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Let v(x, t) be the solution of the initial value problem for the n dimensional heat equation.
Then, for any a and for any to > 0, an inequality about v(a, t) and v(x, to) is obtained.
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1. INTRODUCTION

For a positive integer n, we consider the n dimensional heat equation

Xv(x, t) Otv(x, t),
v(x, o) F(x),

X ]1n and > O;
xERn (1.1)

where A is the n dimensional Laplacian and F is a member in the space
Lz(Rn) for the Lebesgue measure on R’. Then, the solution is
represented by

v(x, t)
2v

F()exp
4t d. (1.2)
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Furthermore, from the expression (1.2) we know that the solution v(x, t)
can be holomorphically extended on the n dimensional complex space
C with respect to the space variable x. For the time variable also,
v(x,t) can be holomorphically extended on the right half plane
D {z Iz > 0} of the complex plane C. These facts are found in [4,6].

In this paper, for any a En and for a fixed time to, we derive an
inequality which expresses the relation of v(a, t) and v(x, to). Our
inequality is the generalization of an inequality in [6] for the n
dimension.

THEOREM For an initial values F in L2(n) let v(x, t) be the solution of
the n dimensional heat equation (1.1). Then, for any a n andfor any
to > O, thefollowing inequality is valid."

2t0 J
dA dr,

where z x + iy (x, y 6 ]), w A + i7 (A, 7- ). Moreover, the equality
holds if and only if F is a member in M(n,a). Here, C(n, to)--
nE(n/Z)/(Z2"+Tr"-lto/2) and M(n,a) is the closure of the space spanned
linearly by

{f()- e-l-al2

in L2().

2. SOME HOLOMORPHIC FUNCTION SPACES

We let K(z, u) be the Bergman kernel on the domain D with respect to
the measure dx dy/Tr. It is explicitly represented by K(z, u) / (z + )2.
For any q > 1, we consider the Hilbert space

Hq {f." holomorphic in D]

JJ 12 -q dxdy < o,[[fl[ZH" 7rF(2q 1) If(z) K(z, z)

z- x + iy}.
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Then, the kernel function

Kq(z, u)= P(2q)K(z, bt) q, (z, bt) E O D,

is the reproducing kernel of Hq in the following sense: for any z E D,
K(., z) is the member in Hq and every memberfin Hq is represented by

f(z) (f, Kq(.,z))i4q, z D,

where {.,.)/_/q is the inner product in the Hilbert space Hq (refer to [2,3]).
Meanwhile, the kernel function Kq can be represented by

Kq(z, u) e-Ze-2q-1 d, z,uD, (2.1)

and the right hand side of (2.1) converges for all q > 0. Hence, for any q
with 0 < q < 1, the function Kq also determines the Hq that admits the
reproducing kernel Kq(z, u) (see [1,7]). For any q > 0, we denote

Kq(z, u) r(2q)K(z, b/)q, Z, bt D,

and we also consider the Hilbert space

Aq {g: holomorphic in D]

2__ ffD 12[Igl[Aq rrP(2q + 1)
[g’(z) K(z, Z) -q dx dy <

lim g(x) 0}.
Since the mapping f---f’ is the isometry from Hq onto Hq_+_l,
Hq- Aq, and Kq(z, u) is the reproducing kernel of Aq (see [3]).

3. PROOF OF THEOREM

Following the theory of generalized integral transforms [5], we prove
our theorem. First, for a---0, we consider the integral transform

7-{F(z)- 2x/_ ,,F()exp d-v zD.
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For any to > 0, we calculate the kernel form

(-- (--
K(z, U)n/4

Since the function T,,(z, u) is positive matrix on D, it determines the
reproducing kernel Hilbert space Sn (see [1,7]). On the other hand, the
space Sn is characterized by

Sn {f." holomorphic in D[

23n/2+Tr"/2-1ffz }Ilfll 2 If’(z) 12x n/2 dx dy < oc

Hence we have the norm inequality

IIv(O,z)ll < f IF()I 2 dsc. (3.1)

For the orthogonal complement N+/- of the null space

N R{F E L)(R")IT-[F(z) 0},
zED

the equality in (3.1) holds if and only if F is a member in N+/-. In fact,
N+/- is the closure of the space in L2(In) which is linearly spanned by
members of the family

{G() exp(-cl12) c D},

and so N+/-- M(n, 0). From [4], the norm equality

( )
n/2

12 ( [’r12 2ffc" Iv(w’ to) exp --oJ dA 67- J,, IF(sC)l d. (3.2)

holds, and from (3.1) and (3.2) our inequality is obtained for a- 0.
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For any a E Rn, since

(1)n ( .a_12) dv(a, t) 2v/_ F()exp
4t

2v/ .F( + a) exp d,

we have

Ilv(a, t)][]. _< f. ]F( + a)12d- f. (3.3)

From (3.2) and (3.3), the inequality (1.3) is valid. Meanwhile, the
equality in (3.3) holds if and only if F( + a) E M(n, 0). Therefore the
proof has been completed.
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