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1 INTRODUCTION

Let (X, I]’]]) be a real normed linear space. Consider the lower and
upper semi-inner products

lim IIx / tyll 2 -Ilxll 2

(Y’X)i
t-o- 2t

and

(y, x)s lim Ilx + ,,,11.,,2 IIIl,,x,, 2

t0+ 2t

which are well defined for every pair x, y E X (see for example [1]).
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For the sake of completeness we list here some of the main properties
of these mappings that will be used in the sequel (see [1,2,3]), assuming
that p, q E {s, i} and p - q:

(I) (x, X)p- [Ix[[ for all x 6 X;
(II) (ax, 3y)p- a/3(x, y)p if c/3 >_ 0 and x, y E X;
(III) [(x,y)p[ <_ [[x[[ [lY[[ for all x, y X;
(IV) (ax + y, X)p a(x, X)p + (y, X)p if x, y belong to X and c is a real

number;
(V) (-x, y)p- -(x, y)q for all x, y X;
(VI) (x + y,Z)p <_ IIx[I Ilzll + (y,z)p for all x, y, z X;
(VII) The mapping (-, .)p is continuous and subadditive (superadditive)

in the first variable for p-s (or p- i);
(VIII) The normed linear space (X, .1[ ) is smooth at the point x0 X\{0}

if and only if (y, Xo)s (y, Xo)i for all y E X; in general, (y, x)i <
(y, x)s for all x, y X;

(IX) If the norm [1-1[ is induced by an inner product (., .), then

(y,x)i- (y,x) -(y,X)s for all x, y X.

For other properties of (., .)p see the recent papers [1,2,3], where
further references are given.
The terminology throughout the paper is standard. We mention that

for functions we use the terms ’increasing’ (and ’strictly increasing’),
’decreasing’ (and ’strictly decreasing’), thus avoiding ’nondecreasing’
and ’nonincreasing’.

MAPPINGS ASSOCIATED WITH THE LOWER AND UPPER
SEMI-INNER PRODUCTS

Let (X, I1" I1) be a real normed linear space and x, y two fixed elements of
X. We define the following mappings:

nx, y" ---+ +, nx, y(t) --Ilx q- ty[I,

Vx, y" ]1\{0} -- ]1, Vx, y(t) IIx -- ty[I Ilxlt

We shall list here some pertinent properties of the mappings n and v.
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PRO’OSITION 2.1 Let x, y be fixed in X. Then

(i) nx, y is convex on ;
(ii) nx, y is continuous and has one sided derivatives at each point of It;
(iii) If x, y are linearly independent, then

d+nx, y(t) (y,x+ty)s tE (2.1)
dt Ilx + tyll

and

d-nx,y(t) (y,x At- ty)i
E . (2.2)

dt [Ix + tyll

Proof (i) is well known; (ii) follows from the convexity of n x, y

[6, Proposition 5.5.17].
(iii) Let t. Then

d+nx,y(t)
dt

and relation (2.1) is proved.
Equality (2.2) is proved in a similar fashion.

Remark 2.2 In the case of a normed linear space, the graph of the
mapping n x, y for fixed linearly independent vectors x, y is depicted in
Figure 1. The mapping is convex, but may not be strictly convex; this is
suggested by drawing the graph in a dashed line.

In the case of an inner product space, the mapping Vx, y is strictly
convex and attains a unique minimum at-the point to=-(y,x)/lly]l 2
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equal to

(llxll=llll= -(y,x)2) /2

Indeed, n’ (t) 0 if and only if t- to andxy

x,(to) x
(y,x)y (llxll21lYll 2 -(y,x)2)/2

The graph of nx, y for the case ofan inner product is depicted in Figure 2.

The mapping Vx, y has the following properties.

THEOREM 2.3 Let x, y be fixed in X. Then:

(i) Vx, y is increasing on N\{O};
(ii) Fx, y is bounded and

for all N\{O}; (2.3)
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(iii) We have the inequalities

(y, x + .y)+ < (u) <
Ilx + uyll Vx’y

(Y,X)i for all u < O,

(y,x-- tY)i > (t) >IIx + tyll Vx’y
(Y,X)s

for all > O,

(2.4)

(2.5)

assuming that x, y are linearly independent.
(iv) We have the limits

lim Vx, y(u)--IlYll, lim Vx, y(t)- Ilyll (2.6)
--00

and

lim Vx, y(U) -(Y’X)i lim Vx, y(t)
(y,x),, (2.7)

u-O- Ilxll to+ Ilxll
assuming that x O;

(v) Vx, y has one sided derivatives at each point oflR\{O} and, fx, y are

linearly independent, then

d+vx, y(t) [ (y,x + ty). ]dt t IIx / tyll nx,(t) / Ilxll (2.8)
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and

d-vx,y(t) [ (y,x+ty)i
dt t- x + tyll nx,(t) + Ilxll

for all E \{0}.

Proof (i) Since nx, y is convex, the mapping

Vx, y(t)
n x,y(t) n x,y(O)

is known to be increasing on R\{0} [6, Lemma 5.5.16].
(ii) By the triangle inequality for the norm we have

IIx + tyll- Ilxll IIx + ty- xll Itl Ily[I, x,

(2.9)

from which (2.3) follows.
(iii) Let u < 0. Then, by the Schwarz inequality,

(x, x + Uy)s Ilxll IIx + uyll,

From the properties of semi-inner product (-, ")s we obtain

(x, x + y) (x + uy- uy, x + uy)

IIx + uyll 2 + (-uy, x + Uy)s

--IIx / uy[I 2 u( y, x / Uy)s,

and so, by the previous inequality,

Ilx + uyll 2 u(y, x + uy) [[x[I Ilx +

for all u < 0, from which we get

Vx, y(bl) IIX -1- blyll [IXll > y, X -I- blY)s

’ IIx +’Yll
and the first inequality in (2.4) is proved.
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By the Schwarz inequality,

Ilxll IIx + uyll (x + uy,

for all u < 0. A simple calculation shows that

(x + uy, x), Itxll 2 + (uy, x), Ilxll 2 u(-y, x), Ilxll 2 + u(y, x)i

for all u < 0, and thus the above inequality gives

Ilxll ]Ix-+- uYll Ilxl] 2 u( y,x)i, u < O,

from where we get

for all u < 0, and the second inequality in (2.4) is also proved.
Inequality (2.5) is proved analogously.
(iv) We have

The second limit in (2.6) is proved similarly.
Now let us observe that

lim Vx,(t) lim IIx + tll.,,2 IIIl,,x,, 2

t-o+ t+o+ 2t

(Y,X)s

2
,--+o/ Ilx + tyll + Ilxll

for all x X\{0}.
The second limit in (2.7) is proved similarly.
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(y,

FIGURE 3

(v) The fact that Vx, y has one sided derivatives at each point
E R\{0} is obvious. Let us compute the one sided derivatives:

and relation (2.8) is obtained.
Identity (2.9) is established similarly.

Remark 2.4 In the case of a normed linear space, the graph of the
mapping vx, y is depicted in Figure 3. The dashed line suggests that the
convexity of the mapping is not known.
Note that if the space (X, [1"11) is smooth at x, then (y, x). (y, x)i.
The lines v--]IYll and v -I]Yl] are asymptotes to the graph as zx

and -x, respectively.

3 THE CASE OF INNER PRODUCT SPACES

We address ourselves to an important question whether Vx, is convex

(concave) by considering the case’ when (X,]I.II) is an inner

product space. In this case the following proposition holds.
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PROPOSITION 3.1 If (X; (., .)) is a real inner product space and x, y
linearly independent vectors in X, then the mapping Vx, y is twice differ-
entiable on ]K\{0} with

n 2 (t)(nx,(t) -Ilxll)2 t2(y,x + ty) 2d2vx’y(t) x,y
E \{0}.

dt 2 t4n3x, y(t)

Proof If (X; (., .)) is an inner product space, then Vx, y is differentiable
on R\{O}, and

dvx’y(t) [ (y’x) + tllyl]2
at =t- -nx, (t)+,(t)

The second derivative of Vx, y also exists, and

d2vx, y(t) I
dt 2 t4n2x, y(t

where I= Ix, y(t is calculated as follows:

d ( 2 2 2 ()+ ilxllnx,(t))t2nx,(t)I-- t(y, x) + Ilyll n

(t(y,x) + t2llyl 2 n 2 (t) + Ilxllnx, (t))
d

x,y -t (t2nx, y(t))
((y, x) / 2tllyll 2 2nx, y(t)nx,y(t) /lxlln’x,y(t))t2nx, y(t)

2-(t(y,x) + t2llyll 2 -n2x, y(t) -t- [Ixllnx, y(t))(2tnx, y(t) + nx, y(t))
t2(y,x)nx, y(t) + 2t3llyll2 2n2nx, y(t) 2t x,y(t)nx, y(t)
+ t21lxllnx, y(t)nx,y(t)’ 2t2(y,X)nx, y(t) 2t3]ly] 2nx,y(t)

2+ 2tn3x, y(t) 2tllxlln 2x,y(t) t3(y,x)nx, y(t) 4 Yll nx, y(t)
2 2 (t)- t2llxllnx, y(t)ntx, y(t)+ n x, y(t)nx, y

-t2(y,x)nx, y(t) t2n 2x,y(t)nx,y’ (t) + 2tn 3x,y(t) 2t[lxlln 2x,(t)
-t3(y,x)n’x,y(t)- t411yll2n’x,(t)
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-tZ(y,x)nx, y(t) + 2tn 3x,y (t) 2tllxll n2x,y(t)

t2n2 (y,x) / tllyll 2 t3(y,x (y,x)+ tlly[I
x’v (t)

nx, y(t) nx,(t)

t4[lyll 2 (y,x) + tllYll J

nx, y(t) nx, y(t)

where

j__t:Z(y,x)n2 4 n y(t)(y,x,y(t) + 2tnx, y(t) 2tllxllnx, y(t) 2
x, x)

2 2t3nx, y(t)llyl[ (y,x)2 2t41lyl[2(y,x) tS[ly[I 4.

But

t[ y[14 2t4[ Yll2(y,x t3(y,x)2
_t3(tllyll 2 + (y,x)) :2 _t3(y,x + ty) :2,

and

2 (t) 22tn4x, y (t) 2tllxlln 3x,y(t) 2t(y,x)nx, nx, y(t)llyll 2

tn2x, y(t)(2n2x,y (t) 211xllnx, y(t) 2t(y,x) t2l yll 2)
tn 2 y(t)(n 2 (t) + I[x / tyl[ 2 2l[xllnx, y(t) 2t(y,x) t211yll 2)x, x,y

tnx, y x, y(t) / Ilxl12 + 2t(y,x) + t2 IlYlI2 2llxllnx, y(t)
2t(y,x)- tZlly][ 2)

tn 2 (t)(nx, y(t)- Ilxll) 2x,y

In conclusion, for each E IR\{0} we get

devx, y(t) n 2 (t)(nx, y(t) -[Ixll)2 t2(y,x + ty) 2’ (3.)=t
dt 2 t4n3x, y(t)

In the case that the vectors x, y are orthogonal, the preceding
proposition gives information about the convexity and concavity of Vx, y.

PROPOSITION 3.2 IfX, y are nonzero orthogonal vectors in an innerprod-
uct space (X; (., .)), then the mapping Vx, y is strictly convex on (-ec, O)
and strictly concave on (0, o).
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Proof By the preceding proposition we have

x,cl2vx’y(t) Y

dt 2 t4nx,y(t

where

2
Cx, yCt) := nx,Ct)(nx,(t) -Ilxll) 2 t2(y,x + ty) 2

[nx, y(t)(nx, y(t) Ilxll) t(y,x + ty)]
[nx, y(t)(nx,y(t)- Ilxll)/ t(y,x + ty)].

As x, y are linearly independent (being orthogonal and nonzero), we
have by (2.4) and (2.5) that

(y, x + ty)
< IIx + emil- Ilxll

IIx + tyll
if t<0

and

y, x + ty)
> [Ix + tyll Ilxll if > 0;

Ilx + tyl[

in both cases we have

If x _1_ y, then (x, y) 0 and IIx + tyll Ilxll for all E R. Then

nx,(t)(nx, y(t) -Ilxll) + t(y,x + ty)

IIx + tyll(I x + tyll- Ilxll) + t211yll 2 > 0.

Consequently v,y(t) > 0 if E (-oc, 0) and Vttx, y(t) < 0 if (0, oe), and
the proposition is proved.

Remark 3.3 If it is assumed that X is an inner product space and x, y
are nonzero orthogonal vectors in X, then the mapping Vx, y is strictly
increasing in R\{0}, strictly convex on (-, 0), and strictly concave
on (0,

It can be extended by continuity to all of IR as

lim Vx, y(t) -(y,x)/llxll- o
O
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in view of equation (2.7). In this case the graph passes through the
origin; it is depicted in Figure 4.
We note that the lines v= I]Yll and v=-l[y[[ are asymptotes for
oe and -oe, respectively.

APPLICATIONS TO THEORY OF
INEQUALITIES IN ANALYSIS

The results of the preceding sections can be used to improve on some
classical theorems of theory of inequalities in analysis, such as the
Cauchy-Buniakovski-Schwarz inequality for sums and integrals,
H61der’s inequality for sums and integrals, and other.
The following proposition which follows from Theorem 2.3 gives an

improvement on the Schwarz inequality in normed linear spaces.

PROPOSITION 4.1 Let x,y be two linearly independent vectors in a

normed linear space (X, [[.[[). Then the following inequalities holdfor all
u<0< t:

Ilxll(y,x + uy)i < [Ixll(y,x + .y)-Ilxllllyll
x/uyl IIx/uyll

< ix I(llx + ull- Ilxll)
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(4.1)

We give some concrete examples of the preceding proposition.

Example 4.2 Let gl(R):-- {x (xi)ier[ _,i=l[xil < c} and
x, y E gl(A). Then the following inequalities hold for all u < 0 < t:

let

Z [Yil <-- Z sgn(xi + Yi)Yi Z lyil
xi-k-tiyi 0 xi+tlyi 0

<- Z sgn(xi + uyi)Yi + Z lYil
Xi-l-tgyi 0 Xiq-tgyi 0

b/
i=l

<- Z sgn(xi)Yi- Z
xiO xi=O

xiO xi=O

i=1

xiql-tyi 0 xi--gy 0

_< sgn(xi/tyi)y / lyil
Xi-t-ly 0 Xint-tyi 0

-< I il.
i=1

(4.2)

This follows from (4.1) taking into account that in gl(R) we have [4]

(x’Y)i-- il lYil Z sgn(yi)xi-- Z IXi[
"= Yi :/= 0 Yi 0
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and

(x,Y)s i lYi[

_
sgn(yi)xi + 7 Ixil

"= Yi k 0 Yi 0

where sgn(t) -Itl/t for =/= 0.

Example 4.3 Let x,y be two linearly independent elements of
2 OO} If < 0 < t, the followinge2(]) {X (Xi)iENI i=1 Xi < U

inequalities hold"

xiZy2
i=1 i=1

< _i=lX2i
1/2

-i=l (Xi nt- uyi) 2
i=1

yi(xi -Jr- uyi)

<__ (Xi q" uyi)2 X X U

i=1 i=1 i=1-- Z xiYi
i=1

<_ xi + tyi) 2 x2i x2i
i=1 i=1

[ --T-- x/2 1 1/2

-< LET=I (X
_

tyi)2J ,=1 yi(x, + ty,)

i=1 "=

This follows from (4.1) applied to the inner product (x,y)-
i xiYi.

Example 4.4 Let (f*, A, #) be a measure space consisting of a set f, a
a-algebra ,A of subsets of and a positive measure #, and let p > 1. If
LP(f) is the Banach space of all real valued functions on f,, p-integrable
with respect to #, then it is known [7] that

lim(llx + tyllp- [IXllp)/t- Ilxl[p-p Ix(s)lp-lsgn(x(s))y(s)dlt(s)"
t--+ O
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Then

[y,X]p :-- lim
t--+0 2t

IlxllZp-p Ix(s)[p-lsgn(x(s))y(s)dlz(s),

where x, y E LP().
Let x, y be linearly independent elements of LP() and u < 0 < t.

Applying inequality (4.1) to the semi-inner product [., .]p (., ")i (’, ")s,
we obtain the following inequalities:

(1y(s)[Pdt(s))
1/p

< fct IX(s) + uy(s)Ip-1 sgn(x(s) + uy(s))y(s)d#(s)

(f Ix(s) + uy(s)lPd(s)) <p-/p

< Ix(s)]p-sgn(x(s))y(s)&(s)
( Ix(s)lP&(s))

< Ix(s) + (s)lV-sgn(x(s) + (s))y(s)&(s)

]y(s)lP+(s) (4.4)

We give further applications of the previously obtained results. First
we have the following proposition.

PROPOSITION 4.5
hold:

Let a, b IR with a < b. Then thefollowing inequalities

’-( feII x -- 2 -]" b)Y[I <- (b a)- I]x + tyl[dt

!(a !(]lx + ayl[ + [{x +<1/2Illx+2 +b)Yll+2
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< -( IIx + yll + IIx + y[I)
<_ Ilxtl + 1/2(11 + Il)llyll. (4.5)

Proof The mapping f: , f(t)’-]Ix / ty[I, is convex on . We
deduce (4.5) by using properties of norm and the following Hermite-
Hadamard’s inequality for convex functions [5, p. 10]:

s( + )_< Sa1/2(a ) (-a)-1 i()a

<_ 1/2[f(1/2(a + b)) + !(7(a)2 +f(b))]
<_ 1/2(f(a) +f(b)), a < b, a, b E ].

PROPOSITION 4.6 Let a, b e , 0 < a < b. The following refinement of
the Schwarz inequality holds:

Ilxll L(Y’X)s <- b- a
Vx, y(t)dt

2 [(I a+bll IIx+ayll+llx+byll.)<-, x+. y + -Ilxll-a+b 2 2

2[.llx/ayll+llx/byll Ilxlll ilxi-a+b 2

<_ Ilxllllyll (4.6)

for all x, y X.

Proof We can apply ebyev’s inequality [5, p. 239] to the mapping
Vx, y, which is increasing on [a, b], to obtain

Vx, y(t)tdt >_ Vx, y(t)dt tdt,

which is equivalent to

b

(b ) (llx + tyll- Ilxll)dt _>
b 2 a 2 Lb

2 Vx, y(t)dt,
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that is,

Vx, y(t)dt <_ IIx + ty ]]x
b-a a+b b a Ildt- II,

By the preceding proposition,

b a IIx + tylldt < - x+,2,y + IIx + all + I[x + yll]
2

a +b< [Ix +,ayl[ + IIx /byll < Ilxll / 2 Ilyll
2

and then

b-a Vx, y(t)dt

-a+b +llx+ayll+[lx+by[I)2 -[Ixll I
2 [llx + ayll + IIx + bYll [Ix[I] < Ilyll

-a+b 2

and (4.6) is proved except for the first part which follows from
Proposition 4.1.

Remark 4.7 The inequality

[b Vx, y(t)dt <
a + b[g IIx + all + IIx + byll)

is equivalent to the following interesting inequality for the mapping
lx, yl

fb aVx (a)+bvx (b)
b aJa Vx,y(t)dt< ’Y ’Y O<a<b.

a+b
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Remark 4.8
way that

If we assume that a < b < 0, then we prove in a similar

IIxll b(Y’X)i >- b a Vx, y(t)dt

2 [( a+b ][x+ay[l+[,x+by][) 1> x/ y / -Ilxll Ilxll-a+b 2 2
2 [.,,x+ay,,+,,x+by,, ,[x,[]l,xl-a+b 2

>_ -Ilxllllyll (4.7)

for all x, y X.
If (X; (-, .)) is an inner product space, the mapping Vx, y is strictly

convex in (-oc, 0) and strictly concave in (0, ec) provided that x, y are
orthogonal and nonzero. The following proposition holds.

PROPOSITION 4.9
xC-0y.

Let (X; (., .)) be an inner product space and let x I y,

(i) If 0 < a < b, then

2 +2!(a + b)yl[- Ilxl[) > fa
b IIx + tYll- Ilxll dt

a + b(l[x b a

1[ 2 1(a>- a -i- b (llx +2 + b)Yl[- Ilxll)

Ilx + ayl[- Ilxll / [ix / byll- IIx[I]+ 2a 2b

l [llx / ay[I- Ilxll / [ix / byll- Itxll I > o;->,., a b

(ii) If a < b < O, then the reverse inequalities hold.
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