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1 INTRODUCTION

The result known as Ostrowski’s inequality [6] is as follows.

THEOREM A Let a, b and z be real n-tuples with a 7L 0 and such that

/ 0 and bizi 1.
i=1 i--1

Then

(-’in__, a)(in___l b2i) (in=, aibi)2"
(2)
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Equality occurs ifand only if

2bj a aj aibi
Zj

(- a2i )(- b2i (-] aibi)2
(1 _<j _< n).

We remark that (1) entails that the sequences (ai), (bi) are not
proportional, so that by the condition for equality in Cauchy’s theorem
the common denominator of the expressions on the right-hand sides of
the last two relations is nonzero.

Ostrowski’s inequality has been extended by Ali6 and Peari6 [1], who
established Theorem B below.

THEOREM B Suppose the conditions of Theorem A hold andp >_ is a

real number. Then

ai bi aibi)2p

This extended an earlier result of Madevski [3]. Ali6 and Peari6 used
Theorem B to derive a number of applications.
The aim of this paper is to carry these ideas somewhat further. First

we present an integral analogue to Ostrowski’s inequality. In fact both
Theorems A and B can be so extended. This is the substance of Section 2.

In Section 3 we note briefly how this may be used to derive some
results for moments of probability distributions. We then turn to
extensions of the discrete formulation. In Section 4 we note that the
results of [1] generalize to the case of nonuniform weighting and
in Section 5 we obtain a higher-dimensional discrete version of
Theorem A, allowing for variables which are subject to a general
number of linear constraints.
We conclude Section 5 with a corresponding extension to the integral

analogue allowing a general number of linear constraints.

2 AN INTEGRAL OSTROWSKI INEQUALITY

It will be convenient to first derive an integral version ofTheorem A and
then extend this to provide an integral analogue of Theorem B.
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THEOREM Let o- be a nonnegative measure on the real line R and
f,g,h:RR be functions with g not identically zero and such that
f2, g2, h2 Z2 l(R, o-), with

g(x)f(x) do- 0 and f (xz(x) do- 1. (3)

Then

f fg2 (x) do-
fZ(x) do- _>

(fg2(x) do-)(f hZ(x) do-) (fg(x)h(x) do-)2’
(4)

with equality if and only if

f(x)
h(x) fgZ(x) do- g(x) f hZ(x) do-

(fg2(x) do-)(f h2(x)do-) (fg(x)h(x)do-)2"

Proof Set A fg2(x) do-, B fh2(x) do-, C fg(x)h(x) do- and define
function w:R -+ R by

Ah(x) Cg(x)
AB- C2

As with ourcomments following the enunciation ofTheoremA, the deno-
minator in this last expression is nonvanishing. It is easy to check that

g(x)w(x) do- O, J h(x)w(x)do- 1,

A wZ(x) do-- AB- C2f(x)w(x) do-- AB- C2’

Hence we have

0 f (f(x) w(x))2 do-

ff2(x) 2 ff(x)w(x) + f wZ(x)

2A AfZ(x) do-- AB- C2 + AB- C2

A
f2(x) dx AB C2’

giving the desired result.
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THEOREM 2 Assume the conditions ofTheorem hoM and let p >_ be a

real number. Then

(i )P (fg2(x) dcr)Pf2(x) da >
(f g(x) act)p (f h(x) da)p (f g(x)h(x) da)2p"

Proof For u >_ v > 0, the inequality between power sums ofordersp _>
and provides

((U- l0p -’t- vP) lip (U- P) -]- 1 U,

that is, (u-v)p <_ up- vp. Hence by (4)

(l g2(x) dcr)
p

(’i h2(x) act)p- (f g(x)h(x) do-)
2p

__> /’g2(x)dcrih2(x)da (ig(x)h(x)dcr)
2

which gives the stated result.

If f h(x)]’(x)da 0, then from the substitution

f h(x)ff(x) dcr

we obtain the following result.

THEOREM 3
/l (R, if),

Suppose g, h and are .]"unctions such that g2, h2, ?2 E

g(x)f(x) dcr O and ?2(X) dr - 0.

Then

p p

(S g2 (X) dO" d") d")
> (fg2(x) da)P(f h(x)](x) do)2p

(f]a(x) dr)p
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Remark The result ofTheorem 2 can be improved. Suppose that g, h
and f are as in Theorem 2 and G is a nondecreasing, superadditive
function. Then

(Yg()a)-> \f()U
In particular, this inequality holds for any nondecreasing, convex
function G.

3 APPLICATIONS TO MOMENTS

Let F: R R be a probability distribution function and suppose that
the corresponding mean a fRx dF(x) exists. The rth central moment
of F, when the integral exists, is defined by

[Jr j(X a) dF(x).

We have trivially that #l --0.
Suppose the distribution has variance unity, so that 2 1. On setting

j(x) and g(x)- x-a in (5) we obtain since fdF(x)- and #l-
that

(S h2(x) dF(x))p- (i(x a)h(x) dF(x))
2p

(6)

By using substitutions of the form

h() ( a)*, J

_
z

kEJ

we can get different inequalities for the central moments.
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Thus on putting h(x) (x-a) -k- A(x-a) + # in (6), where A, # E R
and r, s E Z, we get

(#2r -I- A2#2s q- #2 -I- 2A#r+s nt- 2##r -+- 2A##s)p

(#r+l -I-/#s+l )2p _+_ (#r + ,#s + #)2p.

So in particular for r- 2, s- we have

(#4 -- 2A#3 +/2 _+_ 2 _+_ 2#)p > (#3 -+- A) 2p + (1 -f- #)2p

and for A-#- 0 we have

(#2r)P (#r+l)2p .qt_ (#r) 2p

(cf. [,]).

4 NONUNIFORM WEIGHTS

In [1], Ali6 and Peari6 used the substitutions zi 1/2in=l bi(1 <_ <_ n)
to give a useful corollary to Theorem B.

If (Yi) is an n-tuple such that yi 0 and y2 n, then

QZb2i)P QZyibi)2P-q-(!Zbi)2P. (7)

Using substitutions of the form

JcZ, i-1,...,n

and the notation OZ (1/n) 7i= y they obtained many improvements
and generalizations of known statistical inequalities given in [2,3,7,8].
See also [4, pp. 339-340]. We show that the uniform weighting 1In can
be replaced by a general probabilistic weighting Pi with -in=l Pi- 1.

Let F be the probability distribution function of the discrete random
variable X with P{X=xk} =p,, kEN, so that X has expectation
a x/pk. If the variance of X is equal to unity, that is,
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}-k(Xk a)2pk 1, then (6) assumes the form

where yi xi a. In the case Pi- 1/n (1 <_ <_ n) this reduces to (7).

5 MULTIPLE LINEAR CONSTRAINTS

We now proceed to higher-dimensional versions of Theorems A and 1.
We start with the former, replacing (1) with sets of constraints

0 (1 _< j _< m)
i=1

and

-zibi,j (1 <_j <_ r).
i=1

Typically we expect m / r < n in applications.
We shall assume that the columns of the matrix Ao (ai,j) are linearly

independent, which by Gram’s inequality (see, for example, [5, Ch. 20
Theorem 1] implies that the matrix A AgAo be invertible.

THEOREM 4 Let Ao, Bo be respectively n x m and n x r real matrices and
let z be a real column n-vector satisfying

TzTAo-O and zBo-er, (8)

where et represents the column t-vector (1, 1,..., 1)T. We suppose that the
columns of Ao are linearly independent, so that A AAo is invertible.
We define B "-B[Bo, C "-ABo and suppose that Bo is such that
B- CTA-C is also invertible. We denote its inverse by K. Then

T
ZTZ Z2i

_
e Ker,

il
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with equality ifand only if

z (Bo AoA-1C)Ker. (9)

Proof The vector y given by the right-hand side of (9) satisfies

w W(BA CWA-1ASAo) w wyWAo erK erK (CT-CwA A)-O

and

TyWB0 w -T (B’B0 CwA 1AB0) 8e K TK(B- CTA-1 C) er,

and so meets the conditions of the enunciation. Also, if z is any solution
to (8), then

zWy zw(Bo AoA-1C)Ker erWKer,

and in particular

TyTy y e Ker.
i=1

Any vector z subject to (8) therefore satisfies

zTz_yTy Z2i -y2 -(zi--Yi)2,
i=1 i=1 i=1

which gives the stated result.

For the integral result, we replace (3) by the set of constraints

g(x)f(x) d 0 (1 _<j _< m)

and

hi(x)f(x) dcr (1 <j < r).

We assume the functions g. are linearly independent.
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THEOREM 5 Let r be a nonnegative measure on R andf, g (gj), h (hi)
respectively scalar, column m-vector and column r-vector valuedfunctions
from R to R with square-integrable components with respect to cr with

g(x)f(x) d o and h(x)f(x) d e.

Define matrices A, B, C by

Ai,j f gi(x)gj(x)dcr,

i, f hi(x)h(x)d,

Ci,j / gi(x)hj(x)dr.

Let (gi) be a linearly independent set, so that A is invertible, and suppose
that the matrix B-CTA-1C is invertible, with inverse K, say. Then

Tf2 (x) dcr >_ e Ker,

with equality ifand only if

f- eK(h- CTA-lg).

The proof parallels that of the previous theorem, mutatis mutandis.
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