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It is proved that the uniform law of large numbers (over a random parameter set) for the
s-dimensional ( >_ 1) Bessel process Z (Zt)t >_ started at 0 is valid:

for all stopping times T for Z. The rate obtained (on the right-hand side) is shown to be
the best possible. The following inequality is gained as a consequence:

0_<,<_:rmaX Z2t) < G(oOV/-(T)

for all stopping times T for Z, where the constant G() satisfies

as o. This answers a question raised in [4]. The method of proof relies upon
representing the Bessel process as a time changed geometric Brownian motion. The main
emphasis of the paper is on the method of proof and on the simplicity of solution.
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1. FORMULATION OF THE PROBLEM

The problem which motivated the present paper appeared in [4] and is
described as follows. A continuous non-negative Markov process
Z=(Zt)t>_o is called a Bessel process of dimension cER, if its
infinitesimal operator is given by

102 c-I 0
Lz 20x2 2x Ox (1.1)

and the boundary point 0 is a trap if a _< 0, a reflecting boundary if
0 < a < 2, and an entrance boundary if a >_ 2. (For more information
about Bessel processes we shall refer the reader to [4,5,7-9,11,13,14].)
The Bessel processes of dimension a _> are submartingales. The Bessel
processes of dimension a<_ 0 are supermartingales. However, the
Bessel processes of dimension 0 < a < are not semimartingales. The
Bessel process Z of dimension a-n E N may be realized as the radial
part of the n-dimensional Brownian motion B(n)= (Bl(t),...,Bn(t))t>o:

Zt =, B(t) (t >_ 0), (1.2)

where (Bl(t))t>_o,...,(Bn(t))t>_o are mutually independent (standard)
Brownian motions.
The results on optimal stopping for Bessel process Z (Zt)t> 0 of

dimension a > 0 due to Dubins et al. in [4] (Theorem 5, p. 254) yield the
following inequality (here and in the sequel E denotes the expectation
corresponding to the Bessel process started at 0):

E(0<t<7.max Zt) <_ "7(a)v/E(T (1.3)

for all stopping times Tfor Z, where 7(a) v/4sl (a) with sl(a) being a

(unique) root of the equation g,(s) 0 for the functions s H g,(s) which
is a (unique) non-negative solution of the differential equation

a-2
g (s)g(s) 1- s -1 (s >_ 0) (1.4)
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such that g.(s) <_ s and g.(s)/s as s oo. (For c 2 Eq. (1.4) reads
as follows:

2g (s)g(s)log - (s _> 0) (1.4)’

which is obtained by passing to the limit in (1.4) as c ---, 2.)
It has been shown in [4] (Theorem 7, p. 259) that we have

The problem which was left open is described by the following words
(see p. 259 in [4]): "It is of great interest be able to find the function

3’---’Y(c) or, at least, to study its properties." The present paper is
devoted to clarifications and refinements of the underlying structure
for this problem, and to the presentation of its solution in the form of
a rate of convergence in (1.5) (after a reformulation of the inequality
(1.3) to a stronger and proper form). In this process we discover a fact
of independent interest: The uniform law of large numbers (over a
random parameter set) for Bessel processes. To the best of our
knowledge this sort of uniform law of large numbers has not been
studied previously. We think that this fact is by itself of theoretical and
practical interest, and we intend to write more about it elsewhere.

Instead of going into a description of our method and results
obtained, we find it of greater priority at the moment to display two
general facts about the problem just stated.

First note from (6.7)+ (6.8) in [4] that:

supE max Zt-c (1.6)
T 0<t<T C

for all c > 0, where the supremum is taken over all stopping times T for
Z, and is attained at T*--T*(, c), which is according to (1.5) in [4]
defined by

T*-inf{t > 0]S >_ se(c), Z _< g.(S,)} (1.7)
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where St= maxo<s<tZs and se(a) is a (unique) root of the equation
g,(s) 0 for the function s H g,(s) which (in the same manner) solves
Eq. (1.4) when the number on the right-hand side is replaced by 1/c.
From (1.6) we find

E max Zt <_inf cE(T)+
0< t< T c>0

for all stopping times T for Z, where the infimum is attained at

c--(Sl(OO/ET) 1/2.
In particular, if we have

E(T*) ET*(c,c) Sl(gt)/c 2 (1.9)

then we would also have the equality in (1.8), which in turn would show
that the constant 7(c0 (defined through (1.4)) is the best possible in
(1.3). Although neither (1.9) has been explicitly derived in [4], nor
has shown the best possible in (1.3) (except for c- 1 when -y(1) /;
see [6] for a simple proof), as indicated by A. Shiryaev (personal
communication), the identity (1.9) should follow from the proof and
methods in [4]. In fact, a closer look at (1.8), combined with the extreme
property of T* in (1.6), shows that (1.9) indeed holds. Thus, the
constant 7(c0 defined above is the best possible constant in the
inequality (1.3) (being valid for all stopping times T for Z). In this
context it is interesting to observe the underlying phenomenon when
taking the infimum over all c > 0 in (1.8), that it is sufficient to treat

E(T) E(T*)= ET*(o, c) as a constant which does not depend on c.

(For a similar phenomenon see [6].)
The next we want to address is the proof of (1.5) in [4], and in this

context a fundamental result due to Davis. The proof of (1.5) in [4] was
heavily based upon the result of Davis in [3]:

E ( max
O<_t<_T

Zt <_ C1Evv (1.10)
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being valid for all stopping times T for Z whenever c E N, where

C1 > 0 is a (universal) constant. Note by a sup-norm property that

1( )max Zt
0<t<T

< max
0<t<T

Zt (1.11)

Dividing by Ev@- through (1.11) and using (1.10) we get:

( )v/_dEx/--fE max Z,
0<t<T

max Zt
vdEvf o<<r

C<
--V/-" (1.12)

Hence we see that the (best) constant D(c) defined by

7" Ex/
E o<t<rmax Z, (1.13)

(where the supremum is taken over all stopping times T for Z) satisfies

C1<_. (1.14)

In fact, the constant D(c) is (by definition) the best constant in the
inequality

E( max Zt) <- (1.15)

being valid for all stopping times T for Z. Since Ev/-f < v/E(T) by
Jensen’s inequality, we see that 7(c0 < D(c0. On the other hand, it is
well known that for the hitting time Tx-inf{t > OIZt-x} we have
E(Tx)-X:z/o whenever x>0. Inserting this into (1.3) we get

_< 7(c)/v/-. Taking all these facts together we conclude"

7(a) D(a)
1<-_< x/’ (1.16)

0 < 7(c) < D(c) < __C1 (1.17)--V --V/- --V



104 S.E. GRAVERSEN AND G. PE;KIR

for all a N (where C is the (universal) constant from Davis’ result
(1.10)).
The preceding lines on the proof of (1.5) as given in [4] indicate the

following two facts which in essence motivated our work in the sequel.
First, we feel that due to the monotonicity (in a) of the drift term of the
infinitesimal operator in (1.1), a certain stability theory for solutions of
stochastic differential equations should make it clear that the sample
paths of the Bessel processes are, roughly speaking, monotone in a >_ 1,
and therefore (1.10), and thus (1.17) as well, should be valid for all
(real) a_> 1. We will, however, choose another way towards (1.17)
which is in our opinion simpler and more instructive, and which will
give us a more precise information on the constant C1 in (1.17). Second,
the validity of the inequality (1.15) indicates an essential reformulation
of the problem about (1.3) stated above; the left-hand side in (1.3)
should be increased (by Jensen’s inequality) to read as follows"

(1.18)

being valid for all stopping times T for Z where G(a) is a numerical
constant. In Section 2 we will see that (1.18) (and thus (1.3) in the
initial problem as well) could be thought of as a maximal Doob-type
inequality for geometric Brownian motion (or Bessel process itself). In
Theorem 3.1 (and Remark following it) we will show that (1.18)
holds, and the (best) constant G(a) satisfies the same rate (with a

specified and sharp constant C > 0) as 7(a) in (1.17) for a T oo. This is
obtained as a consequence of the uniform law of large numbers for
Bessel process Z of dimension a > 1"

(1.19)

being valid for all stopping times T for Z and all a >_ 1. It should be
noted if a-n E N, then by (1.2) we see that (1.19) gets the following
form:

E ( max
O<_t<T

k=l

12
E(T) (1 20)
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which is precisely the uniform law of large numbers (over the random
time interval [0, T]) for the (randomly) parametrized family of
sequences of independent and identically distributed random variables

({B(t) }k>l It E [0, T]), where T is any stopping time for Z.
In Section 4 we generalize and extend the results obtained either in

this paper or in the paper of Davis [3] (see also [2]). Finally, we shall
conclude this section by pointing out that our main emphasis in this
paper is on the method of proof and on the simplicity of solution. In
this context note that the two main ingredients of the proof are: Bessel
process as a time changed geometric Brownian motion (Section 2) and
the square representation of Bessel process (Section 3).

2. BESSEL PROCESS AS A TIME CHANGED GEOMETRIC
BROWNIAN MOTION

Our main aim in this section is to show that (1.18) (and thus (1.3) in the
initial problem as well) could be thought of as a maximal Doob-type
inequality for geometric Brownian motion (or Bessel process itself).
We shall moreover see that the best constant (which equals 2) in Doob’s
maximal inequality (see [15]) could be in this particular case decreased
to get as close to as one desires (by enlarging the drift). We think that
this fact is by itself of theoretical and practical interest.
We shall begin by considering geometric Brownian motion. For this,

let B-- (Bt)t>o be standard Brownian motion, and let # E R be given
and fixed. Then Xt= Bt-+-#t is a Brownian motion with drift, and
Yt-ex’ defines a geometric Brownian motion. The infinitesimal
operators of X- (Xt)t >_ 0 and Y- (Yt)t >_ o are respectively given by

0 2 0
Lx - Ox---5 + lz Ox (2.1)

x2 (2.2)I - -x + + - X ox

From this we see that a division of Lr by x2 gives the infinitesimal
operator of a Bessel process (recall (1.1)). This fact motivates us to
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apply "change of time scale" transformation (see [14] p.175) with
p(y) _y2. Thus, define

Y ds (2.3)

for t>0. Then q) is continuous and strictly increasing with
supt>_0o(t)- +oc if #>0. Thus qo has the inverse rt-q)-l(t), and it
is easily verified that we have

T ..y(r).2 ds (2.4)

for _> 0. Moreover, each rt is a stopping time for B. Putting

Z,- Y, exp(X,) exp(B, +/zrt) (2.5)

for > 0, we find that the infinitesimal operator of the process Z
(Zt)t_> 0 is given by

102 ( 1)1 0
(2.6)Lz=-Ox--5+ #+- xOx"

Thus, the process Z is a Bessel process of dimension c- 2(1 + #) _> 2
started at e under Px. Observe if T is a stopping time for Z, then rr is a
stopping time for B. Note also that from (2.4) and (2.5) we get

r
rr- 2s2 ds (2.7)

for any stopping time T for Z.
Next we want to show that the inequality (1.18) (and thus (1.3) as

well) may be viewed as a Doob maximal inequality for geometric
Brownian motion Y (or Bessel process Z itself). First, we show if T is a
stopping time for Z such that the stopped martingale

(e2B(t/Xrr)--2tArT) (2.8)
t>o
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is uniformly integrable, then we have

E(T) 2(1 + #) E(Z2:r) e2x (2.9)

where Px is the probability measure under which Brownian motion B
starts at x E R, and Ex denotes the expectation with respect to Px.

Indeed, by Doob’s optional sampling theorem we find

(2.10)

This establishes (2.9) and the proof of this fact is complete.
Next, letting x- in (2.9) and using the Feller property of the

Bessel process, we see that the inequality (1.3) gets the following form:

E( max Zt)< 7() v/E(Z)O<t<T -- (2.11)

This inequality can be seen as a passage to the limit (for x-) in

Ex ( max Yt) <
xf_d (2.12)

being valid for any stopping time T for Z. Since Y is a non-negative
submartingale (for #>-1/2, i.e. c_> 1), then by Doob’s maximal
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inequality (and Jensen’s inequality) we get

whenever the stopped martingale (2.8) is uniformly integrable. The
constant 2 is generally known to be the best possible in the last
(Doob’s) inequality (see [15]). Hence by a limiting argument we arrive
to (2.11) (with the constant 2 instead of 3,(a)/x/-d), and thus (1.3) with
7(a)/x/-d --, (as a-+ ) shows that in the Doob’s inequality (2.12)
(for geometric Brownian motion) the "best" constant 2 may be replaced
by a number which is as close to as desired (by enlarging the drift #).
In fact, we will see (Theorem 3.1) that the same phenomenon holds for
the "right" Doob’s inequality (the second one) in (2.13) (for geometric
Brownian motion), by proving that the left-hand term in (2.12) can be
increased (with the same asymptotic behaviour of the constant) to the
second term in (2.13) (which is precisely the inequality (1.18)).
Note that from (1.3), (1.18) and (2.13) we get

G(a)< -,/(a) < < 2 (2.14)

for all a >_ 2. (For completeness in Theorem 3.1 (to cover the case

< a < 2 as well) observe that the last inequality extends to all a > 1.
This is easily seen by the fact that from (1.1) for f(x)- x2 we get
Lz(f)-a. Thus (Zt2 -at)>0 is a (local) martingale. Therefore by
Doob’s optional sampling theorem and Fatou’s lemma we have

E(Z2r) < lim infE(Z2t/T) lim infaE(t A T) aE(T) (2.15)

which suffices (by Doob’s inequality). This shows that (2.14) holds for
all a _> 1.)

In fact, the estimate (2.14) could be refined to read as follows:

l<7(a G(a)(ct- 2) (a-2)/4

v <
x/-d

< (2.16)
a-4
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for all c > 4, which gives a better estimate when c > 6. (Note, however,
that the right-hand side in (2.16) tends to x/ as c--+ .)
For this, recall that (1.3) reduces to (2.11), and thus to (2.12) and

(2.13) as well (at least for not too large stopping times (which suffices)
such that the stopped martingale (2.8) is uniformly integrable). The
same holds for (1.18) and (2.13) (the second inequality). Let us
therefore look at (2.13). By Doob’s maximal inequality being applied
to the submartingale exp(2Bt/#+ 2t) for >_ 0 with p- # > 1, or

equivalently c > 4, we get

ex
O <_ <_ 7-T O <_ <_ "CT

(2.17)

from where (2.16) follows (as above) by using #- c/2-1. (Recall that
(#/(#-1))’- e as # .) This completes the proof of the claim.

3. THE SQUARE REPRESENTATION OF BESSEL PROCESS

In this section we present the main results of the paper. We will begin by
deriving the square representation of Bessel process which is shown of
fundamental importance in our proof below.

Let B- (B)t >_ 0 be standard Brownian motion started at x E R under
Px, let Xt=Bt/#t be Brownian motion with drift #E R, and let

Yt-ex’ be geometric Brownian motion. Then the infinitesimal
operators of X- (X)t_> 0 and Y- (Y)t_> 0 are respectively given by
(2.1) and (2.2). Function " R + R + defined by (2.3) is continuous
and strictly increasing with supt >_ 0 (t) + if # > 0. Thus, for # >_ 0,
or equivalently c > 2, the "change of time scale" is applicable (as
indicated in Section 2), and for the inverse - -(t) (which is given by
(2.4)) we know that the process Zt-Y, is a Bessel process of
dimension c- 2(1 + #)> 2 started at e under Px (with infinitesimal
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operator given by (2.6)). By Ito’s formula we get

ex’ ex + ex’ d(Bs + x) + 2# + [teX ds 1)
2 Jo

for all _> O. Inserting "F instead of in (3.1), we should note that

Wt ex‘ d(Bs + x) (t >_ 0) (3.2)

defines an (9c,)t>_0 Wiener process (since the quadratic variation
equals (-t)- t). Moreover, by putting s -u and using -(u)- 1/p(s)
we find

f0 f0’ ex’ ds ds (3.3)

for all > 0. Thus, from (3.1)-(3.3) we get

2u+ f0tZt ex + Wt-- Z as (3.4)

for all t>0. From this by Ito’s formula we derive the square
representation of Bessel process:

Z2 e2x + 2 ZsdWs + at (3.5)

for all >_ 0. (For completeness in Theorem 3.1 (to cover the case

< c < 2 as well) we will need that this representation extends to the
case c > (the case c is evident). The proof of this fact is not as
simple (as in the case c _> 2) and could be given by showing that the
(local) martingale (Z- ct)t>0 (recall the lines following (2.14)) has
the quadratic variation equal to (4 fZ2 ds)t_> 0. This can be deduced
from definition of quadratic variation if one uses (the well-known fact)
that the quadratic variation [Z]t of Bessel process Z equals for > 0.
We will not present this in more detail here, since we are (in
accordance with the initial problem about (1.3)) mainly interested in
the asymptotic behaviour when c---, oc (that is c large), and our
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emphasis on simplicity applies exactly for c >_ 2 when the Bessel
process Z does not hit zero, and therefore the "change of time scale"
for geometric Brownian motion (Section 2) works globally (otherwise,
freely speaking, it works until Bessel process Z first time hits zero).
Thus our main emphasis in Theorem 3.1 below is on the case when
c >_ 2. (The case c < appears of no interest in this context and is not

considered.)
It is the representation (3.5) we shall heavily use in the sequel. (We

would like to point out that our main motivation for such a

representation comes from (2.9)-(2.11) where we realized that the
square of Bessel process plays an essential role for the understanding of
the inequality (1.3).)

THEOP,EM 3.1 Let Z-(Zt)t_>_ o be a Bessel process of dimension c >_
started at 0 under P, and let T be any stopping time for Z. Then the

uniform law of large numbers is satisfied:

(3.6)

In particular, the inequality is valid:

E(0<t<rmax Z2t) < G(o)v/E(T), (3.7)

where the (universal) constant G(c) satisfies:

G(Z)-l+O()v/d- (3.8)

as c-- oc. (For more specific evaluations of the constant G(c) see

Remark 1.)

Proof We shall begin our proof by showing that (3.7) with (3.8) holds.
Then, by using (3.7), we shall derive (3.6).
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(3.7)+(3.8): From (3.5) by Burkholder-Gundy’s inequality and
H61der’s inequality we obtain

( )max Z2 < e2x 4- 2Ex max ZdWs + cEx(T)Ix
0<t<T O<_t<T

<_ e2x 4- 2K1Ex Z ds 4- cEx(T)

max Zex+2K1 E o<<r

(3.9)

for all x E R. Letting x--+-oc (and using the Feller property of the
Bessel process) we get

0<t<T 0<t<T
v/E(T) + oE(r), (3.10)

where K-- 2K, with K > 0 from (3.9). Denoting a E(max0 <,< rZ)
and b= E(T), we see that (3.10) may be written as follows:_

4-c. (3.11)

From (3.11) we easily find (by solving the underlying quadratic
equation):

(3.12)

Hence by definition of a and b, we get (3.7) with

2+ (3.13)

Thus (3.8) is easily seen as well. This completes the first part ofthe proof.
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(3.6): From (3.5) we have

Iz -ct _< e2x + 2 Zs d ms (3.14)

for all >_ 0. Hence, by Burkholder-Gundy’s inequality and H61der’s
inequality (as in (3.9)), and (3.7)just proved, we get

Ex max IZt -ot _< e2x + 2E max ZdW
0<t<T O<_t<_T

max Z2t v/E(T)e2x + 2K1
0 < < 7"

<_ ex + 2/qa()ex(r). (3.15)

Letting x---,-oc and dividing by c in (3.15), we obtain

E( max
O<_t<_T

(3.16)

where K= 2K1 with K1 > 0 from (3.15) (or (3.9)). Moreover, it is well
known (see [10]) that one may take K1 3. (This is the constant from
Burkholder-Gundy’s inequality (see [1]) used in (3.9) and (3.15)). Thus
one may take K= 6, and from (2.14) we see that G(c)/c <_ 2/x/-d. This
shows the validity of (3.6) with the constant equal to 12, and the proof
is complete.

Remarks We state several facts which are aimed to refine and
additionally clarify the statement and proof of Theorem 3.1.

1. Since one may take K 6 in the last proof, from (3. 3) we see that
(3.7) holds with

G(c) G1 (ce) V/o nt- 9 + 3 _< V/-d + 6 (3.17)

for all >_ 1. This (with (2.14)) gives (3.8) in the following (more
specified) form:

9 3 6G(oz) < +-+ < -- (3.18)
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for all a > 1. Note, however, that dividing by E(T) in (3.6), we find

o[-"T 0<t<vmax Z -1

<_ E
cE(T)

max
0<t<T

o<t<r cE(T) E(T) - 12
(3.19)

for all c >_ 1. Maximizing the left-hand side over all stopping times T
for Z, we get

G(o)2 12
_< (3.20)

for all c > 1. Hence we easily conclude

12
1<

G(c) < 1+ (3.21)

for all c _> 1. This gives a better estimate for (3.8) from the one which is
obtained in the end of (3.18), but worse from the middle one in (3.18) if
and only if c > 16. Moreover, the step from (3.19) to (3.20) shows that
(3.7) holds with

G(oe) G2(oe) V/Oe q- 12x/ (3.22)

for all c >_ 1. Note that Gl(c) < G2(c) if and only if c > 16. Taking these
facts together, we conclude that (3.7) holds with

+ 9 + 3, 16 < c < o, (3.23)G(c)- v/c + 12x/-d, < c _< 16.

Note that G is continuous with G(16)/x/- 2.
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2. We show how (3.7) + (3.8) (in a less specified form and for a E N)
follows from the following result of Davis in [3]:

E ( max
O<t<T

(3.24)

being valid for all stopping times T for Z with a E N, where Cp > 0 is
some constant for 0 < p <
From this inequality (with p 2) we get

E 12)
1/2

( max Zt)- v/ < v/--v/E(T) (3.25)

Hence by triangle inequality we obtain

o<t<7"max Zt2 v/E(T <_ (3.26)

Dividing by vIE(T) in (3.26), and then maximizing the left-hand side
over all stopping times T for Z, we can conclude

<_
v/_ (3.27)

This establishes (3.7)+ (3.8), and the proof of the claim is complete.
3. We show how (3.6) itself (in a less specified form and for c N)

follows from Davis’ result (3.24). For this, first note that

Zt

Zt

Zt

Zt - vet- + 2V/7

(3.28)
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for all >_ 0. Hence, by Davis’ result (3.24) and H61der’s inequality,
we get

E( max
O<t<T

Zt < C2E(T) + 2v/E(T) max -< C2E() + 2v/E(T v/E(T)

C: + E(T) 0 E(T) (3.29)

This completes the proof of the claim.
4. It is shown in Remarks 2 and 3 that the results in Theorem 3.1 (in

a less specified form and for a E N) can also be obtained from Davis’
result (3.24). (We have observed this after completing our proof.) In
this context it should be noted that our methods are much different, the
main emphasis in our approach being put on simplicity. A more
sophisticated method, we believe, should give out the best constant

G(a) in (3.7) explicitly.
5. It should be noted (as already indicated in Section 1) that (3.6)

may be viewed as a uniform law of large numbers (over a random
parameter set) for Bessel processes. (When a E N then (3.6) takes the
form described in (1.20), and this justifies the term.) To the best of our
knowledge this sort of uniform law of large numbers has not been
studied previously. We will not pursue this in more detail here, but
instead will refer the reader to [12] for more information on this subject.

6. The estimate obtained in (3.6) is the best possible, in the sense if T
is a stopping time for Z satisfying T > 1, then there is a constant C > 0
such that

O<t<T
(3.30)

for all a N. Indeed, let a n N be given and fixed. Then we have

(n)Z2 B(1) F ,2 (3.31)
k=l
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Setting S, -]= B(1), from (3.31) we easily find

E] Sn E(Sn) -tll Var(Z)=2. (3.32)

This shows that the sequence ((S,-E(S,))/v/-),,>, is uniformly
integrable. Thus by the central limit theorem we may conclude

--+ EIN(O 1) V/-/- (3.33)

as n c. Hence, given > 0 one can find n _> 1, such that

E] Sn
n
E(S) ( )l (3.34)

for all n >_ n. From this, it easily follows

O<t<T
Z2 > E 1ZB(1)
ct n

k=

EI Sn E(Sn)n >
C

(3.35)

for some C > 0 and all n > 1. This completes the proof of the claim.

4. MAXIMAL INEQUALITIES FOR BESSEL PROCESSES

We shall conclude our exposition in this paper by pointing out that the
methods and facts presented above can be easily generalized and
extended to derive a chain of inequalities (with rates) presented in
Theorem 4.1. (The inequality (3.24) is to be recalled, and the arguments
in the lines following it are to be extended to all 0 <p < cx. This should
justify the case c E N. The case of real c > is to be treated along
the lines and facts used in the proof of Theorem 3.1.) We will omit the
details for simplicity. The problem of finding the best values for the
unspecified constants appearing below is worthy of consideration.
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These inequalities could be called the Burkholder-Davis-Gundy
inequalities for Bessel processes, and are formulated as follows.

THEOREM 4.1 Let Z--(Zt)t > o be a Bessel process of dimension c >_
started at 0 under P, and let O <p < cx be given. Then there are

(universal) constants Ap(o) > 0 and Bp(c) > 0 such that

]’or all stopping times Tfor Z. Moreover, the constants Ap(o) and Bp(c) in

(4.1) can be taken to satisfy the following conditions:

0 < Ap() Cp
(c > 1) (4.2)

0 < Bp(c) < Cp (c > 1) (4.3)

with some (universal) constant Cp > O.

Acknowledgement

We would like to thank Albert N. Shiryaev for useful discussions and
consultations on the subject.

References

[1] D.L. Burkholder and R.F. Gundy, Extrapolation and interpolation of quasi-linear
operators on martingales. Acta Math., 124 (1970), 249-304.

[2] D.L. Burkholder, Exit times for Brownian motion, and Hardy spaces. Adv. Math., 26
(1977), 182-205.

[3] B. Davis, On stopping times for n dimensional Brownian motion. Ann. Probab., 6
(1978), 651-659.

[4] L.B. Dubins, L.A. Shepp and A.N. Shiryaev, Optimal stopping rules and maximal
inequalities for Bessel processes. Theory Probab. Appl., 38 (1993), 226-261.

[5] E.B. Dynkin, Markov Processes. Springer-Verlag, 1965.
[6] S.E. Graversen and G. Pekir, Solution to a Wald’s type optimal stopping problem

for Brownian motion. Institute of Mathematics, University ofAarhus, Preprint Series
No. 10, 15 pp., 1994. On Wald-type optimal stopping for Brownian motion. J. Appl.
Probab., 34 (1997), 66-73.



MAXIMAL INEQUALITIES FOR BESSEL PROCESSES 119

[7] N. Ikeda and S. Watanabe, Stochastic Differential Equations andDiffusion Processes.
North Holland Publ. Co., 1981.

[8] K. Ito and H.P. McKean, Diffusion Processes and Their Sample Paths. Springer-
Verlag, 1965.

[9] S. Karlin and H.M. Taylor, A Second Course in Stochastic Processes. Academic
Press, 1981.

[10] R. Liptser and A. Shiryaev Theory of Martingales. Kluwer Acad. Publ., 1989.
[11] H.P. McKean, Jr. The Bessel motion and a singular integral equation. Mem. Coll.

Sci. Univ. Kyoto, Ser A, Math., 33 (1960), 317-322.
[12] G. Pekir, Lectures on uniform ergodic theorems for dynamical systems. IRMA,

Strasbourg, PrOpubl. (1994), No. 6, 118 pp.
[13] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer-

Verlag, 1991.
[14] L.C.G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales;

Volume 2: Ito’s Calculus. John Wiley & Sons, 1987.
[15] G. Wang, Sharp maximal inequalities for conditionally symmetric martingales and

Brownian motion. Proc. Amer. Math. Soc., 112 (1991), 579-586.


