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1. INTRODUCTION

The main applications of differential inequality theory concern ques-
tions such as: estimates of solutions of differential equations, criteria of
uniqueness and ofcontinuous dependence on initial data and right sides
of equations for solutions... The subjects have been well studied by
many authors; see, e.g., Chaplygin [8], Deimling [13], Haar [15],
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Hartman [16], Kamke [18], Lakshmikantham and Leela [21], Nagumo
[22,23], Szarski [24], Walter [31], Waewski [32,33], etc. For recent
results in functional setting, we refer the reader to [3-6] and the
references therein.

In [21,24] a differential inequality of Haar type

lu, MlVxul + p(t,

with p E CO the right side of a certain comparison differential equation,
was considered. The estimate of u was established by means of extremal
solutions of the corresponding comparison equation w’ p(t, w). From
this, one can derive some uniqueness criteria ofclassical solutions to the
Cauchy problem for evolution partial differential equations. We
emphasize here that these criteria may be used only locally.

Let us mention that the global existence and uniqueness of general-
ized solutions for convex Hamilton-Jacobi equations were well studied
by several methods: variational method [10], method of envelopes [1],
vanishing viscosity method 14,19], etc. The global theory for nonconvex
Hamilton-Jacobi equations has recently been considered by Crandall
and coworkers [11,12] and Ishii [17], etc. They have introduced the
notion "viscosity solutions" to define generalized solutions and
characterized their properties. By these contributions, the global
existence and uniqueness of generalized solutions have been established
almost completely. However, it should be noted that viscosity solutions
ofpartial differential equations are, as regular as possible, in general just
continuous. They may therefore contain singularities. So what kinds of
phenomena would appear when we extend the classical (local)
solutions? In such a procedure, we must go back (for this see [26]) to
Haar’s lemma 16, Chapter VI, Lemma 10.1]. Of course, furthermore,
the a priori estimates from the lemma (or something like it) are of much
interest from various points of view.

Recently, Van and Thai Son [29,30] have provided a new method,
based on the theory of multifunctions and differential inclusions, to
integrate the differential inequality of the form

lu, e(t)[(1 + Ixl)lVxul +  (x)lul],

with/ a function locally bounded on Rn and g E L1(0, +oe). The result
plays a key role in investigating the uniqueness of the so-called global
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semiclassical solutions to the Cauchy problem for a single first-order
partial differential equation with time-measurable Hamiltonian. Partic-
ularly, an answer to an open uniqueness problem of Kruzkhov [20] is
therein given by the study of such solutions, whose existence has been
considered in [27,28].

In this paper we combine the method of multifunctions and
differential inclusions in [29,30] with the technique of Carath6odory
comparison equations and prove some new uniqueness criteria for
weakly-coupled systems. The paper will be organized as follows. In
Section 2 the notion of comparison equation in [24] is extended to the
Carath6odory case. Section 3 concerns a system of differential inequal-
ities of Haar type. Finally, in Section 4 we give some results of
uniqueness of global semiclassical solutions to systems of first-order
partial differential equations. They are new even when restricted to the
classical case of a single equation.
From now on n, rn stand for certain positive integers, 0 < T< +oo,

and

def(0, T n X): 0 < < T, x }- {(t, "
The notation 7x will denote the gradient (O/Oxl,..., O/Ox,,). Let 1. and
(., .) be the Euclidean norm and scalar product in In, respectively.
Denote by the set of all locally Lipschitz continuous functions u

defined on fr by Lip(fT). Further, set Lip([0, T) n) de__f

Lip(fiT) N C([0, T) n). For every function u defined on fiT, we put

Dif(u) de___f {(t,x) E f:r: u is differentiable at (t,x)}.

We shall be concerned with the following class of Lipschitz continuous
functions:

V(ftv) de___f {u E Lip([0, T)
2G C [0, T] mes(G) 0, Dif(u) D fv \ (G x

(Here, "mes" signifies the Lebesgue measure on Ii.) In other words, a
function u Lip([0,T) Ii") belongs to V(ftT) if and only if for almost
all t, it is differentiable at any point (t, x).
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Finally, consider the class

vm(.T)de__f V(’T) X X V(aT).
times

Each element of vm(QT) is therefore a vector function, namely
u-(u,...,Um) from frcRn+l into ]m such that uj belongs to V(fr)
for every j 1,..., m}.

2. CARATHIODORY COMPARISON
DIFFERENTIAL EQUATIONS

For our next discussions, we need to extend the notion of comparison
equations given in [24] to the CarathSodory case. Consider an ordinary
differential equation

w’=p(t,w), (2.1)

where the function p is defined on D+de--f(0, +oe)x [0,+ec)-
{(t,w):t> O,w >_0}. The following Carath6odory conditions are
always assumed:

(1) For almost every (0, +oc) the function [0, +oc) w- p(t, w) is

continuous.

(2) For each w [0, +oc) the function (0, +oc) - p(t, w) is measur-

able.
(3) For any r (0, +o) there exists a function mr Loc(0, +oc)with

Ip(t,w) l-<mr(t) Vw [0, r]

for almost every

In this situation we call (2. l) a Carathdodory differential equation on D+.
A solution of it on an interval Ic (0, +oc), with int I=/= (, is meant a

nonnegative function w(.) absolutely continuous on each compact
interval J c I (absolutely continuous on I for short) such that

almost everywhere in I. We refer to [9] for what concerns the local
existence of a solution of (2.1) through any given point (t, w int D+.
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Moreover, every such solution can be extended (as a solution) over a

[left, right] maximal interval of existence.

DEFINITION A Carath6odory differential equation (2.1), with

p(t, w)>_ 0 on D+ and p(t, 0)=0 for almost all > 0, will be called a

comparison equation if w w(t)=_ 0 is in every interval (0,-),) the only
solution satisfying the condition limt_0w(t)= 0.

Remark Let g be a nonnegative function Lebesgue integrable on each
bounded interval (0,-y) c R, and cr E C[0, +oc) be such that or(0)- 0,
or(w) > 0 as w > 0, and f(1/cr(w))dw- +oe for every 6 > 0. Then (cf.
[24, Example 14.2])

w’- g(t)cr(w) (2.2)

is a comparison equation. In fact, assume the contrary that (2.2) admits
a nonzero solution w(.) on some interval (0,3’) with limt0w(t)-0.

def
Letting w(O) o, from this we easily find a nonempty subinterval (t 2]
of (0, 3’) such that w(t1) 0 and w(t) > 0 for all E (t, t2]. It follows that

’W(t) dv tt: w’(t) ftt:or(v) r--() dt e(t) dt <

a contradiction. Therefore (2.2) must be a comparison equation.
Motivated by this fact, we propose the following:

PROPOSITION 2.1 Let r C[0, +oc), and g >_ 0 a function Lebesgue
integrable on each bounded interval (0, /)

(i)/f(2.2) & a comparison equation, then so is the equation

w’- or(w). (2.3)

(ii) Conversely, under the condition ess inft (0, +o) g(t) > 0,/f moreover
(2.3) is a comparison equation, then so is (2.2).

Proof (i) Let w(.) be a solution of (2.3) on some interval (0, 3,1) with
limt_0 w(t)-0. Find a number -y2>0 such that

,.)/1 f0 "3’2
e(T)dr. (2.4)
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Setting w2(t) def dr), that W2(.) is aw (fd g(-) we see solution of (2.2) on
(0, 3’2) with limt_0wZ(t) 0. By assumption, wZ(t) 0 on (0, ,2). Hence
wl(t) =_0 on (0, ,1). This shows that (2.3) is a comparison equation.

(ii) Let (0, +oe) 9 tH t(t) be the inverse of (0, +oe) t f g(-) dr,
and w2(.) be a solution of (2.2) on some interval (0,3,2) with
limt_,owZ(t)=O. First, define a number 71> 0 by (2.4). Then setting
w(t) de--fw2([(t)), we also see that wl(.) is a solution of (2.3) on (0, 3,1)
with limt_,oWl(t)=0 (cf. [13, Proposition 3.4(c)]). The rest of the proof
runs as before.

In the sequel, for each function g defined and continuous in a certain
interval (0, to), let Pg denote the open set {t E (0, to): g(t) > 0}. Here is an
elementary property of comparison equations"

PROPOSITION 2.2 Let (2.1) be a comparison equation and g be a given

function absolutely continuous on some interval (0, ) such that
limt_og(t) < 0 and that g’(t) <_ p(t,g(t)) almost everywhere in Pg. Then
g(t) <_ 0 for all (0, to).

Proof On the contrary, suppose that there exists (0, ) with v def
g(t1) > 0. Setting g(0) def

lim0 g( t) and t2 ae-fsup{t [o, tl):g(t)= 0},
we see that 0 _< 2 < 1, g(t2) -0 and (t2, l) c Pg. Hence, by assumption,

g’(t) < p(t, g(t)) almost everywhere in (t2, tl). (2.5)

Now take

/(t, w)de__f fp(t, max{0,g(t)}) if 2 < < , w _> max{0,g(t)},
[.p(t, w) if 2 < < , 0 < w < max{0,g(t)}.

(2.6)

The Carath6odory conditions (1)-(3) mentioned earlier are clearly
satisfied for t5 on (t2, 0) [0, nt-o). Let w(.) be a solution through (t
of (2.1) with t5 in place of p, and let (t3, 1] c (t2, 1] be its left maximal
interval of existence. We next claim that

(0 <_)w(t) <_ g(t) Vt (t3, tl]. (2.7)

Assume (2.7) is false. Then one would find a nonempty interval
(t4, 5) C (t3, l) such that

w(t) > g(t) Vt (t 4, ts), (2.8)
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with

w(t 5) g(tS). (2.9)

It follows from (2.5), (2.6) and (2.8) that g’ t) <_ p( t, g( t)
(t, w(t)) w’(t) almost everywhere in (t 4, ts). Thus (2.9) implies that
g(t) > w(t) for all E (t 4, ts), which contradicts (2.8). So (2.7) must hold.
We proceed to show that 3- 2. In fact, if (0 <) t2< 3, then

def
(2.6) together with Carath60dory’s condition (3), where r-

max{g(t):t It3, tl]}, prove that limt_t3 w(t) exists and is finite; hence
w(.) could be extended (as a solution of (2.1) with t5 in place of p) over an
interval (t6, 1] [t3, tl], which is impossible.

Finally, (2.6) and (2.7) show that w(.) is indeed a solution through
(t v) of (2.1) on (t2, ] with limtt2 w(t) g(t2) -0. Setting w(t) de_f 0 for

[0, t2], we obtain a nonzero solution of (2.1) on (0, ) which tends to 0
as tends to 0; thus we arrive at a contradiction. This completes the
proof.

3. DIFFERENTIAL INEQUALITIES OF HAAR TYPE

We can now combine the method of multifunctions and differential
inclusions in [29,30] with the technique of Carath6odory comparison
equations and prove the following:

THEOIEM 3.1 Let u be a vector function in vm(T) with ui(O,x)-O
(j-1,...,m), and (2.1) be a comparison equation. If there exists a

nonnegativefunction g L(0, T) such that

IOuj(t,x)/Otl <_ g(t)(1 + Ixl) IVxuj(t,x)l

+p(,, max [u,(t,x)l)k=l,...,m
(j-- 1,...,m) (3.1)

for almost every t(O, T) and for all x IRn, then uj(t,x)=_O in f7
(j-- 1,...,m).

Proof For an arbitrary point (t, x) E FiT, it suffices to prove that

max lu.j(t, x)l O.
j-- |,ooo,rn

(3.2)
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Let/)r -/rn de__f {X E ]ln" IX]

_
r}, r _> 0. Denote by Ni(t, x) the set

of all absolutely continuous functions x(.) from Iaef [0, ] into R which
satisfy almost everywhere in I the differential inclusion dx(t)/dt
e(t).(l+lx(t)l) subject to the constraint x(t)-x. From [7, Theorem
VI-13], it follows that Nltt, x) is a nonempty compact set in C(I, Rn).
The sets Z(t, tO, xO) del {x(t): x(.) S,i(tO, xO)} and r(tO, xO)de__f
{ (-, x): " I, x Z(-, , x) } are therefore compact sets in R and
IR + 1, respectively, for all /. Moreover, by the converse of Ascoli’s
theorem, the multifunction

Z(., , x) :I IR

is continuous. We now define

g(l) def
max g(t) (3.3)

k=l,...,m

for E/, where

gk l) def max{luK(t,x)l" x Z(t,t x)} (k- 1,...,m). (3.4)

Then according to the Maximum Theorem (see [2, Theorem 1.4.16]), the
fact that u C(r(t,x),Rm) implies that g, gl,... ,gm C(I). In addi-
tion, it follows from [29, Lemma 1] that for any number 0 (0, ) each
function gk is absolutely continuous on [0, ] and so is the function g.
Going back to the proof of Theorem 3.1, we set now

h(t) de___f (T) for [0, T].

It is well known that there exists a set G1 c (0, T) of Lebesgue measure 0
with the property that

dh(t)/dt g(t) Vt (0, T) \ G

Obviously, (3.2) will be obtained if one can verify that g(t) 0. Since
g is a nonnegative function absolutely continuous on (0, t], with
limt_0g(t)- g(0)-0 (by assumption), Proposition 2.2 shows that we
need only claim that

g’(t) <_ p(t,g(t)) almost everywhere in (0, to).
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By the hypothesis of the theorem, one finds a set G2 c (0, T) of
Lebesgue measure 0 such that

ar \ (G2 x Rn) C Dif(uk) (3.6)
k=l

and that (3.1) holds for any E (0, T)\G2,x In. Assume without loss of
generality that g is differentiable at any point of (0, t)\G, where

defG G1 U G2. Now fix an arbitrary point t, (0, t)\G and take _<j _< rn
such that

defg(t,) gJ(t,) --lu.(t,,x,)l- slgnuj(t,,x,) (3.7)

for some x, z(t,, , x). Then one may find a function *x(.) Ez(t, x)
so that *x(t,)= x,. Next, choose a unit vector e R with

(e,. Vx,#(t,,x,)) -IVxu#(t,,x,) I. (3.8)

Let y(.) be a continuously differentiable Rn-valued function of s E R1
such that y(h(t,))- x, and dy/ds-(1 + ly[). e; and let x(t) defy(h(t)) for

[0, T]. Of course, x(.) is absolutely continuous on [0, T], x(t,)= x,,
and

dx
dt

(t) g(t) (1 + Ix(t)l) e Vt (0, T) \ G. (3.9)

Moreover, the function 2(.) defined by

de__f / X(I) if 0 _< _< t,,
2( t)

*x(t) ift,_<t_<to

clearly belongs to Ei(t, x); hence,

x(t) Z(t,t,x) Vt [0, t,].

This, together with (3.3) and (3.4), implies

e. U/(t,x(t)) < lU/(t,x(t))l <_ g.i(t) <_ g(t) for all t [0, t,).

Besides that, by (3.7),

. U(t,,x(t,)) -lu.(t,,x,)l- g.(t,) g(t,).

(3.10)

(3.11)
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Therefore, since t, E(O,t)\G, it may be deduced from (3.10) and
(3.11) that

d[e (t,x(t))]g t, < -t uj

Consequently, by (3.1) and (3.7)-(3.9), we conclude that

(dx(t,),e.VxU(t,,x(t,)))g’(t,) <_ . (Ou(t,,(t,))/oO +
<_ IOu(t,,x,)/Otl e(t,)(a + Ix, I). IVxu(t,,x,)l
<_ p(t,, lu(t,,x,)l p(t,, max ]u(t,,x,)])k=l,...,m

=p(t,,g(t,)).

Finally, because G has measure 0 and t, E(O,t)\G is arbitrarily
chosen, (3.5) must hold. This completes the proof.

THEOREM 3.2 Let u be a vector function in vm(fr) with uj(O,x)-O
(j= 1,...,m), and (2.3) be a comparison equation. If there exist a

nonnegativefunction # locally bounded on ]Rhand a nonnegative function
g L1 (0, T) such that

IOu(t,x)/Otl < e(t) [(1 + Ixl). IVxu#(t,x)l.

+#(x)cr( max ]u(t,x)])] (j--1,...,m) (3.12)
k=l,...,m

for almost every t(O, T) and for all x IR, then uj(t,x)-O in

(j-- 1,...,m).

Proof For an arbitrary point (t, x) fr, it suffices to prove (3.2). Let
us continue using the method (and notations) introduced in the proof of
Theorem 3.1. We may extend the function g over the whole (0, +oc) and
assume ess inf (0, +o)g(t) > 0. Then by (3.12) (instead of (3.1)) we get

g’(t) < Cg(t)r(g(t)) almost everywhere in (0, )

(instead of (3.5)) for some positive constant C. By Proposition 2.1 (ii),
the Carath6odory differential equation

w’- ce(t)(w)

must also be a comparison one. Thus (3.2) is straightforward as before.
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4. UNIQUENESS OF GLOBAL SEMICLASSICAL
SOLUTIONS TO THE CAUCHY PROBLEM FOR
WEAKLY-COUPLED SYSTEMS

The results in Section 3 can be used to investigate the uniqueness of
global semiclassical solutions to the Cauchy problem for weakly-
coupled systems of first-order partial differential equations, i.e., the
problem of the form

Ou/Ot +f(t,x,, Vu) 0

u(O, x) ( (x), ,m(x))

in [27- (j 1,...,m),
on {t 0, x R"}.

(4.1)

(4.2)

Here, the initial data qS-(b,..., )m) is a given vector function con-
tinuous on Rn. Each Hamiltonian fj=f(t,x,u,pJ) is always assumed
to be measurable in E (0, T) and continuous in (x, u,p) ]Rnx ]mx

Rn. First, we repeat the definition (in [25]) of the solutions to be
considered.

DEFINITION A vector function u vm(T) is called a global semi-

classical solution of (4.1)-(4.2) if it satisfies (4.1) for all x R" and
almost all (0, T) and if u(0, x) qS(x) for all x Rn.

In this section we have:

THF.ORM 4.1 Let (2.1) be a comparison equation. Suppose that fj
(j 1,..., m) satisfy thefollowing conditions." there exists a nonnegative

function g LI(O, T) such that

I..(t,x,u,p fj.(t,x, v,q#)l

_< g(t)(1 + Ixl)lpJ- qJI + p(t, max ]ul vkl)k=l,...,m
(4.3)

for almost every (0, T) andfor all (x, u, p2), (x, v, q2) x ]m x n
(j 1,..., m). Ifuand uZare global semiclassical solutions to the Cauchy
problem (4.1)-(4.2), then ul(t,x)=uZ(t,x) in

Proof Consider the vector function u u(t, x) defU (t, X) u2 (t, X).
Then u(O,x)-=0. Furthermore, by (4.3) and the definition of global
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semiclassical solutions, we have

ot (t,x)

+p t, max lu(t,x)-u(t,
k=l,...,m

g(t)(1 / [xl). IVxU#(t,x)
+ p(t, max lu(t,x)l)k--1,...,m

for almost every E (0, T) and for any x (j 1,..., m). Now it follows
from Theorem 3.1 that u(t, x)= 0 in f7 This proves the theorem.

Analogously, Theorem 3.2 implies the following:

THEOREM 4.2 Let (2.3) be a comparison equation. Suppose that f
(j 1,..., m) satisfy the following conditions: there exist a nonnegative

function # locally bounded on nand a nonnegativefunction g LI(O, T)
such that

If.(t,x, u,p) -.(t,x, v,

’(t)[(1 + Ixl). Ipj- qJ[ + (x)a( max lug-vl] (4.4)
k=l,...,m

for almost every (0, T) andfor all (x, u, pJ), (x, v, qJ) n x m X

(j 1,..., m). Ifuand u2are global semiclassical solutions to the Cauchy
prob&m (4.1)-(4.2), then u(t,x)ue(t,x) in .
A useful uniqueness criterion for global semiclassical solutions with

essentially bounded derivatives is given by the next sharpening.

THEOREM 4.3 Let (2.3) be a comparison equation. Suppose that
(j= 1,...,m) satisfy the following conditions: for any compact sets

K C m, K C there exist a nonnegativefunction g L (0, T) and a

nonnegativefunction, locally bounded on such that (4.4) with
and,, in place ofg and, re6ectively, holdfor almost every (O,T)
andfor all (x, u, pJ ), (x, v, qJ K K2 (j= 1,...,m). If u and u
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are global semiclassical solutions to the problem (4.1)-(4.2) with

max max ess sup IVxU}(t, x) < +oc,
i=1,2 j=l rn (t,x)Er

then ul(t,x) u2(t, x) in

Proof According to the definition of V(fr), [30, Lemma 4.1] shows
that

sup
xEIR

ess sup
xN

(i-- 1,2;j- 1,...,m;k- 1,...,n)

for almost all E (0, T). Taking the essential supremum over E (0, T),
we find that

ess sup sup
t(O,T) xlR

ess sup

Consequently, by assumption,

r max max ess sup sup Vxu(t, x) <
i=l,2j=l,...,m tE(O,T) xN

(4.5)

Let u-u(t, x) be as in the proof of Theorem 4.1, and let

def -n ]ln, def
K2 B C g g/2; (4.6)

xk de__f (-k,k) x...x (-k,k) c IRn (k- 1,2,...). (4.7)
n times

For an arbitrarily fixed T (0,T), we consider the sequence
of the following parallelepipeds:

p, de__f (0, Tt) )(k { (t,X)" 0 < < T’, x Xk }. (4.8)

Obviously, p1 c p2 c c pk c and +o lUk= P fiT,. Next, take

S
kdef-max max max lU t,x)],

i=1,2 j=l m (t,x)[k

Klkde___f [_sk, sk
times

S k] C ]t{
(4.9)
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We now define a function # on 1R by setting

](X) de__f { K,K2 (X) if x E X

#/l+,,/2(x) if x Xk+l \ Xk (for k 1,2,...). (4.10)

It follows that # is locally bounded on IRn. Moreover, according to
(4.5)-(4.10) and the hypothesis of the theorem, we have

-gT (t, x)

for almost every (0, T) and for any x R, j= 1,... ,m. (We may
check these inequalities first for (t,x) in p1, and then for (t,x) in each
p/+l\p/.) Theorem 3.2 therefore shows that u(t,x)=_O in Fir,. Since
T’ (0,T) is arbitrarily chosen, the conclusion follows.

COROLLARY 4.4 Letfj. be measurable 0 (0, T), continuous in x IR,
and differentiable in (u,p.j) Rmx R such that for any compact set
KC IR" the fimction

g/ g/(t) de__f + max sup
j=l ,m (x,u,p.J)EIRn xlRm xK

Ip.ij)(t,x,u, PJ)/(1 + Ixl)]

is Lebesgue integrable on (O,T), and thefunction

12K IK(X U) de__f max esssup suP’0ukl t, x, u,p)/e,c( t)
k,j=l,...,m tE(O,T) pJK

is locally bounded on IRnx Rm. If uland u2are global semiclassical
solutions to the Cauchy problem (4.1)-(4.2) with

max max esssuplX7uj(t,x)l<+oo,i= 1,2 j= 1,...,m (t,x)fr

then ul(t,x)=_u2(t,x) in fT.
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Proof We take here or(w) defmlw I. Then (2.3) is a comparison equation
(see the remark preceding Proposition 2.1). Let us introduce the
notation

].KI,K (X) de__f sup uK2 (x, u)
uEKl

for any right parallelepipeds K1 C Im, K2 C ]1n. Then it is easy to check
that (4.4) with gK2 and #/q,K2 in place of g and #, respectively, hold for
almost every E (0,r) and for all (x, u, pJ), (x, v, qJ) R" x K1 x K2
(j 1,..., m). The corollary thereby follows from Theorem 4.3.

Remark Theorem 4.3 and Corollary 4.4 generalize corresponding
results in [30] to the case of weakly-coupled systems (of first-order
partial differential equations with time-measurable Hamiltonian). They
are new even when restricted to the classical case of a single equation.
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