K;/s,b(ﬁ, y) C K, 5B, Y) for any complex number s.
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Proof. Consider the following;:

f(2) €K; ,(By) = Jspf(2) € K5 (B,Y)

= §<Js,bf<z>)’ € Ky (B,y)

= 1a(LD) ex6m) = LE e i)
p p
o o (2.19)
= pr €Kpsp(By) = ]s+1,b< = ) € Ky ()
=~ Uennf ) €Kp(B)
= Jsnpf(2) €K (By) = f(2) €Ky, (BY)-
The proof of Theorem 2.6 is complete. O

3. Integral Operator

For ¢ > -1 and f(z) € A(p), we recall here the generalized Bernardi-Libera-Livingston
integral operator L. f(z) as follows

Lf(2) = 2B w1 fpyat

z€ 0
(3.1)

The operator L.(f(z)) when c € N = {1,2,3,...} was studied by Bernardi [13], for
¢ =1, Li(f(z)) was investigated earlier by Libera [14]. Now, we have

B 1+b \°/ c+p e
Y e N G L 32)
so we get the identity
2(Jop(Lef(2))) = (c+p)Jsnf (2) = ¢(Lef (2))- (3.3)

The following theorems deal with the generalized Bernard-Libera-Livingston integral
operator L.(f(z)) defined by (3.1).

Theorem 3.1. Letc> -y, 0<y<p.If f(z) € S, s (y), then L.f(z) € S;/S’b(y).
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Proof. From (3.3), we have

2(Jsp(Lef(2))) _ (e+p)Jspf(z) 1+ (1-2y)w(z)

Jolef@ Jaf@) T e G4
where w(z) is analytic in U, w(0) = 0. Using (3.3) and (3.4) we get
Jspf(2) _ (etp)+w@(-c-2p)w(z) (35)
JspLef(2) (c+p)(1-w(z))
Differentiating (3.5), we obtain
2Uopf(2)) 1+ (1-20)w(z)  zw'(z) = (1-c-2y)zw'(z) 36)

Juf(z) — 1-w(@  1-w(z) p+c+(l-c-2y)w(z)

Now we assume that |w(z)| < 1 (z € U). Otherwise, there exists a point zy € U such that
max |w(z)| = |w(zo)| = 1. Then by Lemma 2.1, we have zyw'(z9) = kw(zg), k > 1. Putting
z = zp and w(zp) = € in (3.6), we have

Re{ZO(]s,bf(Zo))’ —Y} :Re{ 2(1-y)ke"” }

Jsp f(z0) (1-e®)(p+c+(1-c-2y)e?)

(3.7)

_ ~2k(1-y)(c+y) <0
(1+c)2+2(1+c)(1—c—2y)c056+(1—c—2y)2 -

which contradicts the hypothesis that f(z) € S; (-
Hence, |w(z)| < 1, for z € U, and it follows (3.4) that L. f € S;Sb(y).
The proof of Theorem 3.1 is complete- O

Theorem 3.2. Let c > ~y,0<y <p.If f € Cpsu(Y), then L. f(z) € Cpsp(y).

Proof. Consider the following:

LB 5,0

f(z) € Cp,s,b(Y) =

(3.8)

= 1(L 2V 5,00 = 2L @) €85,0)

& Lof(2) € Cpop(y)-

This completes the proof of Theorem 3.2. O

Theorem 3.3. Let ¢ > ~y,0 <y <p.f f(z) € Kpsp(B,y) then L.(f(2)) € Kpsp(B, 7).
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Proof. Let f(z) € Ky, 5,(B,y)- Then, by definition, there exists a function g(z) € S’
that

z(Jsnf (2)’
Re{ Jsp8(2) } P zeth.
Then,
z(Jsplef(2)
]S,chg(z) ﬁ - (p ﬁ)h(Z)
where h(z) = c1z + 22> + - -+ . From (3.3) and (3.10), we have

2Usnf (@) _Jn(2(2) _ 2UspLe(zf(2) + cIopLe(zF) ()
Jsp8(2) Jsp8(2) z(JspLe(8(2))) + cJspLeg(z)

_ z(JspLezf'(2)) /JspLe(8(2)) + cJspLe(2f'(2)) / JspLe(8(2))
z(JspLeg(2)) / JspLe(8(2)) + ¢

Since g(z) € S;,s,b(Y)/ then from Theorem 3.1, we have L.(g) € S;,s,b(Y)'
Let

Z(]s,ch(g(Z)))l
TN (p—v)H :

]s,ch (g(Z)) (p Y) (Z) o
where Re H(z) > 0(z € U). Using (3.11), we have

2(Jspf(2)) _ z(JspLe(2f'(2))) /JspLe(8) + c((p - P)h(2) + B)
Jsp8(2) (p-y)H(z) +y+c '

Also, (3.10) can be written as
z(JspLe(f(2)))' = JspLe(8(2)) ((p = B)(2) + B).-

Differentiating both sides, we have

{2(JLef(2)'] = 2(upLeg(@) (0 - B)R() + ) + (p — )z (2)JapLeg (2),

or

H{20aLef@))  2(ule(zf(2)

]s,ch (g(Z)) ]s,ch (g(z))
=(p-P)zh'(2) + ((p - P)h(z) + B) (1 - ) H(2) + V).

p,s,b

9

(y) such

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



10 Journal of Inequalities and Applications

Now, from (3.13) we have

z(Jspf(2)

(p-p)zh'(z)
Jsp8(2) (3.17)

(p-y)H(z) +y+c

p=(p-P)h(z)+

We form the function ¢ (1, v) by taking u = h(z), v = zh'(z) in (3.17) as follows

(p-P)v

(p-y)HE) +y+c (3.18)

¢(wv)=(p-Plu+

It is clear that the function ¢(u, v) defined in D = C x C by (3.18) satisfies conditions
(i) and (ii) of Lemma 2.2. To verify the condition(iii), we proceed as follows:

(p-P)ur[(p-y)hi(xy) +y+(] ,
[(p -V (xy) + 1+ + [(p-1)ha(x, )]

Re ¢ (iup, v1) = (3.19)

where H(z) = hi(x,y) + iha(x,y), hi(x,y) and hy(x,y) being the functions of x and y and
Re H(z) = h1(x,y) > 0.
By putting ©v; < —(1/2)(1 + u3), we have

(P-PA+w)[P-Nhly)+y+e
2{[(p-Mm(xy) +y+e*+ [(p-1)h(x9)]*)

Re ¢ (iup, v1) < - (3.20)

Hence, Reh(z) > 0(z € U) and L.f(z) € K,sp(B,y). Thus, we have L f(z) €
Kp,sp(B,v)- The proof of Theorem 3.3 is complete. O

Theorem 3.4. Letc > -y, 0<y<p. If f(z) € K;,s,b(ﬂ’ Y), then L.f(z) € K;,S/b(ﬁ, Y).

Proof. Consider the following:

f@)eK] ,(By) & zf'(2) € Kpsp(BrY)
= Lc(2f'(2)) € Kpsp(B,Y)
& z(Lf(2)) € Kpsp(BrY)
= Lf(2) €K, ()

(3.21)

and the proof of Theorem 3.4 is complete. O
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