
J. oflnequal. & Appl., 1998, Vol. 2, pp. 121-135
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1998 OPA (Overseas Publishers Association)
Amsterdam B.V. Published under license

under the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

CarlsonType Inequalities
SORINA BARZA a, JOSIP PEOARI( b and LARS-ERIK PERSSON a,,

a Department of Mathematics, Lulet University, S-97187 Lulet, Sweden;
b Faculty of Textile Technology, University of Zagreb, Pierottijeva 6,
41000 Zagreb, Croatia

(Received 12 February 1997)

A scale of Carlson type inequalities are proved and the best constants are found. Some
multidimensional versions of these inequalities are also proved and it is pointed out that
also a well-known inequality by Beurling-Kjellberg is included as an endpoint case.

Keywords." Inequalities; Sharp constants; Carlson’s inequality; Kjellberg’s inequality;
Multidimensional inequalities

AMS Subject Classification (1991)" 26D15

1 INTRODUCTION

First we consider sequences {an}, n 1,2,... of nonnegative numbers
and functions f on [0, oo). In 1934, Carlson [5] proved that the
somewhat curious inequalities

()1/4()1/4

n an <_ a2n n2a2n
n=l n=l

(1)

and

f(x)l dx < fZ(x) dx x (x) dx (2)

hold and C is the best possible constant in both cases.

* Corresponding author.
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In 1936 Hardy [7] presented two elementary proofs of (1). In
particular he observed that (1) in fact follows even from Schwarz
inequality -’XnYn<_(X2n)l/Z(}-y2n)l/2 applied to the sequences
x,,=an(C+/n2)1/2 and yn=(C +/n2)1/2. Here we only remark that
(1) and its generalizations have sense, e.g. in some moment problems
(see’ [8]), in the theory of interpolation (see [6,9,11]) and optimal
reconstruction of a sampling signal (see [4]). Moreover, (1) can be
improved in the following way:

n=l n=l n--1

This fact was probably first noticed by Landau and a proof can be
found in [10].

It is now natural to ask ourselves whether the analogous integral
inequality

-lf:Z(x) dxf f(x) dx<C(ff(x)dx f (x (3)

holds with C ? The answer is negative according to a special case
of Theorem 2.1 of this paper (in fact (3) holds with C ).

In order to clarify ideas and motivate our results in this paper we
state and prove our announced Theorem 2.1 in Section 2. In Section 3
we state and prove some generalizations (including some multidimen-
sional ones) of Theorem 2.1. We also point out that a well-known
inequality of Beurling-Kjellberg [8, p. 17] is included as one endpoint
case. Section 4 is reserved for some concluding remarks and results
together with a short bibliography of the actual swedish mathematician
Fritz Carlson.

2 AN INTEGRAL CARLSON TYPE INEQUALITY

In this section we let f denote a Lebesgue measurable nonnegative
function on [0,



CARLSON TYPE INEQUALITIES 123

THEOREM 2.1 If a > 0, then

OO (0OO /1/4 (0.OO /I/4f(x dx <_ f2(x)dx (x a)2f2 (x)dx (4)

The inequality is sharp.

2Proof Let a,/3>0 and let S-fo f (x)dx and T-f (x-a)2

fz(x) dx. If S=oo or T=oo, then (4) holds trivially so we may
without loss of generality assume that S < oo and T< oo. By using the
Schwarz inequality and elementary calculations we find that

=--1 (aS+/3T)arctan ((x-
(+ arctanav-fl)(Sw + T).

By choosing a T and/3--S we obtain that

f(x) dx _< 2 + arctan a x/ST

r + 2 arctan a v@-T

/0<2 2 f2(x) dx (x a)2f2(x)dx

and (4) is proved. To get the best constant in the inequality (4) it is
natural to study the behaviour of the following functions:

L(X)
q- ’T2(X a"2’) ’ > 0.
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The corresponding numbers S and T for these functions are

S S f2 (x) dx + arctan /a + )+ ,)/2a2

and

fo (T T. (x a)2f2(x) dx + arctan-ya q2a2

Therefore

lim
(ff’7(x) dx)4

4r2,oo 2.oo f) f-r (x) dx fo (x a)2f (x) dx

and this means in particular that the best constant in (4) is x/.

Remark 2.2 Our proof above shows that (4) is a strict inequality for
every nontrivial function f such that the integrals on the right-hand
side converge.

Remark 2.3 By using (2) and a trivial estimate we have the following
complement of (4)" If a < 0, then

f(X dx <_ x/ fZ(x) dx (x a)2fZ(x)dx

The constant is sharp for a- 0 but it remains an open question to
find the best constant when a < 0.

Remark 2.4 We recall that Kjellberg (see [8]) stated the following
counterpart of (2)"

f(x) dx <_ f2(x) dx (x) dx (6)

as a reformulation of a previous result by Beurling. We note that (6)
follows from (4) by making a variable transformation and letting
a oc. Moreover it can be proved that (6) implies (4)" Let g(x)=f(x)



CARLSON TYPE INEQUALITIES 125

if x > 0 and g(x)- 0 if x < 0. Then

f(x) dx g(x) dx g(x + a) dx

_< g2 (x / a) dx)
/4

x2g2 (x / a)dx

gZ(x) dx (x a)ZgZ(x)dx)1/4

(f0oo )
1/4 (f0oo )1/4f2 (x) dx (x a)Zf2 (x) dx

This means that inequality (4) in fact is equivalent with its limiting
inequality (6).

3 SOME GENERALIZATIONS OF THEOREM 2,1

For later purposes but also of independent interest we begin by stating
the following slight generalizations of the inequalities (4) and (5).

THEOREM 3.1 Let 7> 1, "Y’--7/(7-1) and let f be a measurable

function on +. Then

IT(x)[ dx < C f2 (x) dx Ix alTf2 (x) dx

(7)

where

C C%m [2m( 1)-1/7’
71" )]1/2

with m -1 if a > O and m O if a <_ O.

eoof et ,>0 a t s= ff:(x)ax na -f lx-l
f2(x) dx. As before we may without loss of generality assume that
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S < oe and T< oc. By using the Schwarz inequality,

(fof(x) dx

dx

(8)

where

I- [ dx
J_

when a > 0 and we conclude that

I < 2m f0
e dx

2m
7r

+ x------- "7 sin (/7)
(9)

We have still freedom to choose c and/3 in (8) and by minimizing we
find that the optimal choice is c//3- (3, 1)(T/S). Therefore, by (8) and
(9), it yields that

f(x) dx < S + -T (3,-1) 2m
dx

7-1 l+x’

z
(z )/2

z si(=/z)
S/’T/C2.

Remark 3.2 For the case 3’ 2 we have again the inequalities (4) and (5).

Theorem 3.1 can be extended to higher dimensions and for the
reader’s convenience we give the details for dimension n- 2.
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THEOREM 3.3 Let f be a measurable function on N2+ and let a, a2, a3,

")/1, Q’2 and 3’3 be real numbers, where 71, /2, 73 > 1. Then

fo )(o If(x, Y dydx

_< C f(x, y) dx dy

Qfo0
oe

X IX al I’’f2 (x, y) dx dy

x [y a3 [3f2 (x, y) dx dy

Qffx Ix a21z2 y a313f2 (x, y) dx dy (o)

where

1/

C C 1/’73C’71 ,al "72 ,a2 "73 ,a3

and

)] 1/2
C,,/i,ai_ 2mi(,ff 1)_1/’7/ 71"

sin(-/-yi

with mi-- if ai > 0 and mi 0 if ai <_ O, 1,2, 3.

Proof First we use Theorem 3.1 with f(x) replaced by g(y)=
f0 If(x, y) dx to obtain that

o fo If(x, y)l dx dy

QOcx(fo X)
2

C’73,a3 [f(x,y)ld dy

(0.x:

(fO
cx3 /2 )1/2"73x lY-a3 ’73 If(x,y)ldx dy (11)



128 S. BARZA et al.

Next we use Theorem 3.1 again now with f(x) replaced by f(x, y) (for
each fixed y):

If(x,y)ldx < C2 f2(x,y)dx
")/i ,ai

(fO
O0 ) 1/’i

I ,l’iY2(, y) d (12)

for i- 1,2.
By inserting (12) into (11) and using H61der’s inequality twice we

obtain (10) and the proof is complete.

COROt.LARY 3.4 Letfbe a measurablefunction on 2+ and let a, a2, a3
be real numbers. Then

If(x, y)[dx dy

f2(x, y) dx dy (x al )2f2 (x, y) dx dy

y a3)2f2(x, y) dx dy

(x- a2)2(y a3)2f2(x,y)dxdy

where

C-- 2r

C 23/47r

C= /r

C 21/47r

C-Tr

if al, a2, a3 > O,

if a < 0 and a2, a3 > 0 or a2 <_ 0 and a, a3 > 0,

if a, a2 < 0 and a3 > 0 or a, a2 > 0 and a3 _< O,

if a > 0 and a2, a3 <_ 0 or a2 > 0 and a, a3 < O,

if a, a2, a3 <_ 0.

Proof Apply Theorem 3.3 with "y- ’2-’)/3- 2.
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Example 3.5 Letf be a measurable function on R+. Then we have:
(a) [Beurling-Kjellberg type]:

.L f [f(x,y)[dxdy

< 27r fe (x, y) dx dy xef (x, y) dx dy

yf(x, y) dx dy f(x,y) dx dy

(b) ["intermediate" inequalities]:

jo’ j: 
(loll jo. <_ x/Tr f:(x, y) dx dy xZfZ(x, y) dx dy

x yefe(x, y) dx dy xeyef:(x, y) dx dy

(c) [Carlson type]:

Lf f(x, y)l dx dy

<_ 7r f2 (x, y) dx dy x2f2 (x, y) dx dy

x y2f2(x, y) dx dy x2y2fe(x, y) dx dy

By considering our proof of Theorem 3.3 and using induction it is
obvious that we can state and prove an n-dimensional version of
Theorem 3.3 but here we only state the following n-dimensional version
of Theorem 2.1 and Corollary 3.4.

THFORFM 3.6 Let f be a real-valued measurable function on Nn+, and

An {{bi}, bi or bi- O, i- 1,2,... ,n}.

(a) If ai> O, i= 1,2,...,n, then

lf(x) ldx <_ (27r)n/2 II(xi ai)"f2 (x) dx (13)
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(b) Ifai<_ 0, i= 1,2,...,n, then

(4)

Remark 3.7 By using (a), letting al a2 an a > 0, making a
variable transformation and letting a we obtain the Beurling-
Kjellberg inequality [8, page 17]:

4 CONCLUDING REMARKS AND RESULTS

PgoPOSITION 4.1 Let f, f2,... ,f0 [0, ) [0, cx) be Lebesgue
measurable functions (noEl’), let Pk> 1, k=l,2,...,no, where

no=(1/pk)--1 and let 7>1. If ak>0, k-l,2,...,mo<_no and
a <_ O, k mo + 1,..., no, then

no no

fPk
(1/2pk)(1--1/’)’)

Hfk(x)dx <_ C H (x) dx
k=l k=l

(X x’V.c2p,
ak) jl (x) dx

where

mO
C2 (2) k=l(1/Pk)(")/ l) 1/7’__

sin(r/7)

Proof By applying Theorem 3.1 we find that

g(x) dx < 2m Co g2 (x) dx (x a (x) dx

where Co=(’)’- 1)-l/’r’Tr/sin(Tr/’y), m= if a > 0 and m =0 if a _< 0.
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Moreover, by using the H61der inequality, we obtain

(j0.cx n )2 k!l/0
:x

()dx)_<
k=l

=,(1/P)60 (x) dx
k=l

(fo0 ,,c2pk dx)
1/pk’7

(x--ak) jk (x)

and the proof follows.
The special case when p no, k 1,2,..., no and -y 2 is of special

interest.

COROLLARY 4.2 Letf, f2,..., fo [0, oo) -- [0, o) be Lebesgue mea-
surable functions (no E N). If a > O, k 1,2,..., mo <_ no and a <_ O,
k-- mo + 1,..., no, then

n (fo fo /1/4n(C)m/n H fno (x) dx (x ak) Jk (X) dx
k=l

Example 4.3
reads:

For no= 2, a =a, az=b, fl =f, f2 g Corollary 4.2

(a) If a > 0, b > 0, then

f(x)g(x) dx

(Io"<_ f4 (x) dx g4 (x) dx

fo fo(X a)2f4(x)dx (x b)2g4(x)dx)1/8.
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(b) If a > 0, b _< 0 or a < 0, b > 0, then

of(xlg(x)

dx

<_ /x/ f4(x) dx g4 (x) dx

/o fo(x a)f4(x) x (x )g4(x) x

(c) If a < 0, b < 0, then

of(x)g(x)

dx

<_ f4(x) dx

x g4(x) dx (x a)Zf4(x)dx (x b)Zg4(x)dx]1/8.

Remark 4.4 Proposition 4.1 may obviously be regarded as a formal
generalization of Theorem 3.1. By using the same technique we can
obtain a similar generalization of Theorems 3.3 and 3.6.

Remark 4.5 The Hardy idea presented in our introduction was very
important for our proof of Theorem 3.1. This idea of proof is
completely different from the original proof of Carlson who in fact
remarked that (1) does not follow from H61der’s inequality in the
following way:

o (.)1/4()1/4()1/2nl an <_ a2n 2h 2 n-hn an
n=l n=l n=l

=C(h)(=la2n)l/4 (__ln2ha2n)l/4
because C(h) cx when h +.

Remark 4.6 Letf* denote the nonincreasing rearrangement off. Then
by applying (2) withf-f we find that this inequality can be replaced
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by the following formal sharper one

If(x)[ dx < x/F f2 (x) dx x2(f (x)

Some related multidimensional integral inequalities of reversed
(H61der) type have recently been proved in [2].

Remark 4.7 A generalization of (1) in a completely other direction
was recently done in [9]. This "block type inequality" was the key step
to solve a very old question in interpolation theory. See [9] and cf. also
[6,11]. Some other generalizations of Carlson’s inequalities can be
found in the books [1,12], and the references given there.

Remark 4.8
a vertex, i.e.,

Let f be an arbitrary infinite cone in R with the origin as

{x R".x pa, 0 < p < , a S}, (16)

where S c_ sn= {X E n.. IX 1} is a measurable set. In a joint work
with professor Victor Burenkov we have recently also obtained the
following result for the case with homogeneous weights (see [3])" Let wi,

i-0, 1,2, be functions defined on the cone 2. Suppose that wi are

positive, measurable and homogeneous of orders oziE ], i=0, 1,2.
Moreover, suppose that

0<p0<p,p2<oo, 0<0< 1,

and put di--ozi-qI- n/pi, i--O, 1,2. In order that for some A > 0 and
for all functions f measurable on Ft .and" satisfying IlfwillL,,i(a < o,
i-- 1,2,

[[/wo[l,o( AllfwlllOL,(lllfw.
it is necessary and sufficient that

do Od + (1 -O)d2, dl /= d2,

That is, for each x e and e > 0, Wi(eX eiWi(X).
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and

where

,o. 1-ow w2 L(S)

0
q P0 pl P2

The proof can be found in [3], where also the best constant A is
explicitly calculated and all cases of equality are pointed out.

This result may be regarded as another generalization of the
inequalities (2) and (4).

Final note about Fritz Carlson (1888-1952) Fritz Carlson was ap-
pointed as professor in Stockholm, Sweden, 1920. His main work was
focused on the theory of analytic functions. Some of his most well-
known contributions are a theorem connected to the Phragm6n-
Lindel6f principle, a theorem about the zero points for the (-function
and theorems concerning power series with integer coefficients.

Carlson’s original proofs of the inequalities (1) and (2) illustrate his
deep knowledge in the theory of analytic functions. It must have been a

big surprise for him when Hardy two years later presented his much
more elementary proofs (cf. Remark 4.5).

Carlson was a really correct professor with great authority in the
swedish tradition of that time. He was one of the editors of the well-
known Swedish Journal Acta Mathematica and for a period the chief of
the Mittag-Leffer institute.
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