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This paper is concerned with five integral inequalities considered as generalisations of an
inequality first discovered by G.H. Hardy and J.E. Littlewood in 1932. Subsequently the
inequality was considered in greater detail in the now classic text Inequalities of 1934,
written by Hardy and Littlewood together with G. P61ya.

All these inequalities involve Lebesgue square-integrable functions, together with their
first two derivatives, integrated over the positive half-line of the real field.
The method to discuss the analytical properties of these inequalities is based on the

Sturm-Liouville theory of the underlying second-order differential equation, and the
associated Titchmarsh-Weyl m-coefficient.
The five examples are specially chosen so that the corresponding Sturm-Liouville

differential equations have solutions in the domain of special functions; in the case of
these examples the functions involved are those named as the Airy, Bessel, Gamma and
the Weber parabolic cylinder functions. The extensive range of known properties of these
functions enables explicit analysis of some of the analytical problems to give definite
results in the examples of this paper.
The analytical problems are "hard" in the technical sense and some of them remain

unsolved; this position leads to the statement in the paper of a number of conjectures.
In recent years the difficulties involved in the analysis of these problems led to a

numerical approach and this method has been remarkably successful. Although such
methods, involving standard error analysis and the inevitable introduction of round-off
error, cannot by their nature provide analytical proofs; nevertheless the now established
record of success of these numerical methods in predicting correct analytical results lends
authority to the correctness of the conjectures made in this paper.
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1 INTRODUCTION

The inheritance discussed in this paper 1991 stems from a remarkable
result ofG.H. Hardy and J.E. Littlewood given originally in the seminal
paper [17] of 1932, and subsequently entered in the book Inequalities of
Hardy, Littlewood and G. P61ya [18, Chapter VII, Section 7.8].

THeOReM (Hardy and Littlewood) Iff [O, oc) R, iff andf’ are

locally absolutely continuous on [0, oc), and if both f and f" are in

L2[0, oe) then

f’(x)2 dx < 4 f(x)2 dx f’t(x)2 dx (1.1)

with equality if and only if, for some oe E IR andfor some p > O,

f(x) c Y(px), (x [0, oo)) (1.2)

where

Y(x) exp (-1/2x) sin (1/2xxf 1/27r) (x [0, oe)).

In this statement R represents the real field; the prime denotes dif-
ferentiation on R; L2[0, oo) represents the classical Lebesgue integration
space; absolute continuity (AC) is with respect to Lebesgue measure;
local on [0, oc) limits a property to all compact intervals of [0, oo).

True to the spirit of the book Inequalities three distinct proofs of this
result are given, see [18, Section 7.8].
Of these three proofs the second proof depends upon an elementary,

elegant and ingenious device which leads to showing that the number 4
in (1.1) is best possible, and that all cases of equality are given by (1.2)
with the extremal function Ydetermined by (1.3). However this method
seems not to lend itself to generalisation or extension to consider other
integral inequalities.
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The third proof in [18, Section 7.8] of (1.1) depends on an intricate
application of the methods of the calculus of variations to a singular
variational problem. The analytical difficulties in the proof suggest that
extensions and generalisations of this method will prove to be both
limited in extent and difficult to implement.
For a discussion on these two methods of proof of (1.1), in the light

of developments in the calculus of variations, see the extensive and
detailed survey on variational inequalities by Ahlbrandt [2].
The first proof of the inequality (1.1) in [18, Section 7.8] has sub-

sequently commanded considerable attention. This proof is inspired by
the methods of the calculus of variations but then takes on an

independence from variational techniques; this has led to extensions
of (1.1) which, by their form, the methods of variational analysis are

not designed to handle. It is this method of proof that has led, to quote
from [2, page 6], "to a fertile area of research".
An account ofrecent developments ofthe original Hardy-Littlewood

inequality (1.1) can be found in the survey article of Brown, Evans and
Everitt [7]. See also the book [20] of Mitrinovi6, Pe6ari6 and Fink in
which the Hardy-Littlewood type integral inequalities are considered
in a number of places in the text. The Hardy-Littlewood integral
inequality has been extended to infinite series; for a survey of the
properties and generalisations of the resulting series inequality see [6].
A catalogue of all known special cases (up to 1996) of the extensions

of the Hardy-Littlewood inequality, for both integrals and series, is

given in [3].
The inequality (1.1) is connected with the spectral theory of the

linear, ordinary differential equation

-y"(x)  y(x) (x {0, (1.4)

where A E C (the complex field) is the spectral parameter. The solutions
of this equation that lie in the space L2[0, oo) provide one method, based
on the first proof in [18, Section 7.8], to establish all the results quoted
in Theorem within a context that allows extensive generalisation.

In this paper we consider five special examples of an extension of the
inequality (1.1) based on properties of the differential equation

-y"(x) + (q(x)  y(x) (x [0, oo))

of which (1.4) is a special case. In this equation



4 W.D. EVANS et al.

(i) the coefficient q:[0, cx)R and satisfies the integrability
condition

q Loc[0, c), (1.6)
(ii) the parameter - and is the translation parameter that allows

any point on RcC to be considered as the origin of the spectral
A-plane.

The extension of the Hardy-Littlewood integral inequality then
takes the form, for allf D,

(fo-{f’(x)2 + (q(x) 7")f(x)2} dx)
2

< K(’r) f(x)2 dx {f"(x) (q(x) 7-)f(x)}2 dx (1.7)

where:

(i) the domain D is defined by

D := {f: [0, ) : f,f’ aCo[0,)

and

f,f" qf E Lz[O, xz)}, (1.8)

(ii) the notation on the left-hand side of (1.7) indicates that the
integral may only be conditionally convergent,

(iii) the number K(-) depends upon the shift parameter -.

Properties of the inequality (1.7):

(i) The inequality can be considered if the integral on the left-hand
side is well-defined in R for all fE D; a sufficient condition for
this requirement to hold is that the differential expression

-f" + (q- -)f (1.9)

is in the strong limit-point condition at xz in the space L2[0, x);
for the technical details of this condition see [9, Section 3]; there
is a large literature devoted to sufficiency conditions for strong
limit-point to hold; the strong limit-point condition is independ-
ent of the shift parameter -, all the five examples of (1.7) to be
considered in this paper satisfy the strong limit-point condition.
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(ii) With the strong limit-point condition assumed to hold the
inequality is said to be valid, for -E R, if (1.7) holds, for all

fE D, for some positive number K(-); the notation is then adopted
that K(-) is the best possible number, i.e. the smallest number, for
which the inequality is valid.

(iii) If the inequality is not valid then the notation K(-)= oc is used.
(iv) If the inequality is valid then any element ofD that gives equality in

(1.7) is termed a case of equality; the null function is always a
case of equality but there may or may not be any non-null cases
of equality.

(v) A weak case of equality is a non-null element f D such that
equality holds in (1.7) by virtue of f being a solution of the
differential equation (1.5) when A 0, i.e.

’o{f

’, (x) (q(x) -)f(x)}2 dx 0

and

{f’(x)
2 + (q(x) 7-)f(x)2 } dx O.

Such examples are known to exist but the term weak is used since
these cases will not, by their nature, determine or verify the value of
the best possible number K&).
A normal case of equality is one in which

+ (x- 7-)f(x)2 } dx > 0

and

{f’’ (x) (x -)f(x) }2 dx > 0

in which case, since f is not null,

+ (x-

X f(x)2 dx {f"(x) (x- 7-)f(x)}2 dx
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The analysis of any particular inequality (1.7) consists of: (i) trying to
determine if the inequality is valid or invalid; (ii) if valid then to
determine or characterise the best possible number K(-); (iii) and then
to determine or characterise all the corresponding cases of equality.
The inequality (1.1) of Hardy and Littlewood is an example of the
general inequality (1.7) for which it is possible to give complete answers
to all these three stages.
The main analytical tool involved in the analysis of the inequality

(1.7) is the Titchmarsh-Weyl m-coefficient, see [21, Chapters II and
III]. For the introduction of the m-coefficient into the theory of this
inequality see [9,13,14]. For a number of special results that have
influenced the content of this paper see [4,5,11,15,16].
The analytical problems for establishing the validity, the character-

isation of the best possible number K(-) and all the cases of equality of
(1.7), can be very demanding. For this reason numerical techniques
have been established to seek out reliable information on the possible
answers to these problems. These numerical techniques are now so well
tried and established as to inspire confidence in their findings. Results
of this form are given in later sections of this paper. For a survey of
these numerical methods see [7, Section 4].
A detailed analysis of general inequalities of the form (1.7), with a

number of examples, is given in [9]; an overall view of the analytical and
numerical techniques required is given in [7]; a catalogue of all integral
and series inequalities of this Hardy-Littlewood type is to be found in
the recent survey paper [3].
The five special cases of (1.7) that form the content of this paper are

given by the following determinations of the coefficient q:

1. q(x) x

2. q(x)=-x
3. q(x) x

4. q(x) =-x2

5. q(x) 1/2(x + 1) -2

(x [o,

The reason for making this choice of coefficients is that the resulting
differential equations (1.5) all have solutions that can be represented
in terms of known special functions of mathematical analysis. This
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explicit information allows detailed mathematical and numerical anal-
ysis of all the five cases of (1.7) given by the specific q cases of (1.10).
The properties of the special functions required are all given in the
handbook [1].
The parameter - plays a very significant role in the properties of the

general inequality (1.7); the validity of the inequality for one value of
the shift parameter - gives no information about the inequality for
other values of this parameter. To illustrate this phenomenon the results
for the Hardy-Littlewood inequality (1.1) are given; with the addition
of the shift parameter - this inequality takes the form

(f0{fP(x)9- -f(x)2} dx)
2

<_ K(’r) f(x)Zdx {f" (x) + "rf(x) }2 dx (1.11)

wherefcontinues to satisfy the conditions given in Theorem 1. Then it
may be shown, see [9, Section 9, Example 2], that

K(-) oo (- E (-oo, 0)) ]
K(0) 4 with equality as given by (1.2) and (1.3)
K(-) 4 (- E (0, oo)) with equality given only by the null function.

(1.12)

For the purposes of this Introduction one result for each of the five
cases of (1.10) is given below:

1. If q(x)= x2 and ---1 then K(1)--4 and there is equality if and
only if

f(x) oexp(-1/2x2),

in which case both sides of the inequality are zero even if c :/: 0.
2. If q(x)=-x and ---0 then K(0)---4 and there is a continuum of

cases of equality similar in structure to the functions for the Hardy-
Littlewood case given by (1.2) and (1.3).

3. If q(x)-x and -= #0, where #o is the first negative zero of the
derivative of the Airy function x H Ai’(x) (x ), then K(#0)=4
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and there is equality if and only iff(x)= cAi(x-#0) in which case
both sides of the inequality are zero.

4. If q(x)---x 2 and r=0 then K(0)= 4 + 2x/ with only the null
function as a case of equality.

5. If q(x) 1/2(x + 1)-2 and r 0 then K(0) + oo and the inequality is
not valid.

In Section 2 some details of the theory of the m-coefficient and the
role the coefficient plays in the analysis of the general inequality, are

discussed. The results of this analysis for each of the five cases of the
coefficient q are given in Sections 3 to 7 respectively.

2 THE TITCHMARSH-WEYL m-COEFFICIENT

We first consider the case of the differential equation (1.5) when the
shift parameter r 0.

Consider then the equation

-y "(x) + q(x)y(x) Ay(x) (x E [0, oo) and A E C), (2.1)

where the coefficient q satisfies the basic conditions given in (1.6). This
is the Titchmarsh equation considered in detail in the book [21]; see in
particular Chapters I to III.

Let 0, :[0,) C C be solutions of (2.1) determined by the
initial conditions

0(0, A) 0 0’ (0, A) /
(0, A)--1 ’(0, A)--0

(A C); (2.2)

then 0 and have the properties, see [21, Chapter II],

1.0(., A) and (., A) are solutions of (2.1) on [0, oo) for all A C
2. O(x, .) and (x, .) are holomorphic functions on C for all x

Define C + := {k C: Im(k) X 0}.
Now let the coefficient q be chosen so that the differential equation is

in the strong limit-point condition at oo in L2[0, oc); then 0 and qo have
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the additional property, see [21, Chapter II],

0(., A) =/= L2[O, oc) and g)(., A) - L2[O, oc) for all A (2.3)

However the general theory shows, see [21, Chapter II], that there exists
a unique pair of analytic functions {m +,m_} with the properties"

1. m+/-’C+/- --+C+/-
2. m +/- is holomorphic in C +/-

3. N---(A) m:F(A (A 6 C+)

such that, in contrast to the result (2.3),

0(.,A) + m+(A)99(-,A) E L2[0, oc) (A E C+/-). (2.4)

Properties 1, 2, 3 above imply that the pair {m +, m_} is a Nevanlinna
(Herglotz, Pick, Riesz) function on C. Notwithstanding property 3, m +
may or may not have an analytical continuation across R c C; even if
this continuation exists m_ on C_ may or may not be the continuation;
some of these possibilities arise in the cases of the m-coefficient in this
paper, and reference is made at appropriate places in the following
sections.
For the Nevanlinna function {m +, m_} define m C\R --+ C by

m(A):= m+(A) (A C+).

The m-coefficient was introduced by Titchmarsh in 1941 on the basis
of work by Weyl in 1910.
As an example of these results and properties we have for the dif-

ferential equation (1.4)

O(x, A) sin(xv/)/

m(A) m+(A) i/v/
,x) cos(xv/X)

(a c\[0,

and

O(x, A) + m(A)p(x, A) -i exp(ixv/)/x/,
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all for A E C\[0, oe). In these formulae the function v/:" C C is
defined by, cutting the A-plane on the real axis from the origin 0
to +,

A-pexp(hp) with p>0 and 0_<b<27r (2.5)

and then

x/ pl/2 exP(1/2i), (2.6)

so that

Im(v/) > 0 for all (2.7)

To indicate how the m-coefficient is used to assess the properties of
the inequality (1.7) the following given properties and definitions are

required:

1. Let the line segments L + (b) for p (0, 1/27r] be defined by

L+(@ {pexp(ib)" p (0,
L_(b) := {pexp(ib + ir)’p (0, cx)}.

2. Let the arguments 0 + [0, 1/27r] be defined by

0+/- "-inf{0 E (0, 1/2;r]" .for all b [0, 1/2r]
_> 0 (a

3. Let the argument 00 [0, 1/2;r] be defined by

00 max(0+, 0_).

4. Let the real number sets E+ c_ (0, oe) be defined by

E+/- := {p (0,)" A L+/-(Oo) and Im(A2m+/-(A)) 0}.

5. Let Y+" [0, oc) x (0, oc) R be defined by

Y+/-(x; p) Im(A[0(x, A) + m+/-(A)(x,

(x E [0, oc) and A L+(Oo)).
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Then the following theorem holds:

TI4EORF,M 2 Let the coefficient q be given satisfying q E Lloc[0, ec); let
the differential expression -f" + qfbe in the strong limit-point condition
at +oc in L2[0, c); let the domain D C L2[0, cx) be defined as in (1.8); let
the above definitions of, and concerning the m-coefficient hold; then:

1. in all cases Oo (0, 1/27r], i.e. Oo > 0 and at least one of 0 + > O, O_ > 0
must hold;

2. the inequality on the domain D

K f(x) dx {f"(x) q(x)f(x)} dx (2.8)

is valid if and only if

Oo (0, ), i.e. 00 ; (2.9)

3. (2.9) is satisfied then the best possible number K in the inequality
(2.8) is given by

K= (cos(00))-2; (2.10)
4. (2.9) is satisfi’ed then all cases ofequality in (2.8) are given by one of

the three mutually exclusive cases: (i)f=0, (ii) the weak case of
Section above, i.e. there existsf D withf 0 and -f" + qf= 0 on

[0, ) with either f(O)=O or f’(0)=0 (but not both), in which case

both sides of(2.8) are zero, (iii) the normal case ofSection above, i.e.

E+ U E_ is not empty andf6 D is defined by

f(x) := p) (x [0, p e+
with 6 N{0}, in which case both sides of (2.8) are not zero.

Proof See [9, Sections 6 and 7].

In the general case of the shift parameter - the m +-coefficient above,
now for the differential equation (1.5), is replaced by the m=(. :-)-
coefficient where, as a calculation shows,

m:(A -)=m=(A+-) (AC+and (2.11)
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The results of Theorem 2 above then apply to m+(. "r) in order to
characterise the general inequality (1.7).

Remark In the case when the differential equation (2.1) has special
functions as solutions it may be possible to obtain an explicit
expression for {m+,m_} in terms of these solutions. Given that the
equation is in the strong limit-point case suppose, from the properties
of the special solutions, that it is possible to find a solution of (2.1)

(., A) such that

(., A) L2[O, x:) (A (2.12)

then, using the initial conditions (2.2), a calculation shows that

(0, A) (A E C+/-). (2.13)m+/-(A) ’(0, A)

23 THE CASE q(x)--x

This example has the differential equation

--ytt(X) q- (X 2 "T’)y(x) /y(x) (X [0, OO))

and the associated inequality is

(j0.oo {f’ (x)2 + (x 2 "T’)f(x) 2 } dx

<_ K(7") f(x)2dx {f"(x) -(x 2 v-)f(x)}2 dx (3.2)

with domain

D {f" [0, oo) --+ JR: f, f’ ACoc[0, 00) and f, f"- x2f L2[0,
(3.3)

The equation (3.1) has solutions in terms of the Weber parabolic
cylinder functions, see [1, Chapter 19], and for a direct treatment [21,
Section 4.2]. A calculation shows that

(3.4)
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so that m_ and rn + are analytic continuations of each other and then rn
is a meromorphic function on C.
A full analysis of the consequences of Theorem 2 as applied to this

case is given in [12]. The results are here quoted in

THEOREM 3 Define the set

A := {2n + 1: n E N0 (0, 1,2,...)}.

The inequality (3.2) has the properties;

1. K(r) oo for all 7" {IR\A}.
2. The inequality is validfor all r A with details as follows:
(i) /f n 2p (p No) is even then

K(4p + 4 (pN0)

and there is equality if and only if

f(x) oe exp(-1/2x2)H2p(X) (x [o, oo))

where Hzp is the Hermite polynomial oforder 2p, and the weak case

(ii) of equality in Theorem 2 holds; E_(4p + 1)= E+ (4p / 1)= 0;
(ii) /f n 2p + (p No) is odd then

K(4p + 7) > K(4p + 3) > 4 (pEN0)
lim K(4p + 3) 4

p--+ oo

and there & equality if and only if either

f(x) o exp(-1/2x2)H2p+l (x) (x e [0,

and the weak case (ii) of equality in Theorem 2 holds, or

f(x) c Im(r exp(-iO)fi(x, 2n + rn exp(-iO)))

where is Weber’s parabolic cylinder function, and rn (0, 4),
jn C, On (1/2rc,rc) are well-determined numbers, and the normal
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case (iii) of equality of Theorem 2 holds; E_(4p+ 7)=( and

E+ (4p 4- 7) {r,}; there are asymptotic formulae:

3 (1)K(2n + 1) 4 + r2n 2 + O -and

6 (1)rn + 0 (n ---,
7r 2n -Proof See [12] for the analytical details of the proof; see also the

accounts in [9, Section 4] and [3, Section 4, Example 6].
This example was one of the first examples tested in the numerical

procedures discussed in [7, Section 4]; the numerical results make
accurate comparison with the analytical properties given in this
Theorem.

4 THE CASE q(x)---x

This example has the differential equation

-y"(x) (x + )y(x) ay(x) (x [0, )) (4.1)

and the associated inequality is

{f’ (x)2 (x 4- "r)f(x)2 } dx

<_ K(7) f(x)2dx {f"(x) 4- (x 4- 7)f(x)}2dx (4.2)

with domain

D {f" [0, oo) --+ JR: f,f’ ACoc{0, oo) andf, f" + xf L2[0,
(4.3)

The equation (4.1) has solutions in terms of Bessel functions of order

g, see [1, Chapter 10, Section 10.4]. This equation is strong limit-point
at cx in L2[0, cx) but in general the integral on the left-hand side of (4.2)
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is only conditionally convergent; for this result see [9, Section 3], and
for a more direct treatment [21, Section 4.13]. In this example the two
components of the Nevanlinna function m+ are not analytical
continuations of each other and are given by separate formulae

(A eC+)

here H(r) represents the Hankel-Bessel function of order u and type r

(r 1,2), and v/7 is the function defined in Section 2 above.
A full analysis of the consequences of Theorem 2 as applied to this

case is given in [10]. The results are here quoted in

THEOREM 4 For r 0 the inequality (4.2) has the properties;

and so

K(O) 4.

There is a continuum of normal cases of equality in respect of (iii) of 4,
Theorem 2

f(x) o Re(exp(-1/2rri)x/x + A HI’)((x + A>x/x + A))
(x e

with A p exP(1/2rri) and p
There are no weak cases ofequality in respect of (ii) of 4, Theorem 2.

Proof For details of the proof of this theorem see [10].

Remark For all other values of the shift parameter r there are no

analytical results presently available; however the numerical pro-
gramme outlined in [7, Section 4] is particularly successful in this
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example. The tested reliability of these numerical techniques leads to
making the following analytical conjectures:

1. The inequality (4.2) is valid for all -E R.
2. The best-possible number function K(.) is continuous and mono-

tonic decreasing on R.
3. K(-) > 4 for all - E (-oc, 0), and K(-) 4 for all - [0, oc).
4. lim_

_ K(-)=
5. There are no cases of equality for (4.2) for all - R\{0}, other than

the null function.

5 THE CASE q(x)=x

This example has the differential equation

-y"(x) + (x- )y(x) y(x) (x [0, ))

and the associated inequality is

{/’(x) + (x- )/(x)} x

_< K(-) f(x)2 dx {f"(x) (x- )f(x)}2 dx (5.2)

with domain

D {f: [0, oc) -+ N: f,f’ ACloc[0, oc)andf, f"- xfE L2[0, oc)).
(5.3)

5.1 The Differential Equation

The equation (5.1) has solutions in terms of Bessel functions of order 1/2,
see [21, Section 4.12]; these solutions are linked to the Airy functions
Ai(.) and Bi(.), see [1, Section 10.4].

For -=0 the m-coefficient can be constructed using the result (2.13).
From [21, Section 2.12] the solution that is small at + oc is given, in
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terms of the modified Bessel function K, by

(x [0, oc)) (5.4)

where terms such as (x- A) and (x- A) are taken to have arg 0 when
A ]R and x > A. If A R and x < A then it is shown in [21, Section 4.12]
that (5.4) can be written in the equivalent form

This last solution of (5.1) can be used to calculate the m= coefficient
from (2.13); this yields the formulae

This form of the m + coefficient turns out to be very inconvenient for
the application of Theorem 2 of Section 2 above; for this reason both
results in (5.5) and (5.6) are replaced by equivalent forms but using Airy
functions.

5.2 The Airy Functions

Firstly we replace (5.4) by the Airy function Ai; for details of this
function see [1, Sections 10.4 and 10.5]. Ai(.) is a holomorphic function
on C and is defined as a solution of the differential equation

w"(z) zw(z) (z C) (5.7)

with initial conditions at the regular point 0 given in [1, Sections 10.4.4
and 10.4.5]. The relationship between Ai(.) and the Bessel functions

J= is given by
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where ff -z and appropriate branches of the many-valued variables
are chosen; see [1, Section 10.4.15].
From (5.6) and (5.8) it may be shown that the small solution of

(5.1), with r= 0, as given by (5.4) or (5.5) has the form, apart from an
unimportant numerical factor,

(x, A) Ai(x- A) (x E [0, ) and A E C). (5.9)

Note that with Ai(.) holomorphic on C the solution given by (5.9) is
not troubled with decisions to be made concerning branch points.
An independent check confirms that the formula (5.9) gives an

exponentially small solution for fixed A and large positive values of the
variable x. For if A C and x is large enough then [arg(x-A)[ < 7r and
the asymptotic formula [1, Section 10.4.59] is valid to give

IAi(x A) I- O (exp(--lx A]))
O (exp(-x-))(x -+ oo).

If we now apply the formula (2.13) to ff given by (5.9) then we

obtain

Ai(-A) (A C \ R). (5.10)m+(A) Ai’(-A)

This result shows that m: is the continuation of rn + and that rn is a

meromorphic function on C. As in Section 2 we denote this single
coefficient by rn and note that it is real-valued at all points on where it
is holomorphic.
To apply the results of Theorem 2 of Section 2 above, it is necessary

to have information about the zeros and poles of rn as given by (5.10).
From the theory of the m-coefficient, see [9], it is known that the poles
and zeros of rn lie on the real axis of C.
From the general theory of the differential equation (5.1), see

[1, Section 10.4], or from the spectral theory properties of differential
operators generated by (5.1) in the Hilbert function space L2[0,
see [9], the following results are stated.
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THEOREM 5 (i) the Airyfunction Ai(.) has a countable infinity of real,
simple and strictly negative zeros, say {-#n n No}, with

0<nD <#n+lD (n No) and lim nD nt_oo, (5.11)
n

(ii) the Airyfunction Air(-) has a countable infinity of real, simple and
strictly negative zeros, say { N

--#n :n No}, with

0<nN <--n+l/
N (n N0) and lim #Nn +oc, (5.12)

(iii) the zeros of Ai(.) and Air(.) interlace with

N D (n NO).N < #D < #n+l < n+l0<n n (5.13)

Proof See the references cited above.

Remark The use of the superscripts N and D relates to the Neumann
and Dirichlet differential operators generated by the differential
equation (5.1) but this connection need not be further considered in
this paper.

COROLLARY The m-coefficient given by (5.10) has simple poles at the
set {#U: n N0} and simple zeros at the set {#El n N0}; at all other
points ofC the function is holomorphic but not zero.

Proof Clear.

COROLLARY 2 Define, for all x e [0, oo) and n e N0, the functions

O._Ai(x #9)nU(x) Ai(x # u) and El El (5.14)

Then

(i) {qOnN" n No} and {qon n No} are solutions of the equation (5.1)
N or #

9 respectively, for all n No.for -c ,
(ii) with the inequality domain D defined by (5.3)

U D and q nEl

Proof Clear.
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5.3 The Inequality

We are now in a position to state the inequality theorem for this case;
the form of the result is similar to the case discussed in Theorem 3 of
Section 3 above; we recall the notation that if the general inequality
(1.7) is valid then K(7-) is the best-possible number in the inequality.

THEOREM 6 The inequality (5.2) has the properties:

K(7-) +oofor all 7-

2. K(7-)- 4 for all 7- ({# U. n N} tO {# D. n No})
3. If 7" #

N for some n N0 then there is equality in (5.2)/f and only if

U [0,f(x) a Pn (x) (x oc));

here the weak case of equality in Theorem 2 holds, and E+(# u)_
E_

4. If 7" #
D
n for some n No then there is equality in (5.2)/f and only if

f(x) ap D (x) (X {0,

here the weak case of equality in Theorem 2 holds, and E+(# D)=
) =0.E-(#n

Proof This proof is given in several stages now to follow.

5.4 The m-coefficient

Since in this case the m-coefficient is meromorphic on C we use rn alone
as given by the formulae

Ai(-A) (A C\A) (5.16)m(A)
Ai’(-A)

where the set A c IR is defined by

A := {#N’n N0} U {#D’n N0} (5 17)

We have to consider the effect of the shift or translation 7" and so
define as in (2.11)

m(A) := m(A + 7") (A C), (5.18)
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and to this m-coefficient we apply the HELP criteria as given in
Theorem 2 of Section 2 above.
We first show that the behaviour of the terms q: Im(AZmr(.)) on the

lines L + (,b) for large values of Il can be made to conform to the criteria
provided that b is taken to satisfy the condition b E (1/2rr, 1/2rr).

This done it is sufficient to consider the criteria in a neighbourhood
of the origin 0 of the plane C; for the necessary compactness argument
see [14, Section 14]. Thus we apply the criteria to m in the neigh-
bourhood of 0, firstly for r A and then, secondly, for r E A.

5.5 Some Formulae

For any 7- IR define f: (-oc, 0) U (0, oe) x (0, 1/27r] -+ R by, see defini-
tions in Section 2 above,

fr(P, ) := im(/k2m(/ + r)) () L+(b))
+ Im(A2m(A + r)) (A L_(b)). (5.19)

Firstly, for p > 0 we have, using (5.16),

(p2e2iAi(-pei r..).)f(p, b) Imk. ai;(")ge *2- r)
p2 [e2iAi(_peie r)Ai,(_pe-i r)_e-ZiAi(_pe-i r)ai,(_pei

2ilAi’(-pei- 7-)12

and, secondly, for p < 0 in a similar calculation

(5.20)

p2 [e2iAi(pei _)Ai,(pe-i r)_e-2i,OAi(pe-i r)ai ’(pe if 7-)]
2ilAi (pe i, r)12

(5.21)

Here we have used the properties ?i(z)= Ai(e) and ,i’(z)= Ai’(e)
since the function Ai is real-valued on the real axis IR of C.

5.6 LargeValues of I)[
To settle the position when IA[ is large we make use of the asymptotic
formula for the m-coefficient m; this result takes the form, for
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each - E R,

’(me(A) m(A + -) + O(IX[) -1 (5.22)

where the O-term is uniformly valid for any region of C determined by

<arg(A)<_Tr-6 and 7r+6_<arg(A)<_27r- (5.23)

for any E (0,1/270. This result follows from [9, Theorem 10.1] or from
the asymptotic formulae given in [1, 10.4.59 to 10.4.62].

If the result (5.22) is inserted into the formulae (5.16) then we obtain,
for any (1/27r, 1/2 r] and any - R,

lim TIm(AZm(A+-))-+oo for AL+() (5.24)

and uniformly for [1/2r + e, 1/2r] with e E (0,-r).
Similarly we obtain, for any (0, 1/2r) and any - R,

lim q= Im(AZm(A + -)) -oc for A L+() (5.25)

and uniformly for [e, 1/27r e] with e E (0, 1/2r).
The results (5.24) and (5.25) show, in the notation of Theorem 2 of

Section 2, that 0+ [1/2r, 1/2r] and so we obtain

00 _> 1/27r. (5.26)

For the validity of the inequality (5.2) the results (5.24) and (5.26)
show that it is sufficient to consider the behaviour off, see (5.19), in
the neighbourhood of the origin 0 of C.

5.7 The Case When -is not a Pole or Zero of rn

This is the case when see, (5.17),

- A; (5.27)

these are the points for which m(.) is regular but not zero; it follows
from a general theorem [14, Section 15, Theorem 1] that the inequality
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(5.2) is not valid at such points. However it is interesting to see this
result following from the properties of the mapping f since, from
(5.20) and (5.21) respectively, we obtain for all bE[0,1/2vr], but in
particular for

From (5.27) it follows that

0 < [Ai(-r)Ai’(-r)l <

(5.28)

(5.29)

and so one of the two non-zero expressions (5.28) and (5.29) is negative
for all [1/27r, 1/27r); this implies that, in terms of the definitions given
before Theorem 2 of Section 2, 00-1/27r and so the inequality is not
valid; this result holds for all r A.

5.8 The Case When r is Either a Pole or Zero of m

This is the case when, see (5.17),

"r A; (5.30)

these are the points for which m(-) has a simple pole or a simple zero;
again it follows from a general theorem [14, Section 16, Theorem 1] that
the inequality (5.2) is valid at such points. However to complete the
proof ofTheorem 6 above, we have to obtain the best-possible numbers
for the inequality and to decide on the cases of equality, if any, for all
r A. Note that this condition implies that

either Ai(r) 0 or Ai’(r) O, (5.31)

but not both of these two functions are zero.
The numerical results reported in [7, Section 4] suggested that the

results given in Theorem 6 above hold and so the criteria given in
Theorem 2 are tested analytically on the lines L+(1/2vr).
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Returning to (5.19) we define F on R\{0} by

F(p) p-Zf(p, 1/2rr) (p E (-oc, 0) tO (0, (5.32)

From (5.20) and (5.21)

lim F(p) lim F(p) Ai(-r)Ai’(-’r)sin(-:r) 0
pO+ p- O-

(5.33)

using r E A and the result (5.31). Thus to complete the definition of F
we put F(0)= 0 and then F C(-oc, oc).
A calculation, using (5.20) and (5.21), and recalling (5.7) shows that

F’(p) Ai(-pe i/3 r)12rsin(1/2rr) (p (0,

and

F’(p) -IAi(pe i/3 r)lZrsin(1/2rc) (p (-oc,0)).

Since r >0, from r A, it follows that F is strictly increasing on
(-oo, 0)tO (0, oo) and so, with F(0)= 0, we obtain

F(p) <0(pE(-oo,0)) and F(p) > O ((p (O, oc)). (5.34)

From (5.32) and (5.34) it now follows that for all r A

f(p,1/27r) >O(p (-oe, O)) and f-(p,1/27c) >O((p (O, oc)) (5.35)

and so the criteria of Theorem 2 above are satisfied on the two rays
L_@r) and L + (rr); this implies that, again for r E A,

O_<_1/27r and 0+<

thus

00 _< 1/27r. (5.36)
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Taking together (5.26) and (5.36) we obtain

and this result is valid for all -E A. From Theorem 2 above it now
follows that for this example

K(-)=4 (-EA).

To complete the proof we note that the two results in (5.35) show
that

E_(-) E+(-) t3 (- A)

and so exclude the possibility of any normal case of equality. However
U. n N0) and {q z. n N0}, as defined in Theorem 5the solutions { n.

above, provide all the weak cases of equality as described in the
statement of Theorem 6.

26 THE CASE q(x)=-x

This example has the differential equation

-y"(x) -(x 2 + -)y(x) ay(x) (x [0, ))

and the associated inequality is

{/’(x) ( + -)/(x)} x

< K(7") f(x) 2 dx { f"(x) + (x 2 + "r)f(x)}2 dx

with domain

D {f: [0, x) -- R: f, f’ ACloc[0, x)

and

f, f" / xZf L2[0, x)}.

(6.1)

(6.2)

(6.3)
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6.1 The m-coefficient

The equation (6.1) has solutions in terms of the Weber parabolic
cylinder functions, see [1, Chapter 19]. As with the example q(x)=-x
this equation is strong limit-point at oc in L2 [0, oo) but in general the
integral on the left-hand side is only conditionally convergent. Also in
this example the two components of the Nevanlinna function m + are
not analytical continuations of each other and are given by separate
formulae

( E C+) (6.4)

(A E C_). (6.5)

6.2 The Inequality

For this example we have

THEOREM 7 For -= 0 the inequality (6.2) has the properties

thus Oo-r and so from Theorem 2 of Section 2 it follows that

K(O) 4 + 2x/,

and the only case of equality is the nullfunction.

Proof (1) The determination of 0 +.
Let z=x+ iy=rei and recall A=pei; set z=-iA/4 so that for
(0, 1/27r] we have 0 (-1/27r, 0].
Now define the open, lower-half z-plane C_ by

C_ := {z C: y < O}

and u :C_ --, R by, using (6.4)

u(z) arg(AZm+(A)) arg{-z2 r(1/4nt-Z) izc/4} (z C_)
+ z)
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We choose that value of the argument of u which is 57r/4 on the real
positive z-axis; then u is well-defined and continuous in C_.

We require a number of general results from the theory of harmonic
and subharmonic functions; for the general theory see [19], and for
application to inequalities of the kind considered in this paper see

[12, Sections 2 and 3].
We define an exceptional set (E-set) to be a finite or countably

infinite set of isolated points of R c C, together with the limit
points
For the two results that follow D is an open set of the complex

plane C.
(A) The extended maximum principle. If the function v is bounded

and harmonic in D and

lim sup v(z) < 0 (6.6)

as z--+ from the interior of D for all E , apart from an E-set, then
v(z) < 0 (z D) or v(z) 0 (z D).

(B) A uniqueness theorem. If in (A) the condition (6.6) is replaced by

lim v(z) 0 (6.7)

then v(z)= 0 (z D).
The next result is taken from [12, Section 3, Lemma 1].
(C) A property of the Gamma function. If

r(z) }h(z) := arg
r(z + i)2

then

0 < h(z) < (z C_).

We now return to the function u and consider its boundary values as
we approach a point ( from within C_. These boundary values exist
and are locally constant in the open intervals of whose end-points
are determined by the E-set consisting of the points where the
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meromorphic function , defined by

(z) .= -z
r(1/4 + z/ ,/4
r(1/4 + z)

has a zero or a pole, i.e

(a) the origin 0 where has a double zero;
(b) the points {-n- : n E N0} where has simple poles;
(c) the points {-n--34: n E No} where has simple zeros.

Respectively at these points, and as the variable z passes in C_ to the
left from a point on the real positive axis to points on the negative axis,

(a) u(z)- 2 arg(z) remains continuous at 0
(b) u(z) + arg(z + n + 1/4) remains continuous at -n 1/4 for all n N0
(c) u(z)- arg(z + n + ) remains continuous at -n -] for all n N0.
We note also that arg(z- 0), considered as a function in C_, has

boundary values -r and 0 at real points such that < 0 and > 0
respectively.
Thus as the variable z passes from right to left along the real axis

across the points of the E-set, the function u(z):

decreases by 2r at the point 0 of (a)
increases by r at the points {-n- 1/4} of (b)
decreases by 7r at the points {-n --]} of (c).

Recalling that u()= 5;r/4 for all > 0, we deduce that

u(z)--3r/4for -1/4<<0andfor -n-1/4<<<-n+- (nN)
u(z) r/4 for n- 1/4 < < -n- 1/4 (n N0). (6.8)

We also deduce from (C) above that u is bounded in C_; more
precisely

--]- < ,,(z) < -]- (z c_)

since

( 2eir/4)-r<arg -z < (z C_).
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We now compare u in C_ with the function v’C_ R defined by

v(z) 2arg(z)+ Tr (z E C_)

where the principal value of arg(z) is chosen. Then v has boundary
values -Tr and Tr on the negative and positive axes respectively, and it
now follows from (A) that

v(z) < .(z) (z c_).

In particular we have

u(z)>Tr for -Tr<_arg(z)<_O;

also by looking at boundary values and using (A) above it follows that

u(z) < Tr for -Tr _< arg(z) _< O.

Thus

F(1/4 + z)
< 0 for --Tr <_ arg(z) < 0. (6.9)

On the other hand we note that the function u- v has boundary
values zero on both sides of the origin 0 so that

lim (u(z)- v(z)) O.
0

zC_

If then we choose z re io with 0 -1/27r- 6, where 6 is a small positive
number and let r tend to zero we deduce that, since v(z)= r- 26 on
this ray,

lim utz) r-
rO+

Thus for this value of 0 and for all small r we have

1"(-4- z)
e > 0. (6.10)
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Translating the results (6.9) and (6.10) back into the A-plane this
yields

-Im{A2m+(A)} > 0 for all A with I1 > 0 and r _< arg(A) < 1/2r;
(6.11)

but if arg(A)-r- , where is a small positive number, then when
is sufficiently small, depending upon 5, we have

-Im{AZm+(A)} < 0. (6.12)

From the results (6.11) and (6.12), and the notations given in
Theorem 2 of Section 2 we have

0+ =-Tr and E+ O. (6.13)

(2) The determination of 0_.

We now define similarly, using (6.5), but with z- iA/4, z E C_,

u(z) := arg{AZm_(A)} arg{-z21-’(1/4 + z)
r(] + z)

We are interested in the range -r<arg(A)<-1/2r and hence

-1/2r < arg(z) < 0.
This time u has boundary values, compare with (6.8),

u() Tr for all > 0

u()--rrfor -1/4<<0andfor -n-1/4<<-n+1/4(n6N)
u()=-1/4rrfor -n-<<-n-1/4(nEN0).
If, as before, we introduce a comparison function v(z) 2 arg(z) +

then we see that

u(z) > 2 arg(z)+-]r (z C_)

but that

lim (u(z) 2 arg(z)) -]r.
z--*0
zC_
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These results show that

u(z) > 0 for 0-- arg(z)
or equivalently for --Tr < arg(A) < -1/2r

and that the lower bound -Tr cannot be increased to a larger negative
number.
From these results then we conclude that

0_-1/27r and E_=!3.

There are no weak cases of equality for the inequality (6.2) since it

may be seen from the form of the m +-coefficient (6.4) and (6.5) that
there are no eigenvalues for either the associated Dirichlet or the
Neumann boundary value problems, and hence no non-null solutions
to the weak problems of 4 in Theorem 2, Section 2 above.

This concludes the proof of the Theorem.

6.3 Remark

For all other values of the shift parameter 7. there are no analytical
results presently available; however the numerical techniques lead to
the following analytical conjectures"

1. The inequality (6.2) is valid for all 7.

2. The best-possible number function K(.) is continuous and mono-
tonic decreasing on R.

3. There exists a positive number 7.o such that

K(-) > 4 (7. E (-o, 7.o))
4 (7. [7.0, oc)).

4. lim_o K(7.)=
5. For all 7-]R there are no cases of equality other than the null

function.

7 THECASEq(x)--1/2(x+I)-2

This example is similar in many ways to the original Hardy-Littlewood
inequality in that the differential operators generated in the Hilbert
function space L2[0, o) have a continuous spectrum on the half-line
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[0, oc) of the complex spectral plane C. However there is one significant
difference; the Hardy-Littlewood inequality is valid for - 0 whilst the
inequality resulting frOm the above given coefficient q is not valid for

-= 0. The importance of this result lies in the conjecture that had been
made that a necessary and sufficient condition for the general
inequality (1.7) to be valid is that the shift parameter - belong to the
union of the spectra of the Neumann and Dirichlet differential
operators generated by the differential equation (1.5). We do not enter
into further discussion on this conjecture; it is sufficient here to state
that the example of this Section shows that the conjecture is false.
The inequality resulting from this coefficient q is considered in some

detail in [8, Section 2].

7,1 The Background

This example has the differential equation

-y (x)+ g(x+l) -’r y(x)=,y(x) (x E (0, oc)) (7.1)

and the associated inequality is

_< K(-) f(x)2 (x)- \2 -)f(x)}Zdx (7.2)

with domain

D {f: [0, oc) --+ R: f,f’ ACoc[O,

and

f, f" !(x + 1)-2f L2[0 oc)}2 (7.3)

7,2 The m-coefficient

The equation (7.1) has solutions in terms of the Bessel functions, see

[21, Section 4.10],

(x -t- 1)l/2jx/-/2((x -- I)V/’) and (x + 1)l/2J_vS/z((X + 1)v).
(7.4)
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The solution of (7.1) that is in the space L2[0, o) for A E C\ is best
expressed in the form

(x + 1)l/2H(1)/((x + )) (7.5)

and this leads to the following determination of the m-coefficient for
this example, for all r E R,

(7.6)

with x/ determined as before. Note that in this case mT is the
continuation of m i.

From the properties of the solutions (7.4) and (7.5) it may be seen
that the differential equation (7.1) has no solutions in L2[0, oo) when
A >_ 0 and one independent solution in L2[O, oo) when A < O. These
properties are mirrored in the form of the m-coefficient when r-O;
re(A)-m0(A) is holomorphic on C\[O, oo), has a branch point at the
origin 0 and is discontinuous from above and below on the positive axis
[0, oo) of C.
From [1, 9.1.9 and 9.1.31] we obtain for Re(u) > 0, as Is[ --+ 0 with

s c\[0, c),

(,)

and

iu u+H(’)’() r()()

from these results a calculation shows that

2
lim m(A) > 0. (7.7)

I1---,o/ v/-
c\ [0, oo)



34 W.D. EVANS et al.

On the other hand the m-coefficient for the Hardy-Littlewood
inequality, with m(A) i/v, satisfies

lim Im(A)l +. (7.8)
I,l-O/

c\[0,)

The difference between the positive limit and the infinite limit of (7.7)
and (7.8) respectively is, in part, responsible for the conclusion given
in the Theorem that now follows in comparison with the valid
inequality (1.1).

7,3 The Inequality

THEOREM 8 For 7-<_ 0 the inequality (7.2) is not valid, i.e. K(7-)-
for all 7- E (-x, 0].

Proof For 7--0 the analytical proof of this result follows by direct
application of the criteria of Theorem 2 of Section 2 above to the limit
result (7.7); see also [8, Section 2.1].
For 7-- 0 this conclusion also follows from the general result given in

[14, Section 15, Theorem 1], since the coefficient q for (7.2) satisfies the
condition q(x) > 0 (x [0, o)).
For 7- < 0 this conclusion follows from the fact that the m-coefficient

is holomorphic at all points of the set (-, 0) c_ C; see [14, Section 16,
Theorem 1].

7,4 Remark

For all other values of the shift parameter 7- there are no analytical
results presently available; however the numerical techniques and
results given in [8, Section 2.1] lead to the following analytical
conjectures:

1. The inequality (7.2) is valid for all 7- (0, ).
2. The best possible number function K(.) is continuous and monotonic

decreasing on (0, ).
3.0 < 0_(7-) < 1/27r <_ 0 + (7-) and 1/27r < 0o(7-) < 1/27r for all 7- (0, ).
4. There exists a positive number 7-0, with the numerical value

approximately 0.13, such that
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(i) 4 < K(r) < +oc (r e (0, to))
(ii) lim_0+ K(r) +oc
(iii) K(r) 4 (r [to, oc)).

5. The cases of equality are as follows:

(i) for r (0, to) the set E+(r) is a single point {p(r)} so that
there is a one-dimensional case of normal equality,

(ii) for r ro there is a continuum of cases of normal equalities,
(iii) for r E (to, oc) only the null function,
(iv) for all r E (0, oo) there are no cases of weak equality.
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