J. of Inequal. & Appl., 1998, Vol. 2, pp. 229–233 Reprints available directly from the publisher Photocopying permitted by license only

On an Inequality Conjectured by T.J. Lyons

E.R. LOVE

Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

(Received 1 April 1997)

Let n be any positive integer, x and y any positive real numbers. The inequality

$$\alpha \sum_{i=0}^{n} \frac{(\alpha n)!}{(\alpha j)! (\alpha (n-j))!} x^{\alpha j} y^{\alpha (n-j)} \le (x+y)^{\alpha n}$$

was conjectured for $0 < \alpha < 1$ by T.J. Lyons, after he had proved it with an extra factor $1/\alpha$ on the right, in a preprint (Imperial College of Science, Technology and Medicine, 1995). Many numerical trials confirmed the conjecture, and none disproved it. The present paper proves it, with strict inequality, for all α in sufficiently small neighbourhoods of $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$

Keywords: Beta function; Binomial coefficients; Legender's duplication formula

AMS Classification: 26D07

In a long preprint entitled "Differential equations driven by rough signals" (Imperial College, London, 1995), Lyons proves a "neo-classical inequality":

$$\frac{1}{p^2} \sum_{i=0}^n \frac{a^{j/p} b^{(n-j)/p}}{(j/p)!((n-j)/p)!} \le \frac{(a+b)^{n/p}}{(n/p)!},$$

where $p \ge 1$, *n* is a positive integer, a > 0 and b > 0 [§2.2.3, pp. 38–42]. He also remarks that this inequality appears to hold with the factor $1/p^2$ on the left replaced by 1/p, on the basis of numerical evidence. The present paper proves this conjecture for a certain infinite set of values of 1/p.

E.R. LOVE

It is convenient to write α , x and y in a place of 1/p, a and b respectively, and to use the binomial coefficient notation

$$\binom{w}{z} = \frac{w!}{z!(w-z)!} = \frac{\Gamma(w+1)}{\Gamma(z+1)\Gamma(w-z+1)}$$

for arbitrary real (or complex) w and z. Lyons's *proved* inequality can then be written

$$\alpha \sum_{j=0}^{n} {\alpha n \choose \alpha j} x^{\alpha j} y^{\alpha (n-j)} \leq \frac{1}{\alpha} (x+y)^{\alpha n},$$

where $0 < \alpha \le 1$, x > 0 and y > 0. Under the same conditions, his *conjectured* inequality is the stronger one in which the factor $1/\alpha$ on the right is reduced to 1. Our first, and main, aim in this paper is to prove that

$$\alpha \sum_{j=0}^{n} {\alpha n \choose \alpha j} x^{\alpha j} y^{\alpha (n-j)} < (x+y)^{\alpha n}$$
(1)

for $\alpha = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ Of course the two sides are equal for $\alpha = 1$, by the binomial theorem.

LEMMA 1 If $0 < \omega < \frac{1}{2}\pi$ and m is a fixed positive real number, then

$$I(\omega) = \int_0^{\pi/2} \cos^m(\phi - \omega) \,\mathrm{d}\phi$$

is greatest when $\omega = \frac{1}{4}\pi$, with greatest value $2 \int_0^{\pi/4} \cos^m \theta \, d\theta$.

Proof Since

$$I(\omega) = \int_{-\omega}^{(\pi/2)-\omega} \cos^m \theta \,\mathrm{d}\theta,$$

$$I'(\omega) = -\cos^m(\frac{1}{2}\pi - \omega) + \cos^m(-\omega) = \cos^m\omega - \sin^m\omega;$$

so $I(\omega)$ is stationary when $\tan^m \omega = 1$, $\omega = \frac{1}{4}\pi$. Also

$$I''(\omega) = -m\cos^{m-1}\omega\,\sin\omega - m\sin^{m-1}\omega\,\cos\omega < 0,$$

so I(ω) is concave throughout $0 < \omega < \frac{1}{2}\pi$. Together these facts prove the lemma.

LEMMA 2 If $\alpha > 0$ and for all positive x and y such that $x + y \le 1$,

$$2\alpha \sum_{j=0}^{n} \binom{2\alpha n}{2\alpha j} x^{2\alpha j} y^{2\alpha(n-j)} \le (x+y)^{2\alpha n}, \tag{2}$$

then, for all positive x and y,

$$\alpha \sum_{j=0}^{n} {\alpha n \choose \alpha j} x^{\alpha j} y^{\alpha (n-j)} < (x+y)^{\alpha n}.$$
 (3)

Proof In Legendre's duplication formula, $\sqrt{\pi}\Gamma(2z) = 2^{2z-1}\Gamma(z)$ $\Gamma(z+\frac{1}{2})$, take $z = \alpha j + \frac{1}{2}$; thus

$$\Gamma(\alpha j+1) = \frac{\sqrt{\pi} \,\Gamma(2\alpha j+1)}{2^{2\alpha j} \Gamma(\alpha j+\frac{1}{2})}.$$
(4)

Consequently,

$$\begin{split} \begin{pmatrix} \alpha n \\ \alpha j \end{pmatrix} &= \frac{\Gamma(\alpha n+1)}{\Gamma(\alpha j+1)\Gamma(\alpha (n-j)+1)} \\ &= \frac{\sqrt{\pi}\,\Gamma(2\alpha n+1)}{2^{2\alpha n}\Gamma(\alpha n+\frac{1}{2})} \,\frac{2^{2\alpha j}\Gamma(\alpha j+\frac{1}{2})}{\sqrt{\pi}\,\Gamma(2\alpha j+1)} \,\frac{2^{2\alpha (n-j)}\Gamma(\alpha (n-j)+\frac{1}{2})}{\sqrt{\pi}\,\Gamma(2\alpha (n-j)+1)} \\ &= \frac{1}{\sqrt{\pi}} \begin{pmatrix} 2\alpha n \\ 2\alpha j \end{pmatrix} \frac{\Gamma(\alpha j+\frac{1}{2})\,\Gamma(\alpha (n-j)+\frac{1}{2})}{\Gamma(\alpha n+\frac{1}{2})} \\ &= \begin{pmatrix} 2\alpha n \\ 2\alpha j \end{pmatrix} \frac{\Gamma(\alpha n+1)}{\Gamma(\frac{1}{2})\Gamma(\alpha n+\frac{1}{2})} \,\frac{\Gamma(\alpha j+\frac{1}{2})\,\Gamma(\alpha (n-j)+\frac{1}{2})}{\Gamma(\alpha n+1)} \\ &= \begin{pmatrix} 2\alpha n \\ 2\alpha j \end{pmatrix} \frac{\mathbf{B}(\alpha j+\frac{1}{2},\alpha (n-j)+\frac{1}{2})}{\mathbf{B}(\alpha n+\frac{1}{2},\frac{1}{2})}, \end{split}$$

where B denotes the beta function. This gives, for all positive x and y,

$$\alpha \sum_{j=0}^{n} {\alpha n \choose \alpha j} x^{\alpha j} y^{\alpha(n-j)} = \frac{\alpha}{\mathbf{B}(\alpha n + \frac{1}{2}, \frac{1}{2})} \sum_{j=0}^{n} {2\alpha n \choose 2\alpha j} \times \mathbf{B}(\alpha j + \frac{1}{2}, \alpha(n-j) + \frac{1}{2}) x^{\alpha j} y^{\alpha(n-j)}$$

$$= \frac{\alpha}{\mathbf{B}(\alpha n + \frac{1}{2}, \frac{1}{2})} \sum_{j=0}^{n} \binom{2\alpha n}{2\alpha j}$$
$$\times \int_{0}^{1} u^{\alpha j - 1/2} (1 - u)^{\alpha (n - j) - 1/2} \mathrm{d}u \cdot x^{\alpha j} y^{\alpha (n - j)}$$
$$= \frac{\alpha}{\mathbf{B}(\alpha n + \frac{1}{2}, \frac{1}{2})} \int_{0}^{1} \sum_{j=0}^{n} \binom{2\alpha n}{2\alpha j} u^{\alpha j - 1/2}$$
$$\times (1 - u)^{\alpha (n - j) - 1/2} \mathrm{d}u \cdot r^{\alpha j} (1 - r)^{\alpha (n - j)} (x + y)^{\alpha n},$$

where r = x/(x + y). This expression is now

$$\frac{\alpha(x+y)^{\alpha n}}{\mathsf{B}(\alpha n+\frac{1}{2},\frac{1}{2})} \int_0^1 u^{-1/2} (1-u)^{-1/2} \sum_{j=0}^n \binom{2\alpha n}{2\alpha j} \times (ur)^{\alpha j} \{(1-u)(1-r)\}^{\alpha(n-j)} \, \mathrm{d}u.$$

Now put $u = \cos^2 \phi$ and $r = \cos^2 \omega$, where ϕ and ω are in $(0, \frac{1}{2}\pi)$. The expression becomes

$$\frac{\alpha(x+y)^{\alpha n}}{\mathbf{B}(\alpha n+\frac{1}{2},\frac{1}{2})} \int_{0}^{\pi/2} 2\sum_{j=0}^{n} {2\alpha n \choose 2\alpha j} (\cos\phi\,\cos\omega)^{2\alpha j} (\sin\phi\,\sin\omega)^{2\alpha(n-j)} \,\mathrm{d}\phi$$
$$\leq \frac{(x+y)^{\alpha n}}{\mathbf{B}(\alpha n+\frac{1}{2},\frac{1}{2})} \int_{0}^{\pi/2} (\cos\phi\,\cos\omega+\sin\phi\,\sin\omega)^{2\alpha n} \,\mathrm{d}\phi$$

using the inequality (2) in the hypothesis. Thus

$$\begin{aligned} \alpha \sum_{j=0}^{n} {\alpha n \choose \alpha j} x^{\alpha j} y^{\alpha(n-j)} &\leq \frac{(x+y)^{\alpha n}}{\mathbf{B}(\alpha n+\frac{1}{2},\frac{1}{2})} \int_{0}^{\pi/2} \cos^{2\alpha n}(\phi-\omega) \,\mathrm{d}\phi \\ &\leq \frac{2(x+y)^{\alpha n}}{\mathbf{B}(\alpha n+\frac{1}{2},\frac{1}{2})} \int_{0}^{\pi/4} \cos^{2\alpha n}\theta \,\mathrm{d}\theta \quad \text{by Lemma 1,} \\ &= (x+y)^{\alpha n} \int_{0}^{\pi/4} \cos^{2\alpha n}\theta \,\mathrm{d}\theta \Big/ \int_{0}^{\pi/2} \cos^{2\alpha n}\theta \,\mathrm{d}\theta \\ &< (x+y)^{\alpha n}, \quad \text{as required.} \end{aligned}$$

THEOREM 1 If x > 0 and y > 0 then

$$\alpha \sum_{j=0}^{n} {\alpha n \choose \alpha j} x^{\alpha j} y^{\alpha (n-j)} < (x+y)^{\alpha n}$$
(1)

for $\alpha = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ and all positive integers *n*.

Proof If $\alpha = \frac{1}{2}$ the binomial theorem gives that (2) holds. The required inequality (3), for $\alpha = \frac{1}{2}$, then follows by Lemma 2.

Inequality (3) now follows for $\alpha = \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$ from the case $\alpha = \frac{1}{2}$ by successive applications of Lemma 2 with these values of α .

THEOREM 2 Inequality (1) in Theorem 1 holds for all α in sufficiently small neighbourhoods of $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ and all n, x and y considered therein.

Proof Since

$$\alpha \sum_{j=0}^{n} {\alpha n \choose \alpha j} x^{\alpha j} y^{\alpha(n-j)} / (x+y)^{\alpha n}$$

is a continuous function of α in $0 < \alpha \le 1$, and is strictly less than 1 at the points $\alpha = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ by Theorem 1, it is strictly less than 1 in sufficiently small neighbourhoods of these points.