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The yon Neumann-Jordan (NJ-) constant for Lebesgue-Bochner spaces Lp(X) is deter-
mined under some conditions on a Banach space X. In particular the NJ-constant for Lr(cp)
as well as Cp (the space ofp-Schatten class operators) is determined. For a general Banach
space X we estimate the NJ-constant of Lp(X), which may be regarded as a sharpened
result of a previous one concerning the uniform non-squareness for Lp(X). Similar
estimates are given for Banach sequence spaces lp(Xi) (/p-SUm of Banach spaces Xi),
which gives a condition by NJ-constants of Xi’s under which lp(Xi) is uniformly non-
square. A bi-product concerning ’Clarkson’s inequality’ for Lp(X) and lp(Xi) is also given.
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1 INTRODUCTION AND PRELIMINARIES

Let X be a Banach space. The yon Neumann-Jordan (NJ-) constant for
X (Clarkson [4]), we denote it by CNj(X), is the smallest constant C for
which

< x +y 2 + x-y 2

<C
C 2 (11 x 2 + y 2)
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holds for all x and y in Xwith (x, y) (0, 0). A classical result of Jordan
and von Neumann [8] implies that _<_ Cyj(X)_<_ 2 for any Banach
space X; and X is a Hilbert space if and only if Cyj(X)- 1. Clarkson
[4] showed that Cyj(Lp)-22/min{p’p’}-l, lip + lip’- 1. Recently Kato
and Miyazaki [10,9] determined the NJ-constant for Lp(Lq) (Lq-valued
Lp-space), Sobolev spaces Wp(ft) [10], and for Cc(g) (the space
of continuous functions with compact support on a locally compact
Hausdorff space K; [9]). On the other hand, the authors [11,19] gave a
sequence of new results about the NJ-constant. In particular they
showed that: (i) X is super-reflexive if and only if X admits an

equivalent norm with NJ-constant less than 2 [11]; this was refined as

(ii) X is uniformly non-square if and only if Cyj(X) < 2 [19].
In this note we first state Clarkson’s procedure to obtain the NJ-

constant ofLp [4] in a generalized setting, and then we determine the NJ-
constant for Lebesgue-Bochner spaces Lp(X) under some conditions
on a Banach space X. As corollaries the NJ-constant for L,(Cp) as well as

Cp (the space ofp-Schatten class operators) is determined, and the results
in [4,9,10] stated above are also obtained. Next, we estimate Cyj

(Lp(X)) for a general Banach space X, which is best possible in several
cases. Previous results on uniform non-squareness (Smith and Turett
[17]) and super-reflexivity (Pisier [15]) for Lp(X) are obtained as imme-
diate consequences. Similar estimates are also given for Banach
sequence spaces lp(Xi) (/p-SUm of Banach spaces Xi), which implies in
particular that lp(Xi) is uniformly non-square if and only if sup Cyj
(Xi) < 2. As a bi-product it is derived that ’Clarkson’s inequality’ holds
in Lp(X), resp. in lp(Xi) if and only if it holds in X, resp. in each Xi (for
the former, see Kato and Takahashi [12]).

Let X be a Banach space and let __<p < oe. Let Lp(X) be the
Lebesgue-Bochner space on an arbitrary measure space (S, #), that is,
the space of all (equivalence classes of) X-valued #-measurable
functions f on S such that Ilfllz(x.-{fsllf(.)llpxd} /p (resp.

eSSsSUp IIf(’)llx) for __< p < oc (resp. p- ec) is finite. For X-K (reals
or complexes) Lp(K) is denoted by Lp as usual. The Banach sequence
space lp(Xi) is the/p-SUm of Banach spaces Xi’s, that is, the space of
all sequences x= {xi} with xi Xi and [IX[Ip { -/__ [Ixil[ p } /p< oc (el.
e.g., [161).
A Banach space X is called (2,)-convex, e>0, provided

min{l[x +yl], I[x-yl[} <= 2(l-e) whenever [[x[I _< 1, [[Y[I -< (cf. [20,51).
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X is called uniformly non-square if it is (2, e)-convex for some e > 0 ([6];
cf. [1]). X is said to be super-reflexive ([7]; cf. [1,20])if any Banach space
which is finitely representable in X is reflexive (a Banach space Y is said
to be finitely representable in X when any finite-dimensional subspace
of Y can be found in X, with an approximation as good as one wants).
It is well known that uniformly convex spaces are uniformly non-
square, and uniformly non-square spaces are super-reflexive; super-
reflexive spaces are just those uniformly convexifiable (cf. [1,7,20]).

Let

Let 12(X), 1<= r, denote the X-valued/r2-Space. In the following,
pr, qr, r,.., denote the conjugate numbers ofp, q, r,...

2 VON NEUMANN-JORDAN CONSTANT FOR Lp(X)

We start with the following lemma.

LEMMA Let < < 2.

(i) Cyj(X)- 22/t-1 if and only if

IIA"/22(X) 21/t; (2)

and hence CNj(X’)= CNj(X) (X’ is the dual space of X).
(ii) IfX contains a nearly isometric copy of l2t or 12t, (in particular if lt or

lt, is finitely representable in X), then Cyj(X)_>_ 22/t-1.

Proof (i) is readily seen by noting that the first and second inequal-
ities in (1) are equivalent; put x +y- u, x-y v.

(ii) Assume that for any A > there exists a two-dimensional subspace
X0 of X and an isomorphism T from It2 onto X0 such that

Ilxll Txll  ltxl[ for all x E It2.
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Then for any x, y in It2

IIx + yll 2 + IIx yl[ 2

2([Ixll + Ily[I 2)
/4CNJ(X),

whence CNj(/t2) <--_/4CNJ(X ). Letting A--+ 1, we have the conclusion
because CNj(/t2) CNj(/t2,) 22/t-1 ([4]; see also [10]).

Clarkson’s procedure to determine the NJ-constant for Lp [4] is
stated in a generalized setting as follows.

PROPOSITION 2 Let <= <___ 2 and let l/t+ lit’= 1. Assume that the
(t, t’) Clarkson inequality

(llx + yll" + IIx yllt’) 1/t’ 21/t’ (llxll’ + II.vII’) 1/’ (3)

holds in X, and X contains a nearly isometric copy of 12t or 12t,. Then
CNj(X)-- 22/t- 1.

Proof By (3) we have

IIA" Z22(X) Z(X)II

<_ 21/t-1/221/t’ 21/2-1/t 21/t, (4)

where /’s are identity operators. This implies CNj(X)22/t-1. The
opposite inequality follows from Lemma (ii).

Remark 3 In any Banach space some (t,t) Clarkson inequality,
<__ _<_ 2, holds. Indeed, as is easily seen, (1, ec) Clarkson inequality is

valid in any Banach space; and if <__s<t<=2, (t,t’) Clarkson
inequality implies (s,s’) inequality [18]. For some examples of Banach
spaces in which (t, ) Clarkson inequality holds with > we refer the
reader to [14].

By Proposition 2 we immediately obtain the NJ-constant for Cp as

well as some previous results.

COROLLARY 4 (i) Let _< p <__ o. Let min{p,p’ }. Then for X= Lp
(Clarkson [4]), Wp(f) (Kato and miyazaki [10]), and Cp, CNj(X)
22/t-1.
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(ii) CNj(Cc(K))= 2 (Kato and Miyazaki [9]).

Indeed, in Cp, the (t,t’) Clarkson inequality holds and lp is iso-
metrically imbedded into Cp (McCarthy [13]; cf. [14]).

LEMMA 5 (Takahashi and Kato [18; Theorem 2.3]) Let <__p<=cx
and let <__ <= 2. Assume that the (t, t’) Clarkson inequality (3) holds
in X. Then (s,s’) Clarkson inequality holds in Lp(X), where s=

min{t,p,p}.

THEOREM 6 Let < p <__ oe and <= <__ 2. Assume that the (t, t’)
Clarkson inequality (3) holds in X.

(i) If <_p <= or t’ <__p < ec, then CNj(Lp(X))--22 where r=

min{p,p’}.
(ii) If <__ p <= t’, and ifX contains a nearly isometric copy ofl2t or lZt,, then

CNj(Lp(X))-- 22/t- 1.

Proof (i) By Lemma 5 (r,r’) Clarkson inequality holds in Lp(X).
Since lp2 is isometrically imbedded into Lp(X), we have CNj(Lp(X))--
2z/r-1 by Proposition 2.

(ii) In this case (t,t’) Clarkson inequality holds in Lp(X) by
Lemma 5. Since X, and a fortiori Lp(X), is supposed to contain a
nearly isometric copy of It2 or lt2,, we have the conclusion.

By Theorem 6 we obtain the following.

COROLLARY 7 Let <=p, q <__ . Let min{p, q,p’, q’}. Then

(i) CNJ(Lp(Cq) 22/t-1
(ii) CNj(Lp(Lq))-- 22/t-; (Kato and miyazaki [10]).

Next we estimate the NJ-constant of Lp(X) with a general X (and
also that of lp(Xi)).

LEMMA 8
space X

Let <= p <__ 2 and let 1/p 4- 1/p’ 1. Then for any Banach

(i)
(ii)

2 2 .12p(X) _.+ 2 (X’)[[,][A lp(Lp(X)) -- lp,(Lp(X))[[ [[A lp,
2 (lp()(i))l[ sup/I[A’12p(Xi) ---+ 2IIA" l(lp(Xi)) lp, lp,(Xi)[}.
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Proof (i) Let us see the inequality ’_<’ (the converse inequality is

trivial). For anyfand g in Lp(X) we have

]If+ g[l’p(x) + Ilf- g[lPL’p(X)

-{: Ilf(t)+g(t)llPd#(t))
p’/p P’/P

< (: (,If(t)+ g(t),,P’+,lf(t) g(t)llP’) p/p’ d#(t))P’/P
by Minkowski’s inequality for p/p<= 1)

{:.<-_ I[A lp2(X) lp,2 (X)IIP’ (llf(t)llp / IIg(t)llp) d/z(t)

(x) ’( g"IlA lp lp,(X)[Ip Ilfl pL.<X> / IILp(X)

which gives the conclusion. The proof of (ii) goes in the same way.

THZORZM 9 Let <p < cx, and let t-min{p,p’}. Then

max{CNj(Lp), CNj(X)}

_
CNj(Lp(X))

_
CNj(tp) CNj(X)2It’, (5)

where 1/p + 1/p’- 1/t + lit’- 1.
Here one should note that CNJ(Lp)= 22/t-1, and hence the third term

in (5) is not bigger than 2.

Proof The left-hand inequality of (5) is trivial since Lp and X are
isometrically imbedded into Lp(X). We prove the right-hand inequality
of (5). Let <p =< 2. Let CNj(X)--22/r-, <= r =< 2. Then by Lemma

IIA .12(X) --+/22(X)11 21/r. (2)

On the other hand, we obviously have

IIA’Z(X) Z2(X)II 1. (6)

Put 0-2/p’ (0 < 0 < 1). Then by interpolation (cf. [2], esp. Theorems
5.1.2, 4.2.1 and 4.1.2) with (6) and (2), we have

[iA.lpZ(X __+ .,2 (x)ll < 1’-2/- 22/p’r,
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from which it follows that

2(Lp(X) 2 (Lp(X))] < 22/p’rIIA lp -- lp,

by Lemma 8 (i). Therefore, in the same way as (4), we obtain

IIA (p(X)) - 2(p(X)) -< 21/p-1/p’+z/p’r.

Put here 1/s- l/p-lip’ + 2/p’r (note that =< s __<p __< 2). Then we have
CNj(Lp(X)) <- 2:/s-1 2z/p-1 + 2(2/r--1)/p’ by Lemma 1, which implies the
right-hand inequality of (5). Let next 2 <p < oc and let CNj(X) < 2 (the
right-hand inequality of (5) is trivial ifp-o or CNj(X)- 2). Then X
is reflexive by Theorem 6 in [11] (or Theorem 8 in [19]) and hence X’
has the Radon-Nikodym property; therefore Lp(X)’-Lp,(X’).
Consequently we obtain the conclusion by Lemma and the preceding
case.

Remark 10 Both inequalities of (5) in Theorem 9 are reduced to
equality in the following cases; that is, we have:

(i) If CNj(X 1, then Cj(Lp(X))- Cyj(Lp).
(ii) If CNj(X) 2, then Cyj(Lp(X))- Cyj(X).
(iii) Ifp 2, then CNj(L2(X)) CNj(J() for all X.

Recall here the authors’ results in [19,11] which state that X is
uniformly non-square if and only if CNj(X)< 2 [19]; and X is super-
reflexive if and only if X admits an equivalent norm with NJ-constant
less than 2 [11]. Now, Theorem 9 implies that for <p<
CNj(Lp(X)) ( 2 if and only if CNj(X ( 2. Therefore we immediately
obtain the following well-known facts:

COROLLARY 11 Let <p < o.

(i) Lp(X) is uniformly non-square if and only ifX is (Smith and Turett
[17]).

(ii) Lp(X) is super-reflexive if and only ifX is (Pisier [15]).

Similar estimates as (5) in Theorem 9 are valid for lp(Xi).
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THFO,EM 12 Let <__p < oc and let t-min{p,p}. Then

max{CNj(lp), sup CNj(Xi) } <- Cyj(lp(Xi))

<= CNj(lp) Sup Cyj(Xi)2/t’. (7)

The proof goes in the same way as that of Theorem 9 by using
Lemma 8 (ii).
Remark 13 In inequalities (7), equality is simultaneously attained in
the cases where (i) sup Cyj(Xi)- or 2, and (ii) p- 2.

Now, uniform non-squareness dose not lift to lp(Xi) from Xi’s in
general (see [16], esp. p. 152). Giesy [5; Corollary 18] gave the following
condition under which this is the case: If Xi is (2, e)-convex and if

infei> 0, then lp(Xi) is uniformly non-square. Our next result might
provide a far simple condition which assures the uniform non-

squareness of lp(Xi). By Theorem 12, combined with the authors’
result in [19] stated above, we obtain:

COROLLARY 14 Let <p < ec. Then lp(Xi) is uniformly non-square if
and only if sup CNj (Xi) < 2.

Finally we see that Lemma 8 yields a bi-product concerning the (t, )
Clarkson inequality (1 _< < 2)

([ix + yllt’ + x yllt’)l/t’<= 21/t (llxl] + []y[l)l/. (3)

Since equality is always attained in (3) (put y- 0), the inequality (3) is
represented as

IIA- z(x) z,,(x)ll 21/’’.

Therefore (3) holds in X if and only if it does in the dual space X’ ([11,
Theorem 3]). Lemma 8 and these observations lead us to the following
theorem.

THEOREM 15 Let <= p <= cx and t- min{p,p’}. Then:

(i) (t, t’) Clarkson inequality holds in Lp(X) if and only if it holds in X
([12, Theorem 4] for the case <= p <= 2; cf. Lemma 5).

(ii) (t, t’) Clarkson inequality holds in lp(Xi) if and only if it holds in
each Xi.
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