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This note is concerned with a comparison of the approximation-theoretical behaviour of
trigonometric convolution processes and their discrete analogues. To be more specific, for
continuous functions it is a well-known fact that under suitable conditions the relevant
uniform errors are indeed equivalent, apart from constants. It is the purpose of this note
to extend the matter to the frame of Riemann integrable functions. To establish the
comp,arison for the corresponding Riemann errors, essential use is made of appropriate
stability inequalities.
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1 INTRODUCTION AND RESULTS

Let C27 be the Banach space of 27r-periodic functions f, continuous on
the real axis , endowed with the usual sup-norm
sup{If(u)l" u E }. In connection with bounded linear operators T from

C2 into itself, i.e., T E[Czr], we use the notation

sup{l U Ic Ilfllc_< 1}. For n E 1, the set of natural numbers, let 1-In be
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the set of all trigonometric polynomials of degree at most n. Given a
positive, even, polynomial kernel (Xn)nl of the form

Xn(X) - ..ikx
p.,nC + 2 Pk,n COS kx, (1.1)

k=-n k=l

thus 0 < Xn(X) II,, with p-k,n pk,, and PO,n- 1, consider the (positive
trigonometric) convolution operator

Tnf(X) (f* Xn)(X) f(U)Xn(X u)du. (1.2)

Obviously, T, [C27r]; in fact [ITnll[c] --I};nll/:-- (1/27r) /02 IXn(U)[ du,
and therefore Znlltc- in view ofthe positivity ofthe kernel. With the
aid of the equidistant knots Uj,n 27rj/(2n + 1), a discrete analogue of T,
may be introduced via the finite sum

2n

Jnf(X)
2n + j=o f(uj,n)Xn(X- Uj,n), (1.3)

which may be interpreted either as a quadrature formula for the integral
(1.2) (mid-point or trapezoidal rule) or as a linear mean of the Lagrange
interpolation polynomial associated with {Uj,n} (cf. [7, p. 413]). As an
immediate consequence of these definitions we note that for each n 11
one has T,,p J,.,p for all p 1-I (cf. [10, p. 8]). Therefore ][Jn[Itcl- as
well, and there hold true the Berman conditions (n E ll)

T,,J, JnJ,,, JnTn TnTn. (1.4)

Moreover, using the first part of (1.4), for example, it follows that

IlT,,f fllc <- liT, f- TnJnfllc + ]lJnJnf J,,fllc + [[Jnf f[Ic
< IlJnf-fllc[llZnll[c] / IlJ, II[c] /

Consequently, for allf C2, and n N one has the comparison assertion

(see [1])

-llT,,f fllc <_ IIJnf fllc <_ 3]lT,,f fllc. (1.5)

In other words, apart from a constant, one may immediately pass from
one (uniform) error to the other.
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Dealing with the discrete operators (1.3), it is not meaningful to look
for extensions of (1.5) to Lebesgue spaces L since point evaluation
functionals are not bounded in connection with LP-metrics. On the
other hand (cf. [10, p. 5]), a reasonable candidate for an extension of
(1.5) is given by the linear space R2 of 27r-periodic functions, Riemann
integrable over [0, 27r]. Indeed, inspired by the work of P61ya [8], a
notion of a convergence for sequences of elements was introduced in

R2" (see [4]) such that R2 is not only (sequentially) complete, but
trigonometric polynomials are in fact dense in R2". As a consequence of
these considerations it also turned out that it is appropriate to measure
errors in R2 via the functionals

suplTf-fl suplJf-fl (1.6)
k>n 6n k>n n

for some suitable positive nullsequence (Sn). Here the 5-norms are given
forfc B2, 5 > 0 by (cf. [3,9])

27r

f[l J M(f, x, ) dx,
0 (1.7)

M(f, x, ):= sup{If(u)l u U6(x):= [x-,x / ]},
27r

where ff’= fo f(u)du denotes the upper Riemann integral offc B2,
the Banach space of functions, 27r-periodic and bounded on . Clearly,
C2 c R2 c B2" and f Ifl 2rllfll, if f R2. Moreover, note that
fE R2 in turn implies M(f, x, 5) R2 (cf. [5]). On the other hand,
dealing with upper Riemann integrals of bounded functions ensures
that the error functionals (1.6) are indeed well-defined.

In these terms one has the following counterpart to (1.5) for Riemann
integrable functions.

T and its discreteTHEOREM 1.1 Let the convolution process n)n-1
analogue (Jn)n= be given via ((1.1)-(1.3)) and suppose that the kernel
(Xn) additionally satisfies conditions ((2.1)-(2.2))for some nullsequence
(5) with 1In 0(5). Then for fE R2 there holds true the comparison
assertion

k>_n 5. k>n Sn k>n 5.

the constants 0 < c, c2 < being independent offc R2 and n 1.
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Indeed, since JkP Tkp for everyp E Ilk and since Jnf, TnfE II for all

f R27, one has, for example, that for k,n N with k >_ n (cf. (1.4))

Jkf f Jk(f Tnf) + Tk(Tnf f) + Tkf f,

and therefore the proof ofTheorem 1.1 is an immediate consequence of
the stability inequalities, established in the next section.

2 STABILITY INEQUALITIES

For the convolution process (T) there are several possibilities to prove
stability in connection with the Riemann errors (1.6). Let us just
mention the following result, actually valid for functionsf BzTr which
are additionally Lebesgue measurable, i.e., for f BM2 (note that

RzTr C BMzTr).

THEOREM 2.1 Let a positive, even, polynomial kernel (X) be given
via (1.1). Suppose there exist some > 0 and a monotonely decreasing
sequence (c,)__ ofpositive constants such that

X(u) _< c,u- for n 1 and u [6n, 7r], (2.1)

where (6) with 0 < 6<_ 7r is a further monotonely decreasing null-
sequence satisfying

cn u-e du <_ M for n N. (2.2)

Then for the convolution process (1.2) andf BM2 there holds true the
stability inequality

1] sup ,Tkf] <_c[]f,,6, (2.3)
k>_n fin

the constant c x being independent off BM2 and n

Proof First let us recall the elementary fact (cf. [5]) that forf B2,
5>0 and m or

Ilfilm6 < ml[f[l, IlfllA6 <- (1 / A)llfl[6, (2.4)

respectively. Moreover (cf. [6]), forf BM27r, g R2r and 8 > 0

(2.5)
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Since the kernel is even, one has (k _> n)

Tkf(x) ---- + f(x + u) +f(x- u)]xk(u)du

and therefore in view of (2.1)

]Tkf(x)] <_ M( f,X, 6n) + - []f(x + u)l + lf(x u)l]u- du.

Because of ck _< cn for k > n one obtains by (2.5) that

sup ITkf[ <_
k>_n

u- du < ++ c,2]]f]]6, 2]]/]]6, 2M]]U]]6,,

where we have used (2.2) and (2.4).

As a first application, actually needed for the following, let us
consider the Fej6r means (cf. (1.2))

j0nf(X) "--(f* Fn)(x) - f(u)Fn(x u) du,

"--vn1[sin(n + )u/2-Fn(u) _---( u, + 2
j=l

J ) cosju.
n+l

(2.6)

Since (cf. [2, p. 51])

Fn(u) < u-2 for n E N and u E 7r
-n+l

the Fej6r kernel satisfies all the assumptions ofTheorem 2.1 with/3- 2,
Cn- 7r2/(n-+- 1) and Sn- l/n, and hence (cf. [6])

COROLIARY 2.1 For the Fejgr means off BM2 there holds true the
stability inequality

sup
k>_n 1In

the constant c < cx being independent off BM2 and n

Turning to the discrete operators (1.3) it will in fact be shown that the
discrete process (Jn) will always be stable, provided the convolution
process (T) shares this property.
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THEOREM 2.2 For processes (Tn)ne=l (Jn)ne__l given via ((1.1)-(1.3))
there exists a constant c < o, independent of fE R2,, n N, (5 > O,
such that

sup IJf
k>n

<c
6+l/n"

Proof Without loss of generality one may assume k _> n > 2. Since

f R2r, Xk G ]-[k Q RzTr, one hasf(u)xk(x u) R27r as a function ofu and
thus M(f(.)Xk(x- .), t, ) Rzr as a function of for each x E R, > 0. In
view of the definitions (1.3) and (1.7) it follows that for each x R

2k fUj+ ,k

l f(u,)[x,(x u,,) dtIJf(x)l <_

j/O’:Zr ( 27r ’i) at<- 27r
M f(’)X(x "), t, 2k+

< M (’)Xk(X "), t, dt,
-27r

the latter because of 27r/(2k + 1) < 7(1/2k) and (2.4). Using the fact that
for 6>0

sup [f(u)x(x-u)l < sup If(u)l" sup )(z), (2.7)
uv(t) u(t) z(x-t)

the previous estimate may be continued to

employing the 27r-periodicity of the expressions involved. Obviously,
since 0 _< X II, one obtains (cf. (1.7))

( 1)M X,, v, }- <_ X:(v) + sup
s,te/:k V)

1/2k
<_ Xtc(v) + [X(V + r)l dr,

-/2
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and therefore (cf. (1.2))

J/, f(x)l < M f, x v, X(v) dv

+ M x v,
la-1/2

IX;(v + r)l dr dv

7 (Tk IM(f, ) l (x) + Akf(x)), (2.8)

say. Concerning Af(x), to apply a Fubini-type theorem for Riemann
integrable functions, let us just mention that g E R2r indeed implies
g(y- t) to be Riemann integrable with regard to (y, t) over [0, 27r]2 (this
may be shown via the Lebesgue characterization of the set of points of
discontinuity of a Riemann integrable function). Hence the interchange
of the order of integration is justified, delivering

M x- v, Ix(v + r)ldv drAf(x)
a-1/2k

M f, x u + r, I  (u)l du dr,
27r d-1/2k

again using the 27r-periodicity of the expressions involved. But for

Irl <_ 1/2k

( 2-) ( ) (f, _)M f,x-u+r, < M f,x-u, /[r[ <_ M x-u,

and thus

fo2 ()A:f(x) <_ -- M f, x u, IX(U)[ du.

Now let us employ the representation (cf. [2, p. 99])

f0
27r

X:(u) X:(u + v)F,_l(v)Zksinkvdv (2.9)
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of the derivative of the polynomial Xk. It may be mentioned that (2.9)
was used by F. Riesz (1914) for his elegant proof of Bernstein’s
inequality. Since the polynomial Xk is positive, one has (cf. (1.2), (2.6))

7r
Xk(U v)Fk-1 (v) dv du

2(M(f, .,-)*Xk*Fk-1)(X).
Again by Fubini’s theorem (within the frame of Riemann integration) it
is well-known that these convolutions are commutative. Moreover,
since Tk and crK are positive linear operators, they are monotone. Hence,
setting Sk f(x):=Tk[M(f,.,1/k)](x), it follows that
sup{l/(x)l) and (cf. (1.2), (2.6))

Akf(x) <_ 2Crk_,[Skf](x) <_ 2crk_l [sup Sjf] (x).
j>_n

In view of Corollary 2.1 this implies that for k >_ n > 2 and every 6 > 0
(cf. (1.7), (2.7))

sup Akf
k>_n

_<2 M sup Ok sup ,x, dx
k>_n- j>_n

k>_n-1 j>_n

<2
k>_n-1 j>_n 1/(n-l)

< 2c
1/(n-l) 2c11 supSjfj>_, 8+l/(n-1)

where we have used the fact that supj>_,,SjfE BM2r and therefore
M(supj> Sj f, x, 5) BM2 for eachf R2 (cf. [6]). Thus in view of
(2.8) we. have obtained

sup Sf
k>n

/ 14c sup Sjf
j>_n

and a further application of (2.4) establishes the assertion.
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THEOREM 2.3 Let the processes (Tn)n__l (Jn)nC__l be given via ((1.1)-
(1.3)) and suppose the convolution process (Tn) to be stable in the sense

(cf (2.3)) thatforfE R2, n N anda monotonely decreasing nullsequence
GSn) with 1/n-OGS)

sup ITkfl < cllfll6.
k>_n 6n

(2.10)

Then the discrete analogue (1.3) also satisfies the stability inequality

sup
k>n

ellfll6.,

the constant c < cx being independent offE R2r, n N.

Proof By assumption there exists a constant M < such that 1/n <
M6. Therefore by Theorem 2.2 and by (2.4), (2.10)

sup IJf
k>n

< c sup Tk M
k>_n I 6nWM6n

c*llfll.+ < c
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