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The present paper studies some aspects of approximation theory in the context of one-
dimensional Galerkin methods. The phenomenon of superconvergence at the knots is
well-known. Indeed, for smooth solutions the rate ofconvergence at these points is O(h2r)
instead of O(h + ), where is the degree of the finite element space. In order to achieve a
corresponding result for less smooth functions, we apply K-functional techniques to a
Jackson-type inequality and estimate the relevant error by a modulus of continuity.
Furthermore, this error estimate requires no additional assumptions on the solution, and
it turns out that it is sharp in connection with general Lipschitz classes. The proof of the
sharpness is based upon a quantitative extension of the uniform boundedness principle in
connection with some ideas of Douglas and Dupont [Numer. Math. 22] (1974) 99-109.
Here it is crucial to design a sequence of test functions such that a Jackson-Bernstein-type
inequality and a resonance condition are satisfied simultaneously.
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1 INTRODUCTION

We consider the two point boundary value problem

-(a(x)u’(x))’ + b(x)u(x) --f(x), x E (0, 1),

u(0) u(1) 0.

The corresponding weak problem is to find a solution u E W’2(0, 1)
satisfying

a(u, v) (f, v)L2(o,, for all v 6 Wo’2(0, 1), (1.1)

where a(u, v)’- f[a(x)u’(x)v’(x) + b(x)u(x)v(x)]dx. Here WS’2(0, 1)
denotes the Sobolev space (cf. [1]) of those real-valued functions which
possess weak derivatives up to the order s belonging to the Hilbert space
L2(0, 1) of square integrable functions on (0, 1). Therefore, WS’2(0, 1)
equipped with the inner product

(U, V)s,2,(0,1) (U(k), Y(k))L2(0,1
k=0 k=0

u(k) (x)v(k) (x) dx

and the norm Ilulls,=,<0, / I1 < >11 1/2c:/0,] is a Hilbert space as
well. Besides, we use the semi-norms Let
Wd’2(0, 1) be the closure of C(0, 1)in W’2(0, 1), where C(0, 1)is
the set of all infinitely often differentiable functions with support in

(0, 1). Moreover, similar to W’2(0, 1) let W’(0, 1) be the Sobolev space
of functions with weak derivatives up to the order s in the space of
essentially bounded functions L(0, 1).
We assume that the function a(x) is Lipschitz continuous on [0, 1]

and that b(x) L(0, 1). Therefore, a(., .) is bounded, i.e., ]a(u, v)[ _<
Cllull, 2/0 u, v w ’2(0, In order to ensure that a(.,-) is

w,2-diirtic, i.e., there exists a constant c >0 such that a(u,u)>
1,2,(0,1), u W0 (0, 1), we assume a(x)> >0 and b(x)>0 a.e.

Further, let f L2(0, 1). Now the representation theorem of F. Riesz
assures the unique solvability of problem (1.1). Indeed, the solution u

does not only belong to W’2 (0, 1) but even to W2’2(0, 1) (cf. [12, p. 200]).
For a discretization via the finite element method we consider

the equidistant partitions (h--l/n, hEN; N denotes the set of
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natural numbers)

Th := {[jh, (j + 1)hi: 0 <_j < n}.

The finite element spaces Vh of degree r are now given by

Vh Vh(r) := {v E Co[0, 1]: v Pr[jh, (j + 1)hi, 0 _<j < n},

where C[0, 1] is the space of functions continuous on [0, 1] and C0[0, 1]
the subspace of those functions u satisfying u(0) u(1) 0. By 79r[c, d]
we denote the set of all algebraic polynomials v(x) =0 akx with
degree at most r restricted to [c, d]. Obviously, Vh c W’2(0, 1). The
discretization of problem (1.1) now reads

a(Uh, V) (f, V)L2(0,1 for all v Vh. (1.2)

The theorem of F. Riesz again guarantees the existence of a unique
solution uh Vh. Furthermore, there still exists a unique solution if we
replace the right hand side of (1.2) by an arbitrary functional on

m’2(0, 1). The Ritz projection Ph" W01’2(’) + Vh is therefore well
defined via

a(Phu, v) a(u, v) for all u wd’2(0, 1), v C Vh. (1.3)

Due to the ellipticity of a(., .) the linear operator Ph is bounded
independently ofh which means that the finite element method is stable.
The aim of this paper is to discuss the error u- Uh, arising from

problem (1.2), at the knots jh of the partitions. For smooth solutions u
one can prove convergence of order O(hr) on the whole interval [0, 1]
whereas in these special pointsjh the rate increases to O(h2r) (see [9,10],
cf. [3]). But in general we cannot expect the solutions to be sufficiently
smooth to ensure these Jackson-type inequalities. Section 2 is therefore
concerned with an error bound under minimal smoothness conditions.
To this end, we apply K-functional techniques to estimate the error by
a modulus of continuity. It turns out that this error bound is sharp
in connection with general Lipschitz classes. This is worked out in
Section 3 as a consequence of a quantitative extension of the uniform
boundedness principle. To establish the relevant resonance condition,
we proceed along some ideas of Douglas and Dupont [10].
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Let us mention that the article of Kfiek and Neittaanmiki [17] as
well as the book of Wahlbin [20] give a detailed survey of the field of
superconvergence.

2 A DIRECT ESTIMATE

It is well known that Cea’s lemma yields the inequality (cf. [4, p. 113])

]]U- Uh[ll,2,(0,1) --< C inf Ilu- viii,z,(0,1
<_ Cllu- Ilhu[ll,2,/0,/,

where I-[h" C[O, 1]-- {vE C[O, 1]: vE79,.[jh,(j+ l)h], 0_<j<n} is the
global Lagrange interpolation operator for the equidistant knots
jh + kh/r, 0 < k <_ r, 0 <j < n. Thereby, without loss of generality, we
assume the function u to be continuous. Using affine transformations
in connection with a reference element, one immediately obtains the
following Jackson-type inequality for <j <_ r, 0 < < n (cf. [4, p. 125])"

Ilu- IlhUlll,2,(ih,(i+l)h) <_ ChJlu[j+l,2,(ih,(i+l)h), u wJ+l’2(ih, (i / 1)h).
(2.1)

Thus, in connection with the K-functional K(6, u; s) infve w,.,2(0,1)

[llu VilE2(0,1) + SlUls,2,(0,1)] we conclude the estimate (r > 1)

u uhlll,2,(0,1) --< C inf [llu- v- IIh(u- 1) 1,2,(0,1)wr+,2(ov ,1)

+ v nvii ,2,0,/]
_< C inf [hlu- v12,2,(0,1) / hr[v]r+,2,(o,)]v W,+l,2(0,1)

Ch inf [11 u() -wllL=<0,)/ hr-lwl ,2,(0,)1
We Wr- 1’2 (0,1

ChK(hr-1 u(2)" r 1)

Now, the K-functional K(hr-l, u; r- 1) is equivalent to a modulus of
continuity of order r- (see [16]) as defined by

r_,(d5, u, L(0, 1))"- sup
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where A,-’u(x)’-- y]j=- (-1)r-l-j (r--j)bl(X --{--jb’). Thus, there exists a

constant C (which does not depend on h or u) such that for solutions u
and uh of (1.1) and (1.2), respectively, one obtains

u Uh[ll,2,(0,1) --< Chcr-l(h,u(2),L2(O, 1)). (2.2)

Since u E W2’2(0,1), the right hand side is well defined. Moreover,
applying Nitsche’s trick, one has

Ilu- uh[l2<0,,) Chllu- Uhl]l,2,(0,1)
5 Ch2cOr-l(h,u(2),L2(O, 1)).

(2.3)

This global L2-estimate is sharp in connection with Lipschitz classes (see
[11]). Concerning a sup-norm error bound one can proceed in the same
manner using a Jackson-type estimate developed in [21]. But here we are

primarily interested in the error at the knotsjh, 0 <j < n. From [9,10] we
quote that for smooth coefficients a(x) and b(x) one has

[(u- uh)(jh)l Chrllu- unlit,2,(0,, ), 0 j n. (2.4)

Therefore, one obtains (cf. (2.2))

I(u uh)(jh)l <_ Chr+l Or_ (h, bt(2), L2(0, 1)), (2.5)

where the constant C is independent ofj, h, and u. The main aim of this
paper is to discuss the sharpness of this estimate. For the sake of
completeness and since it is needed in our considerations in the next
section, we sketch a proof of the error bound (2.4) restricting ourselves
to the case a(x)E Wr’(O, 1) and b(x)=O. The Green’s function

G:[0, 112-- of problem (1.1) is then given by (cf. [19, p. 265f])

{ f(I/a(t))dtfy(I/a(t))dt for 0 <_ x <_ y,
G(x,y)

f(I/a(t))dt fx(I/a(t))dtf(I/a(t))dt for y < x _< I,

thus G(., y) W’2(0, 1) for each fixed y [0, 1], and there holds true

a(u, G(.,y)) u(y) 2for all u W’2(0, 1), y [0, 1].
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Evidently, G(., y) E W + 1’2(0, y) fq W + 1,2(y, 1) and

ia(. y)lr2+l,2,(O,y)/ ia(. y) 2Ir+l,2,(y,1) Cy(1- y), (2.6)

where the constant C is independent of y. Therefore, one has (cf. (1.3))

lu(jh) Phu(jh)[ [a(u- Phu, G(.,jh))l

inf la(u- Phu, G(.,jh) v)]
v6 Vh

<_ C[]u- Phu]ll,2,(o, inf IIG(., jh) vll,2,(o,v Vh

<_ Cllu- Phul[,2,(o,1)llG(’,jh) IIhG(., jh) 111,2,(o,1).

Taking (2.6) into consideration, we have (cf. (2.1))

IIG(’, jh) 1-IhG(., Jh) ,2,(o,)

< Chr[lG(. jh) 2 ]1/2[r+l,e,(0d’h) / [G(" jh)] 2r+ 1,2,(/h, 1)

<_ Ch v/jh(1 jh)

which establishes the error bound (2.5) in the case b- 0:

](u- Phu)(jh)l <_ Cv/jh(1 -jh)hr[]u- Phull,2,(o,). (2.7)

One may further note that the Green’s function belongs to Va if 1/a(x) is
a piecewise polynomial of degree less than r. Then the error vanishes in
the knots, u(jh) ua(jh) -O, 0 <_j <_ n, since G(., jh) IIhG(., jh) -O.

3 SHARPNESS

We establish the sharpness of (2.5) in terms of counterexamples for
general Lipschitz classes, determined by abstract moduli of continuity,
i.e., by functions co (e.g. co({5)- {5 with 0 < u < 1), continuous on [0, )
such that, for 0 < j, {52,

0 co(O) < co({51) co({5, / {52) o3({51) / co({52).

The main proposition of this article is the following result.
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THEOREM 3.1 There exists a function a(x)E Wr’(O, 1) with a(x) >
r; > O, such that ifone discussesproblems (1.1), (1.2) in connection with the
inner product a(u, v)- f a(x)u’(x)v’(x)dx, then there holds true the
following assertion for finite element spaces of degree r > 1: for each
0 < 60 < 1/2 and every modulus satisfying (3.1) and

lim ((5)/(5 (3.2)

there exists a counterexample u W’2(O, 1)V W2,2(0, 1) which is a
solution of problem (1.1) with a suitable inhomogenity f L2(O, 1),
determined by u, such that on the one hand (5 --+ 0+, h 1/n 0+)

COr_l((5, u),L2(O, 1))

but on the other hand (cf. (2.5))

]U(/)- (U)h(/)l # o(hr+lo3(hr-1))

for each u e :={j/2n: <_j < 2n, n e 1} N(6o, 1-60). In particular, u is

a (common) counterexample independent of the points u .
The proof of Theorem 3.1 is much more sophisticated than a

discussion of the sharpness of (2.3) because we have to establish a
lower estimate for a much smaller error. The rest of this section deals
with this proof. In the context of approximation theory such negative
results are often obtained on the basis of quantitative extensions of the
uniform boundedness principle developed by Dickmeis, Nessel and van
Wickeren (cf. [5]-[8]).
For a (real) Banach space Xwith norm [[.[Ixlet X~ be the set of non-

negative-valued sublinear bounded functionals T on X, i.e., T maps X
into I, the set of real numbers, such that for all f, g E X, u 1

Tf>_ O, T(f+ g) <_ Tf+ Tg, T(uf)
T[Ix := sup{ Tf

THEOREM 3.2 Suppose that for a family of remainders { Tn,: n I,
u } C X-, where ()n r is a sequence ofnon-empty index sets, and

for a measure of smoothness {$6:(5 > 0} c X~ there are test elements
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such that the following inequalities hold true (6 > 0, n cx)"

IIgll c1

S’gn <- C2 min{1, n )
I[Zn,utlx~ <_ C3,n
Tn,,gj <_ C4,uC5
T,,,,gn >_ C6, > 0

for all n lI, (3.3)

for all n E NI, 6 > 0, (3.4)

for all u ]n, n ll, (3.5)
for all <_j <_ n -1, U n, n E ll, (3.6)
for all u I,. (3.7)

Here a(6) is a function, strictly positive on (0, cx), and (P,)n N C IR is a

strictly decreasing sequence with limno q, 0. Thenfor each modulus co

satisfying (3.1) and (3.2) there exists a (strictly increasing) subsequence
(nk)k r C 1t and a counterexamplefo X such that (6

s6L o(((6))),
Zn,ufw

for each u := lim suPk_ ]nk :--- Nk%l Uj--k nj.

For a proof, further comments, and applications to approximation
theory see [5,13,14] and the literature cited there.

Proofof Theorem 3.1 To apply Theorem 3.2, we specify the quantities
according to (h 2-", n 1)

X- W’(0, 1) W2’2(0, 1), I1" IIx- 112,2,/0,/,
hr_(/gn 2(r_l)n 0"(6)- r-1,

s _(6,u(:),L:(O, 1)),

Itn’- -" l_<j_< -1 (60,1-60)

Zn,,U- 2(+)nl(u- ehU)()l h-(r+’)l(u- ehu)(u)l, . .
Indeed, $6, T,,E X~ (cf. (2.2), (2.7)), and we note that , c n+l C

C ] Un=l ]]n. The crucial point is to find a suitable sequence of
test elements and to show the resonance condition (3.7). At first, we will
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construct a sequence (n)nEN which is indeed suitable in connection with
(3.7). But these functions are not smooth enough to satisfy the Jackson-
Bernstein-type inequality (3.4). Therefore we have to smooth them. This
will be done using a partition of unity. The stability of the finite element
method assures that for the smoothed functions (gn)n r the resonance
condition still remains valid.
Thus let us start with the sequence (n)ner which is defined by

,n(X) "--hr_l fn(t) dt,

where (0 _<j < 2n- 1)

0 x =0,

n(X) := (x-jh)r X E (jh, (j + 1)h] for j _< 2n-1 1,

I,-((j + 1)h x) x (jh, (j + 1)hi for j >_ 2n-l, i.e., jh>_ 1/2.

The functionL is odd with respect to the point 1/2, i.e.,L(x) -jn (1 x)
a.e. Obviously, is piecewise polynomial of degree r + and satisfies

(0) (1) 0 such that W01’2 (0, 1). Moreover,

h (3.8)

where II,llL0, ) denotes the essential supremum. The next step is to
smooth f, with a suitable partition of unity. To this end, given an
arbitrary 0< e _< 1/4, there exists an infinitely often differentiable
function with (cf. [15, p.35])

1: x <_ 1/2-q(x)= O: x> 1/2+ s(x) e(1 x), x R,

and 0 < p(x) _< 1. With the aid of this function we definef, as follows:

(a) for x [(j + 1/2)h, (j + 3/2)h], 0 _<j _< 2"- 2"

+ (1 e -fh))(x-(j+ 1)h) r,
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(b) for x E [(j + 1/2)h, (j + 3/2)h1, 2n-1 _<j <_ 2n-2

fn,s(X) := e ((j + 1)h x)

-(1 e (\x ;h) ) ((j + 2)h x)r.,

(c) for xE[(2’-l-1/2)h,(2n-1 + 1/2)h]-[(j+ 1/2)h,(j+ 3/2)h] with
j_2--l_l

(1 (#e (x ;h) ) ((j..l._ 2)h x)r;

(d) for x [0, hi2] u [l-h/2, 1]"

Note thatf., is infinitely often differentiable and

Ilfn,llfto,l sup Ifn,(x)l <_ h
xe[0,]

(3.9)

Furthermore, due to the definitions off. and the functionf., is odd
with respect to 1/2. Therefore, the resonance elements

g.(x) g.,(x) h- f.,(t) dt

satisfy the boundary condition gn,(0) g.,(1) 0, and they are
infinitely often differentiable. In particular, (g.,). e r c X. The param-
eter c will be fixed later. Straightforward calculations yield
(l_<k_<r+ 1)

Ign,l,2,<0,/ Ilfn,-/ll/0,/
<_ hr_fllf,-llllc[o,l] <_ Ceh 2-k (3.10)
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where the constant C is independent of h. Furthermore, Poincar6’s
inequality (cf. [1, p. 159]) yields

IIg,,,[12,2,/o,) < Ilgn,ll,2,/0,/ + Ign,el2,2,(0,1)
<_ C(Ign,e [1,2,(0,1) -- [gn,e 12,2,(0,1))

Therefore, condition (3.3) is established. Concerning (3.4) we have
(el. (3. o))

COr_l(6, g(2) Z2(O, 1)) <
Clgn’]2’2’(’) <- Ce,

n,e, (c6r_llgn,elr+l,2,(o,1) ce6r_lh2_(r+l)__Ceff(6)/n.

Concerning the crucial resonance condition (3.7), we first investigate how
much the function gn, differs from oan. One observes that jTn(x) =f,,(x)
outside the balls S(2eh,jh)= {x: ]x-jh < 2eh}. Once again by Poincar6’s
inequality

I[n gn,e [11,2,(0,1) finn gn,e 11,2,(0,1)
C

hr_
[ln fn,e[IL-(O,1)

hr-1 In(X) fn,(x)l 2 dx
kj=0 d(j+l)h-2eh

c /11.hr_-( [(2n 1)4eh]

2Cx/
hr_ (I]LIILoo(o,1)+

Together with (3.8) and (3.9) this yields

IIn- gn,e]]l,2,(0,1)--< Chx/.

It is important to note that the constant C does not depend on c and h.
Because of the uniform boundedness of the operator Ph we conclude
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Taking the direct estimate (2.7) into consideration, one obtains (u

I(n-ehn)(U)l
I(gn, ehgn,)(u)l + I(gn, --n)(U) eh(g,, -n)(U)l

< I(gn,e Phg,,,)(u)l + Chrllgn,e ,n Ph(gn,e n)lll,2,(0,1)
-< I(g, ehgn,)(u)l + Ch[[IPh(gn, -n)ll,2,/0,/+ Ilgn, --nll,2,/0,/]
<_ I(gn, Phgn,)(u)l + Chr+lv/-

and therefore

Tn,,gn, h-(r+l)l(gn, Phgn,)(u)l

>-- h-(r+l)l(n Phn)(U)l CV/- Zn,.n Cx/-.

In what follows we will prove the crucial inequality

T,,, >_ cmin{u, u} (3.11)

for u E , and n 1. Then according to the definition of one has
min{u, u} > 60 > 0 such that T,,,g,, >_ C6o- C6o/2- C6o/2 for each
e <_ min{1/4, [Co/(2C)]2}. Summarizing, we then have found a reso-
nance sequence which satisfies (3.3), (3.4), (3.7). Since the conditions
(3.5) and (3.6) follow from the direct estimates (2.2) and (2.7), i.e.,

IlZn,llx Ch-(r+l)hr+l-C,

Tn,,gj,e < CWr_l(h, "-’(2) L2(0, 1))

<- Chr-l lgj,elr+l,2,(o,1) CJ,en,

Theorem 3.2 yields a counterexample u which satisfies the assertions
of Theorem 3.1. Indeed, this counterexample is a solution of problem
(1.1), where the inhomogenityf is determined by partial integration.

It remains to prove (3.11). In [10] Douglas and Dupont investigate
the sharpness of an estimate (2.4) in connection with the case ()=
which is excluded here. They are able to present explicitly an elemen-
tary counterexample for which the superconvergence error is exactly of
order (Q(hzr). Thereby, the crucial point is a suitable representation for
the error which we will apply as well. At this point it becomes necessary
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to fix the function a(x) and therefore to determine the inner product
a(., .). Let a(x)E Wr’(O, 1) be even with respect to 1/2, i.e., a(x)=
a(1 x) a.e., such that the following conditions hold true (a(x) > > 0):

a(x)

E "]’)r[0, 1/2] fq 79r(1/2, 1] with
a(x)

(a() (r) {?", X [0, 1/2]
--r!, X (1/2,1]

e’Dr[O, 1] with (a)(r)-r! ifriseven,

if r is odd.

One may note that a discussion ofcases is necessary to assure that 1/a(x)
and a(x) are even. For example, we can choose

a(x) (x (1/2)) + (r even),

a(x) (x (1/2) 4- 1’
x {0, 1/2]

(1/2, 1]X
(x- (1/2))r’

(r odd).

Evidently, 1/a(x) is a piecewise polynomial of degree r and not of
degree r- 1. This is important because otherwise the error vanishes
(cf. Section 2).
Due to their construction both the functions a(x) and oan are even with

respect to the point 1/2. Therefore, the Ritz projection Phoan is even, too.
This is easy to prove because the partitions Th are equidistant. In other
words, the error en(x)’-ao,(x)--Phn(X) is even and e’ is odd. This
is necessary to establish the error representation (cf. [1 0])

e,(u) a(x)e’,,(x) z(x) dx (3.12)

a(x)e’n(X z(x) dx

for all z E 79r_,h, u , (3.13)

where

"Dr,h :-- {z: [0, l] ---+ ]l: z "]’)r(jh, (j 4- 1)h], 0 <_j _< n 1}.
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We prove (3.12) (3.13) follows in the same way). To this end, given a
function z E 79r_l,h we define v(x) f z(t) dt x fd z(t) dr. Then
v E 79r, h fq C[0,1] and the construction assures v(0) v(1) 0 such that
v Vh(r). By virtue of f a(x)en (x) 0 we obtain (cf. 1.3))

( )(aen z)L2(0,1 (aen z(t) dtV )L2(0,1) -+- aen,
L2(0,1)

(aen, z(t) atv )L2(0,1) + (aen, 1)L2(0,1)

(aen, V’)L2(0,1 a(en, v) O.

Now let z "]")r-l,h and u n. The function (x)’-z(x) for x <_ u,
(x) "-0 for x > u, belongs to 7)r_l,h as well, and therefore 0-

fd a(x)e (x)(x) dx f a(x)e (x)z(x) dx such that (a(x) > > O)

en(u) en(X dx a(x)en(X) z(x dx.

Finally, we use the representation (3.12), (3.13) to establish the
is the same asresonance condition (3.11). The leading coefficient of en

of hl-@n and the leading coefficient of 1/a has been fixed by the
conditions on a(x)"

r even r odd

Leading coefficient of 1/a(x)

Leading coefficient of e(x)

+1 +1
-1

+ h1-r ifx_< 1/2
-h1-r if x> 1/2

if x< 1/2
if x> 1/2
+ h1-r

For that reason, one can choose z ( "Dr-l,h such that for
x (jh, (j + 1)h] there holds true

en(X)[a ] { +hr-l[en(x)]2 frx<-l/2’
(3.14)Zn(X)

-hr-l[en(x)] 2 for x > 1/2.
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In connection with (3.12) one obtains for u _< 1/2

Tn,,n h-- len()l -> a(x)en(X) Zn(X) dx

hr+l a(x)e.(x) Zn(X X
ajh

hr-1 (_-[(j+)h
hr+ a(x)[en(X)]2 dx

j=0 aJh

[en (x)]2 dx.
\e[0,1] 5

i=0 ai

In view of the positivity of [eP,(x)] 2 the rest of the proof is a routine
argument. Indeed, since Phn E I?r(jh, (j+ 1)hi, one has
l?r_ (jh, (j + 1)hi and

(j+l)h
inf [’ (x) v(x)] dx

vTVr_ (jh,(j+ 1)hi Jjh

[ I]
2--- inf v(x dx

h2 .= VEPr-l(jh,(j+l)h] djh

(/h)-I

h2
inf xr- v(x) dx

vePr- (jh,(j+ 1)hi ,Ijh

h2 h2(r 1)

(u/h)-I [(j+l)hinf Ix v(x)] 2 dx
vPr- (jh,(j+l)h]j=O djh

(u/h)-I Z )r dtinf h [(ht +jh v(ht +jh)]2

h2 h2(r 1) vpr_ (jh,(j+ 1)hi"_

(u/h)-l
h2r+l Z inf f0h2 hz(r-1)

j=0 V6Pr_[0,1]
It r- v(t)] 2 dt > ch/h

=cu>0.

By virtue of (3.13) (cf. (3.14)) one analogously obtains that

T,,,n > c(1 u) in the case u > 1/2. This finishes the proof of (3.11).



106 ST. J. GOEBBELS

Though specific, the present results are by no means restricted to the
particular superconvergence phenomenon under consideration. As a
second example let us briefly mention superconvergence at Gauss and
Lobatto points. Using well-known Jackson-type inequalities (cf. [2,18]),
one can establish intermediate error bounds analogously to (2.5) in
terms of moduli of smoothness which are sharp in connection with
general Lipschitz classes. Again this can be proved using the resonance
principle of Theorem 3.2 (cf. [11]). Here it seems to be natural to build
up a resonance sequence by Legendre polynomials because the Gauss
and Lobatto points are zeros of these polynomials and their derivatives.
Then the resonance condition follows from the fact that the zeros of
Legendre polynomials Pk and Pz: + are different.
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