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1 INTRODUCTION

1.1

It is well-known that quite a few problems of applied mathematics lead
to abstract semilinear functional differential equations with delay, for
example problems in biochemical control pathways in cells by a
negative feedback mechanism (Boodwin, 1963), in distributed retarded
systems (Henriquez, 1994), in epidemiology, in modelling of viscoelasti-
city, in theory of heat flow in materials with memory (Kolmanovskii
and Myshkis, 1992), in population dynamics (Prfiss, 1993), etc.

In recent years abstract nonlinear functional differential equations
have been the object of intensive studies. The theory of these equations
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centers around the concepts of existence and uniqueness (see e.g. Jong
Son Shin, 1994; Pao, 1992; Bahuguna and Raghavendra, 1989; Vrabie,
1987; and references therein).

Stability of scalar functional parabolic equations was investigated by
Satoru Murokami (1995), Burton and Zhang (1992) and many other
specialists while only few papers are devoted to stability of nonlinear
abstract equations with delay and coupled parabolic systems with delay.
The paper by Pao and Mahaffy (1985) should be mentioned (see also
Pao, 1992). In that paper, exact conditions are established for global
stability of parabolic systems containing autonomous linear parts
without delays and quasimonotone nonlinearities with one delay. In
addition, in the paper (Ruess and Summers, 1996), the linearized
stability was established for a wide class of abstract differential-delay
equations.

1.2

Consider in a Euclidean space C the equation

k- Q(t)x (k- dx/dt, >_ O)

with a variable matrix Q(t). As it is well-known for any solution x(t) of
(1.1) Wazewski established the inequality

Ix(t)12 Ix( -)12 exp a(Qg(s)) ds (0 _< 7- _< < ), (1.2)

where 1"12 is the Euclidean norm, and

Re(Q(s)h,h)c.oz(Qn(s)) max
hC" (h, h)c.

(see for instance Izobov, 1974; Winter, 1946). Here and below the scalar
product in a Hilbert or Euclidean space Y is denoted by (h, h)y.
Denote by (x) the (upper) Lyapunov exponent of a solution x(t) of

Eq. (1.1). That is,

(x)- lim
In Ix(t)
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The set E of Lyapunov exponents of all possible solutions of Eq. (1.1) is
called the (upper) Lyapunov spectrum of Eq. (1.1). Since Eq. (1.1) has n

linearly independent solutions, the Lyapunov spectrum E consists ofno
more that n exponents. By the upper Lyapunov exponent of Eq. (1.1) is
meant the quantity

/Q max .
With the notation - lim fo,-oo ? p(s) ds,

the estimate nQ < (QR) is due to (1.2).
Now let ]’[c" be an arbitrary norm in Cn. Lozinskii introduced the

logarithm norm

L(t) hlir [llc + hQ(t)]c. 1],

see e.g. (Vidyasagar, 1993, p. 22). Here and below Ir is the unit
operator in a space Y. For any solution x(t) of Eq. (1.1), by the
logarithm norm, the estimate

Ix(t) [c. <_ ]x(’r)[c. exp[ L(s) ds (0 _< - _< < zx) (1.3)

was derived (cf. Vidyasagar, 1993, p. 22). This inequality implies
/Q L. Kolmanovskii (1995) extended the latter inequality for the
Lyapunov exponent to a wide class of (ordinary) functional differential
equations. Besides, he established effective stability conditions.

1.3

Now let A(t) be a linear closed operators in a Banach space X, with a
norm [’Ix. Besides, the domain D(A(t))-DA of A(t) is constant and
dense in X. Consider in X the equation

k A(t)x + F(t,x(h(t))) (t >_ 0), (1.4)
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where h(t) is an increasing differentiable scalar-valued function defined
on R + := [0, oo) and satisfying the inequalities

rl < h(t) <_ (t >_ O; 0<r/=const.<oo),

and Fmaps R + x C([-r/, 0], X) into X. As usually, C([a, b], X) denotes
the space of continuous functions acting from the segment [a, b] into X
and equipped with the sup-norm.
The present paper is devoted to an extension of the inequalities (1.2)

and (1.3) to Eq. (1.4). By the obtained inequalities, stability conditions
for Eq. (1.4) are established. Besides, some results from Gil’ (1994;
1996a) are generalized.
Take the initial condition

x(t)=(t) for -r<t<0, (1.6)

where F(t):[-r/,0]--+X is a given continuous function. Further,
suppose the Cauchy problem for the "shortened" equation

i, A(t)v (t >_ 0). (1.7)

is well posed (Tanabe, 1979). Then Eq. (1.7) has the evolution operator
(fundamental solution) U(t, s) acting in X and defined by the equality
U(t,s)v(s) v(t), where v(t)is the solution of (1.7) (Tanabe, 1979, p. 89).
Following Browder’s terminology (cf. Vrabie, 1987, Chapter 5; Henry,
1981, p. 55) let us introduce:

DEFINITION 1.1 Suppose the Cauchy problem for Eq. (1.7) is well
posed. A continuous function x(t) [-r/, oo) -+ X satisfying the equation

x(t) U(t, 0)x(0) + U(t,s)F(s,x(h(s))) ds

and condition (1.6) will be called the mild solution of (1.4) with the
initial function .

In particular, (1.4) takes the form

c A(t)x + B(t)x(h(t)) (t > 0),

where B(t) is a bounded Bochner integrable operator.
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Note that our results below can be easily extended to equations of the
form

2 A(t)x + F(t,X(hl(t))),...,x(hm(t)) (t >_ 0),

where hz:(t) (k= 1,..., m) are similar to h(t).

2 THE MAIN RESULT

Our main assumptions are as follows
(A1): The operator A(t) is continuously differentiable on DA. That is,

A(t)v is a strongly continuously differentiable function for any v E DA.
(A2): F has the Lipschitz property;

IF(t,h) F(t,g)lx <_ #lh glx (# const.; h,g X; >_ 0).

Further, suppose that the operator Ix-6A(t) is invertible for every
sufficiently small 6 > 0, and there are bounded measurable scalar-valued
functions a(t) and w(t) such that the inequalities

I(Ix- 6A(t))-llx <_ + a(t)(5 (t >_ O) (2.1)

and

IF(t,h)lx <_ w(t)[h[x (h X, >_ O) (2.2)

hold. Denote by b(z) the function inverse to h(s). That is, ifr h(s), then
s b(r). Put

q(s) w(s) exp a(r) dr

Now we are in a position to formulate the main result of the paper.

THEOREM 2.1 Under assumptions (A1) and (A2), let inequalities (2.1)
and (2.2) hold. Then for any initial function C([-r/, 0], X), Eq. (1.4)
has a unique mild solution x(t). Moreover, the inequality

x(t) Ix <- z(t) exp a(r) dr (t > b(0)) (2.3)
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is valid, where z(t) is a solution of the scalar equation

z(t) eo() + q(s)z(h(s)) ds
(o)

(t _> (0)) (2.4)

with the notation

eo((b) --Idp(O)lx + fo
(0)

exp c(’r) dr w(s)leo(h(s))lxds.

Further, put

A(t) hlm+0 [l(Ix- hA(t))-

COROLLARY 2.2 Under assumptions (A1) and (A2), /et A(t) be a
Riemann integrable function, and let condition (2.2) hold. Then for any
initialfunction (b E C([-7, 0], X), Eq. (1.4) has a unique mildsolution x(t).
Moreover, inequality (2.3) holds with a(t)= A(t).

COROLLARY 2.3 Let X= H be a Hilbert space. In addition, under
assumptions (A1) and (A2), let the condition (2.2), and

Re(A*(t)g,g) < a(t)lg]
g D(A*(t)), h DA;

and Re(A(t)h,h)H < a(t)lhl2tt
t>O

befulfilled. Thenfor any &itialfunction b C([-r/, 0], X), Eq. (1.4) has a
unique mild solution x(t), and estimate (2.3) holds.

Indeed, we have

[(IH (SA(t))h[2H 2 Re(A(t)h,h)H5 + (A(t)h,A(t)h)H6
> 2a(t)6 h DA, IlhllH 1.

Under consideration the operator IH--(SA(t) is clearly invertible. Thus
omitting simple calculations we easily get inequality (2.1). Now the
result is due to Theorem 2.1.
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According to (1.2), Corollary 2.3 extends the Wazewski inequality to

Eq. (1.4). If A(t) is a bounded, then for small enough > 0,

(Ix- (SA(t)) -1 Z (SkAk(t)"
k=0

So

(Ix (SA(t)) -1 Ix + (SA(t) + 0((5) ((5 0).

Hence,

A(t)- lim -1

h+o [l(Ix + hA(t)) Ix- 1] h+olim []Ix -t- hA(t)lx- 1].

According to (1.3) Corollary 2.2 generalizes the Lozinskii inequality.
Note that the extension of the Lozinskii inequality to Eq. (1.7) is

proved in Gil’ (1996b).

3 PROOF OF THEOREM 2.1

Take a fixed positive T< oe. We need the following trivial:

LEMMA 3.1 Let (x) be a continuous mapping of a closed subset

C1 c_ C([0, T], X) into itself, satisfying the inequality

I(I/x)(/)- (llJy)(t)lX (mix- ylx)(t) (t E [0, Tl; x, y E C1),

where M is a bounded linear positive operator acting in the space of real
continuous scalar-valued functions C[0, T]. If, in addition, the spectral
radius d(M) ofM is less than one: d(M) < 1, then q2 has a unique fixed
point - C1. Moreover, that point can be found by the method of
successive approximations.

Proof Take an arbitrary x0 and define the successive approxima-
tions xk II/(xk_ 1) (k 1,2,... ). Hence,

Ix+, (t) x(t)lx I(xz)(t) (Xk-1)(t)lx (Mlxz Xk-11x)(t)
<_’" <_ (MZlx- xol)(t) (0 _< _< T).
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Inasmuch as d(M)< 1, [Mk[c(o,o 0 (k ). Thus some iteration of
is a contraction in C([0, T], X). This proves the result.

LEMMA 3.2 Let the Cauchy problemfor the Eq. (1.7) be wellposed. Let
F have the Lipschitz property. Then for any initial function
C([-7, 0], X), Eq. (1.4) has a unique mild solution x(t) C([-/, cx], X).

Proof For a finite T> (0) define in C([0, T], X) a mapping Wby the
relations

 f(t)(Wu)(t)-
tf(t + f;(o) U(t,s)F(s,u(h(s)))ds

c([0, r],x),

if 0 _< < p(0),
if b(0) _< _< T

(3.1)

where

f(t) U(t, 0)I,(0)+ fo
*()

U(t,s)F(s, (h(s))) ds.

Then (1.8) takes the form

v- Wv. (3.2)

Let # be the Lipschitz constant for F, then the following inequalities
hold:

[(Wx)(t) (Wy)(t)[x 0 if 0 _< < p(0),

and

I(Wx)(t) (Wy)(t)]x <_ m [x(h(s)) -y(h(s))[xds if b(0) < _< T
(o)

with

m- sup U(t, s) lx#,
t,s[O,r]

and every x, y E C([0, T], X). Taking into account that h(t) <_ we get

I(Wx)(t)-(my)(t)lx <_ m [p(z)lx(z -y(z)lxdz (x,y C([0, T], X)).
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It can be written

I(Wx)(z) -(w)()lx _< (Vlx-lx)(z) (x, e c([0, r],x)),

where V is a Volterra operator in C(0,T) with the kernel m(s). Since

(s) is a bounded integrable function, the spectral radius d(V) of V
equals zero. Consequently, due to Lemma 3.1 Eq. (3.2) has a solution, as
claimed.

LEMMA 3.3 Let operator A(t) be continuously differentiable on DA. In
addition, with any small enough 8 > 0 let the operator Ix-SA(t) be
invertible, and inequality (2.1) hold. Then the Cauchyproblemfor Eq. (1.7)
is well posed. Moreover, its evolution operator U(t, 7-) satisfies the
inequality

Ig(,)l exp a(-r) dT- (s, _> 0). (3.3)

Proof For some partitioning of a segment [0, t]’0-tn)<
< t(n) let us denote

Un,k (I A(t(n))8,) -l (I- a(’(n) -1 (I-- A(t(kn)+l)8tc+l) -1

for k < n, and U,,-, I. Here k (")- t(n)- t21, (k- 1,..., n). As
proved in Gil’ (1996b, formula (2.5)), it can be written

u(t) -lim U,ou(s) as max 6’) ---, 0 (3.4)
k

in the sense of the norm of space X. Due to (2.1)

Now the desired assertion follows from equality (3.4).

Note that the previous lemma is a variant of formula (2.7) from Gil’

(1996b) but in the form convenient for us.
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Proof of Theorem 2.1

The existence of the unique mild solution is due to Lemmas 3.2 and 3.3.
Due to relations (2.2) and (3.3) Eq. (1.8) yields

Put

y(t) Ix(t)lxexp a(r) dr

Then

y(t) _< eo() + exp a(r) dr w(s)y(h(s))exp a(r) dr ds
(0) a0

or

h(t)

y(t) <_ eo() + b(sl)q(b(Sl))y(sl) ds.

Set

f (b(z)q(b(z)) for 0 <_ s <_ h(t),s)
0 for h(t) < s <_ t.
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Then

y(t) <_ eo(’)+ K(t,s)y(s) ds (t>_O).

By Daleckii and Krein (1974, Theorem 1.9.3) we get y(t) <_ Zl(t), where
z(t) is a solution of the equation

zl (t) eo((b) + K(t,s)z (s) ds

h( t)
eo((b) + (b(sl)q((Sl))Zl(Sl)dSl.

(3.6)

Clearly, this equation is equivalent to (2.4). Now (3.5) implies the
required estimate (2.3).

STABILITY CONDITIONS

DEFINITION 4.1 We will say that the zero solution of Eq. (1.4) is
absolutely stable in the class of nonlinearities (2.2) if for every initial
function (b E C([-r/, 0],X), Eq. (1.4) has under (2.2) a unique mild
solution x(t)EC([-rl, o),X), and there is a positive constant N
independent of the specific form of the function F (but depending on

w(t)) such that

Ilxll Nil c(i-w,ol,x).

Since h(t) <_ t, we get by Eq. (3.6) the inequality

z(t) <_ eo((b) + (b(sl)q(b(Sl))Z(Sl) as.

Due to the Gronwall inequality,

z(t) <_ eo((I))exp (k(sl)q(b(s,))ds,
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Thus Theorem 2.1 gives the estimate

Ix(t)lx _< e0()exp [a(-) + 4(’)q((’))] or

e0()exp a(-) dr + _(t) q(s) as
Je(0/

We thus have derived.

(t _> (0)). (3.7)

COROLLARY 4.2 Under the hypothesis of Theorem 2.1, let the condition

lim a(-) d- + q(s) ds < oe
t-oo JO

be fulfilled. Then the zero solution ofEq. (1.4) is absolutely stable in the
class ofnonlinearities (2.2).

Let the relation

a(-) d- + [e(’) }q(s) ds
o

hold. Then due to (3.7) for the Lyapunov exponent of a solution x(t) of
Eq. (1.4) we have the inequality

li--- ln lx(t)lx <_ A1.
t--oe

In particular, the condition A1 <0 provides the global asymptotic
stability.
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