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We derive an integral representation formula for a function in terms of its vector field
gradient, assuming a less restrictive growth condition on the volumes of balls than was
previously known. We give the explicit form of the constants involved in the formula. We
also show that the required growth condition is satisfied by a large class of Carnot-
Carath6odory vector fields.
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In a previous joint paper with Lu [FLW], the authors proved the
equivalence between suitable forms of the L-Poincar6 inequality in
metric spaces of homogeneous type and the representation formula for
a function with zero average in a ball in terms of a singular integral (of
potential type) of its ’gradient’. In this note we shall show that the
assumptions of [FLW] can be considerably relaxed, by dropping a
restrictive growth condition on the volume of metric balls. In this way,
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66 B. FRANCHI AND R.L. WHEEDEN

the statement is sharp for the fundamental example of the Carnot-
Carath6odory metric associated with a family of Lipschitz continuous
vector fields. In addition, in the present note we shall give explicit
dependence of the constants appearing in our inequalities, so that the
result is more convenient for Riemannian manifolds.
From now on, (S,p,m) will denote a quasimetric space with

quasimetric p, endowed with a measure m, and we will denote by K
the quasimetric constant of (S, p), i.e., for all x, y, z E S,

p(x, y) < Kip(x, z) + p(z, y)]. (1)

Moreover, we shall assume that the measure m is locally doubling, i.e.,
that for all R E (0, R0) (R0 <) there exists A(R) _> such that

m(B(x, 2r)) <_ A(R)m(B(x,r)) (2)

for x 6S, r (0, R], where, by definition, B(x,r)= {y $ such that
p(x, y)< r}, and m(B(x, r)) denotes the m-measure of B(x, r). As usual,
we refer to B(x, r) as the ball with center x and radius r, and ifB is a ball,
we write r(B) for its radius and cB for the ball of radius cr(B) having
the same center as B. We shall call doubling constant ofm (at the radius
R < R0) the real number

m(B(x, 2r))
sup

m(B(x,r))
,r <_ R,x $}.

For the sake of simplicity, we still denote this constant by A(R).
We shall say that (S, p) has the segment property if for each pair of

points x, y E S, there exists a continuous curve 7 connecting x and y such
that p(/(t), /(s))= It-sl.

THEOREM Let (S, p, m) be a complete quasimetric space satisfying (1)
and (2) such that (S, p) has the segment property. Let #, v be locally
doubling measures on (S, p, m) with doubling constants A,(R) and A(R),
respectively. Let Bo B(XBo, ro) be a ball, let r > be a fixed constant

and let f, g LI(-KBo) be given functions. Assume there exists P(ro) > 0
such that, for all balls B C_ 7KBo,

(B) If f,.l du <_ P(ro) #(B)
[gl d#, (3)
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wheref, 1/u(B) ffdu fdu. Ifthere is a constant O(ro) > 0 such
thatfor all balls B, B with B C_ B C_ 7-KBo,

r(t)lz(B) > O(ro) (4)() ()

thenfor (du)-a.e. x E Bo,

If(x) -f0,-I -< CfK Ig(Y)l
(S(x,p(x,y)))

d#(y) (5)

with

C- C(K, 7") P(ro) [A ((7"K2 + K)ro)A ((7"K2 + K)r0)] (’/0O(ro)

Aside from the explicit form of the constants, the difference between
this result and the corresponding result in [FLW] is that condition (4)
above is replaced in [FLW] by the stronger reverse doubling condition

if B C_ B C_ 7"KBo

for some e > 0, but the segment property is not assumed in [FLW]. The
segment property, however, automatically holds in many spaces, in
particular in those for which the metric is induced by a collection of
Carnot-Carath6odory vector fields" see Remark 3 later in this paper.

Remark 1 (i) As we shall see in the proof ofTheorem 1, hypothesis (4)
is needed only in case (7"-1)Kr0 <_ r(B) < 7-Kro.

(ii) In addition, the proof shows that if we replace hypothesis (3) by

(B) If f,l du <_ Cdp(B)r(B), (3’)

for B C_ 7-KBo, where cr is any measure and q5 is a nonnegative
function of balls B, and if we also replace hypothesis (4) by the
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assumptions

O(B) _< CO(/}) (4’a)

if/

_
cB and r(B), r(Bo) are comparable, and

0(B) 4(B) (4’b)

if B,/ have comparable radii and the metric distance between them is
at most a multiple of their radii, where c depends only on r and K,
then we obtain the conclusion that for (du)-a.e. x EBo and an
appropriate constant C,

If(x) -fBo,v[ <_ Cf O(B(x, p(x, y))) dr(y).
KBo

Note that assumptions (4’a) and (4’b) both follow from assuming that

qS(B) < CO(B)

if/ C cB.

Proof of Theorem 1
B C "rKBo,

By hypothesis, for a fixed r > and all balls

u(g) If f,l du < P(ro)
#(B)

Igl d#.

Let x E B0 be given. There is a constant r/> 0 independent of x and B0
such that B(x, rlr(Bo))C rKBo. In fact, it is enougti to choose r/- r-1,
since if y B(x, Tro) then

p(xBo, y) < K(p(xo, x) + p(x, y))
< K(ro + rlro) rKro.

Denote B(x, rlro) B1 and let r r(B1) --r/ro. Now

If(x)--fBo,.l <--If(x) fB,,l + IfB,,. --fo,-I" (6)
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For the second term on the right in (6), we first note that

"rKBo C B(x, ("rK2 + K)ro)--
"rK2 + KB1,

since if y E "rKBo, then

p(x,y) <_ K[p(y, XBo) + p(XBo,X)] <_ K[’rK + 1]r0.

Hence

Now let m E Z, m >_ 1, be such that

-rK2 -+- K2m-1 < _< 2m,

so that

2(rK2 + K)
m _< log2 r/1 > 1,

since r + > r-1 --r/. Then

r(7K2-KB1) < 2mr(B1)

and we can apply formula (2) m times to u and r-2kr(B1), with k
varying from m-1 to 0 and

I 2m-lr(B1) < rK2 + Kr(B) (rK2 + K)ro.

Hence, keeping in mind that A > 1,

u(7KBo) <_ A’ ((’rK2 + K)ro)u(B ),
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SO that

A’u(B1) -< ((’rK2 + K)ro) u(-KBo------"
On the other hand, arguing as above and taking into account that
7-K_< -K2 + K and that we can assume r/< 1, we obtain

u(7"KBo) <_ A’ ((’rK2 + K)ro)u(Bo),

so that

t(Ol------- t(O0)
_
2A’ ((-K2 + K)ro) u(-KBo-------"

Thus

by the Poincar6 inequality (3).
We shall now prove that if y E -KBo, then the kernel

.(e(x,

which appears in (5) can be estimated from below (up to a suitable
multiplicative constant) by the term r(-KBo)(#(’KBo))-1. This estimate
will basically follow by applying assumption (4); however, the estimate
first requires some manipulations since in general B(x, p(x, y)) is not
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contained in -KBo. Indeed, if x E Bo, y -KBo and z B(x, p(x, y)/M)
with M (7-K2 + K)/, we have

p(z, Xo) <_ I[p(z, x) + p(x, Xo)]

< K +K

so that B(x,p(x,y)/M)C_ -KBo. Thus, arguing as before and then
applying (4) with/) B(x, p(x, y)/M) and B= 7-KBo, we get

p(x,y)
u((x,p(x,y)))

Combining estimates, we obtain

lYe,,.-f,o,l _< cfKBo

p(x,y)
#(B(x,p(x,y)))

d#(y),

with

"r- P(ro) [A((_K2 + K)ro)A((.K2 + K)r0)]v,7-K2 + K 0(ro)

For the first term on the right in (6), we can assume that

lims-of(x,s) =f(x) since this holds for u-a.e.x. Let be such that
p(x, ) ro r(B) r; because ofthe segment property, there exists
a geodesic 3’:[0, r] S connecting x and g (i.e. 3’(0)= x, 7(rl) ) so

that p(7(t’), 7(t")) It’-t"] for all t’, t" [0, r]. If 0 (0, 1/2), we consider
the sequence of points x, 7(t/,) for k N defined as follows:

tk+l t- Otk for k > 1,
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and we put

Qk B(xk, Ot,).

We note that tk=(1/2K)(1--O)k-lrl for k E N, so that if y E Qk then

p(x,y) <_ K[p(x, xk) + p(y, xk)]

_</ y(- +(- 0)-1
+ 0 0)k_-5--(1 r < r,

and hence Q c_ B1 for k N.
Now

If(x) fol,Ul <_ If(x) fQ,,l + IfQ,,u (7)

But

IfQ,,, fBl,l L, (f(y) --fee’s’)du(y)

<
u(Q1)

If(y) -f,, du(y) <
u(Q1)

If(y) -f,, du(y).

We now want to compare v(Q1) and v(BI) by using doubling. Since

rlp(X, Xl)-- p((0),")/(/1))--- tl --2K’
we have

B B(x, 1’1) B(x1, (K -I- 1)rl) 2K(K + 1)
Q1,

and hence

t,’(B1) _< u(2K(/+ 1)

Now let m N be such that

2K(K+ 1)<2m so that m < log2 (2K(/+ 1).)+ "-/]2.2m-1 <
0



POINCARI TYPE INEQUALITIES 73

We can again apply formula (2) rn times to u and r-2kr(Q1), with k
varying from m-1 to 0 and R--(K+ 1)rl, and we obtain

u(B1) _< u(2mQ1) <_ Au(2m-lr(Q1))u(2m-lQ1)
<_ Au((K+ 1)rl)u(2m-lQ1) (since 2m-lr(Q1) < (K+ 1)rl)
< < Am((K+ 1)rl)u(Q)
< A,2((K+ 1)r)u(Ol).

Thus, by (3) (since B1 C_ 7-KBo),

t(Q1)
If(y) -fs,,.[ du(y)

<- AVu2((K + 1)rl)u(B1 If(y) fB,,l du(y)

< P(ro)((g+ 1)rl)#(Bi)
rlZ P(r)AruZ((K+ 1)rl) #(Bi) --r<_p(x,y)<2-rk=O

Ig(y)ld#(y)

On the other hand, if 2-k-1 rl < p(x, y) < 2-kr, then, choosing/ and
B in (4) to be/ B(x, 2-kr) and B= B(x, rl)= B1 C_ 7-KBo, we get

r 2-k-rl p(y,x)10(ro) #(B1) < <#(B--,---krl) #(B(x, p(x, y)))’

so that

Thus, the second term in (7) is estimated as desired since A.,A.>
and (K+ 1)rl -(K+ 1)r0 _< (7"K2 -+- K)ro assuming that < 7- _< 2.
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In order to exhibit a bound for the first term in (7), we note that

klim fQ/(y) du(y) f(x),

since x is a Lebesgue point forf. Indeed

y) du(y) -f(x) 1:;<
u(Qk) If(Y) -f(x)l du(y);

on the other hand, as we showed above,

Ok C_ B(x, 1/2 (1 + 0)(1 o)k-lrl Ok,

and//(Ok) u(Qk) by doubling since r(Ok) ,- r(Qk) p(x, Xk), SO that

u(Q) If(v) -f(x)l du(v)

-< const"
u()) If(Y) -f(x)l du(y) 0

as k , by Lebesgue’s differentiation theorem.
Thus we can write

If(x) fQ,,.l
k=l

If now yE Qk+ 1, then since p(xk, Xk+ )--[tk--tk+ II, we have

p(y, Xk) <_ K(p(y, xk+) + p(Xk, Xk+l))

< K -(1 O)krl d- -(1 o)k-lrl
2 0

0(1 O)k-1 O)k-1-- rl < 0(1 rl,

so that if we set

Q* B(xk, 0(1 O)k-lrl ),

then Qk+l C Q:, and in addition, Qk- (1/2K)Q* c Q*k since

0 O)k_ 2r(Okr(Qk) =(1 rl
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Moreover, by the triangle inequality,

2K2 + KQc_ 1--- Q,+,

so that we can now estimate u(Q*) in terms of u(Qk) and u(Qk + ) by a
doubling argument as above. Indeed, let m E N be such that

2K2 + K2m-1 < _< 2m;
1-0

then

/2K2 + K )u(Q*) <_ u. i -0 Q:+ <- u(ZmQk+)"

Moreover, if < g < m, then

r(2eQk+ 2e 0 2K+
-(1 O)r <_

2(1 0)
2K

0(1 O)rl <
2
Oro,

and hence, by applying (2) m times as above, we obtain

Since Ok +1 Q-- Ok, also

( ( K2"+" ) )
I+Igz((2K2+K)/(1-O))

u(Q*) <_ A,
2 10lro u(Qk).

Then we have
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with

( K; )
l+lg2((2K2+K)/(1-O))

C(u, K, O) 2A
2 10rlro

< (by choosing 0 sufficiently small) 2A((-K2 + K)ro)’
The next step will consist of applying the Poincar6 inequality (3) to

each term above. To do so, we have to first prove that Q* c_ -KBo for
all k _> 1. Let y be any point in Q*k. If we choose 0 so small that KO < 1/2,
then by the triangle inequality we get

p(y, Xao) <_ K(p(y,x) + p(x,X:o)

< KZ(p(y, xk) + p(Xk, X)) + Kro
K

< K20(1 0)k-It/r0 + (1 0)k-1

< (rl / 1)Kro 7Kro.

rlro + Kro

Thus, by Poincar6’s inequality (3),

#(Q*k)r(Q*k) fO Ig(Y)l d#(y).If(x) -f0,,-I < A-((K2 + K)ro)V’e(ro) Z
k-1

To finish the proof of Theorem 1, we need now to have the kernel

p(x, p(x, y)))

appearing on the right-hand side. To accomplish this, we note first that
if y E Q* thenk

p(x,y) >_ 2p(x ,x) p(y,x )

_> 2K(1 --0)k-lrl --0(1 --0)k-lrl ---0 (1 --0)k-1

> -- (1 0)k-lrl,

rl
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if we choose 0 sufficiently close to zero. On the other hand,

p(x,y) <_ x(p(x,x) +

<_ K -(1 O)k-lrl + 0(1 o)k-lrl

< (1 O)-r,

if 0 is sufficiently close to zero. Thus, if y E Q,, we have

r(Q) 0(1 O)’-’rl <_ 04KZp(x, y) <_ p(x, y),

if 0 is small enough. Moreover, if z B(x, p(x, y)), then by the triangle
inequality,

p(z, x) <_ I(o(z, x) + p(x, x))

<_ I (x,) + -2 o)-_
K (1-0)k-1 -+---(1-0)k-1 ’1 < (/- 1)(1- 0)k-lrl
K+I

0
r(Q,),

so that, arguing as above,

K+ ,)#(B(x,p(x,y))) # 0 Qk A#((TK2 nt- g)ro)l+lg2((K+l)/O)(Q*k)"

Indeed, let m N be such that 2m-1 < (K+ 1)/0 < 2m; we have

(/+ ,)# 0
Q’ <- #(2mQk)"

On the other hand, if <_ g < m, then

K+I
r(2 Q,) <_

0
0(1- o)k-llro- (K + 1)r/to < (7-K + K)ro
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if 7-_< 2 (say). Thus, for 0 sufficiently close to zero, we get- r(Q*) fQ Ig(y)l d#(y
k--I_

N#((7-K2 -t- K)ro)l+lg((K+l)/O) Z
=1

p(x,y)
#(B(x,p(x,y)))

d#(y).

To complete the proof, we have only to show that each ball Q
overlaps only a finite number of balls Q, the number being bounded
by a constant depending only on 0. To this end, note that ifQ fq Q - ,
then

O(Xk, Xi) < K(r(Q*) + r(Q;)),

so that

[tk- ti[ o)i_-(1 0)k-lrl ---(1 rl

< K0((1 0)-1 + (1 0)i-1)?’1,

and hence

[1 --(| o)i-k 2K20(1 --(l o)i-k).
Without loss of generality we can assume that -"t2v < ", so that
! < (1 -O)i- < 3, and hence

In 3 In 3
k+ <i<k-

ln(1-O)- ln(1-O)"

Thus Theorem is completely proved, keeping in mind that O(ro)<_ 1.

In [FLW] we listed several examples for which the assumptions of
Theorem of [FLW] (and hence afortiori the assumptions of our
Theorem above) are fulfilled. We refer to Examples 1-6 there; it is easy
to formulate them in the more general situation covered by our present
results. Here we restrict ourselves to two remarks strictly related to our
new assumptions. We thank S. Gallot and S. Chanillo for helpful
discussions about the first of these remarks.
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Remark 2 Let (S,p,m) be a complete, connected Riemannian
manifold of dimension n endowed with its Riemannian distance p and
its Riemannian volume m. We shall follow the arguments of [SC],
Section 2. Denote by g the Riemannian metric tensor of S, and assume
that Rics, the Ricci tensor of S, satisfies

Rics >_ -g,

for some positive constant n _> 0. Then, if we set V(x, r) m(B(x, r)) for
x E S and r > 0, the Bishop-Gromov theorem ([GHL], Theorem 4.19)
implies that the function r V(x, r)/V,(r) is decreasing, where V,(r)
denotes the volume of the disk of radius r > 0 in l/(-n), the complete
space of constant sectional curvature hi(l-n). Thus

V(x, 2r) V(2r)
V(x,r)

<

and hence as in [SC] the doubling constant of m satisfies

Am(R) <_ 2nexp (v/(n 1)R).
Thus, Theorem can be applied if the volume of balls V(x, r) satisfies

estimate (4), since the Poincar6 inequality (3) holds for these manifolds
with g- [Tf[ and

P(r) Cn exp (cv/--r)

(see [B]), and then we obtain that the representation formula (5) holds
with g- }7fI, # u m and

c1C
O(ro)

exp (c2x/-r0),

where c, c2 > 0 are geometric constants.

On the other hand, condition (4) holds in many relevant situations for
which the constant O(ro) can be explicitly estimated, as we shall see in
Examples and 2 below. We first observe that if B(, ), B- B(x, r),
Bo-B(xo, ro) are balls with B B0 as in Theorem 1, and if
rBoS, then 2r and r 2rr0. Indeed, let us prove the second
assertion; the first one is proved in a similar way. Consider a point
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y -B0, and let 7 be a geodesic connecting x and y (which exists by the
Hopf-Rinow Theorem). Without loss of generality, we may assume
that 7 is parametrized by arclength so that p(x, 7(0) t. By continuity,
there exists a point z 7(t0) such that p(z, Xo) ’ro. Clearly, z B since
B C_ -Bo, and hence r <_ p(x, z) to. But p(x, z) <_ p(x, Xo) + p(xo, z) <
2-ro, and we are done by combining inequalities.

Example 1 Let K denote the sectional curvature ofS and assume that
there exists b >_ 0 such that K_< b on S. If B, B, B0 are as in Theorem 1,
with (-- 1)ro <_ r _< -ro (see Remark l(i) following Theorem 1), we

haveBo c_ (2/(--1))B, so that, arguing as in the proof of Theorem 1,
we obtain

m(Bo) <_ Am(t.ro)rl3(-)m(O) exp(ct.(nV/-ro)m(B),

and hence

m(/)
m(B) --< exp(c’r"n V/-r) m--o)"

Suppose now that Bo does not meet the cut locus of Xo; then, if we
apply Bishop’s volume estimate to B and Gunther’s estimate to Bo (see
[GHL], Theorem 3.101), we get

m(/) <
m(Bo)

exp(ct.(nv/ro)COnn exp(v/(n 1)?)

n exp([nV/--FO)n
<

where wn is the volume of the unit Euclidean ball. But if r0 <_
7r/x/, V(,_,)(r0)satisfies

)n--1V(,-,,)b(ro) w, - {sin(vt) at >_ c(n, b)rg,

so that since _< 2r <_ 2-r0,
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Thus we get

m(B)
m(B) <- c(n, b, 7-)exp(c(n, 7-)x/-ro) -r

and so the following representation formula holds"

p(x,y)
If(x) fB[ <_ c3 exp(c4v/-ro) If(Y)l m(B(x, p(x, y)))

dm(y),

where 4 c4(n, 7-) and c3 c3(n, b, 7-).

Example 2 Suppose now that -0 (i.e., that Rics >0) and let

7-B0- S; in this case, Am(R)<_ 2 for any R > 0. Let/}, B, B0 again be
as in Theorem 1, and set B* B(, r). Since B* C_ 2B, we have m(B*) <_
m(2B) _< 2nm(B), and hence

m(B) 2n m(B)
m(B) <- m(B*)"

In order to estimate the right side, suppose that 3 _< r, the reverse
case being trivial by doubling. If we apply inequality (4.13) in [CGT],
we obtain

m() 2n
r n -(r- 2)n

m- <- (r-

Thus (4) is proved, O(ro) being a dimensional constant. Then the
representation formula (5) holds with g-IVfl and a dimensional
constant c.

Example 3 Let f be a bounded open subset of Rn, and let X,..., Xm
be Lipschitz continuous vector fields in f0, where f0 is an open
neighborhood of [2. Denote by p the Carnot-Carath6odory distance
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associated with X1,..., Xm in f20 (see below), and assume that

(i) p(x, y) < oe for all x, y
(ii) p is continuous with respect to the Euclidean topology;
(iii) IB(x, 201 _< AIB(x, r)l for all x E ( and r E (0, R0), where B(x, r) is a

ball for the metric p and IEI denotes the Lebesgue measure of E.

We recall that the Carnot-Carath6odory distance can be defined as
follows. We say that an absolutely continuous curve 7"[0, T] f0 is a
sub-unit curve (with respect to X1,..., Xm) if

(7’(t), 0 2 _< 2

j=l

for any IR and for a.e. [0, T]. If x, y f0, we put

p(x, y) inf{ T > 0: there exists a sub-unit curve 3’" [0, T] --+ Rn

with 7(0) x and ,(T) -y}.

If we now set S- ft, endowed with the Carnot-Carath6odory
distance p and Lebesgue measure, assumptions (1) and (2) hold.
We shall now prove that condition (4) is satisfied for any ball

Bo- B(XBo,ro) with r0 < R0. Since the metric space ((, p) enjoys the
segment property,* Theorem can then be applied, and hence the
representation formula (5) is always equivalent to the Poincar6 inequal-
ity (3) (we are assuming that u- #- rn is Lebesgue measure). We stress
also the fact that in this Case p is a metric and hence K- 1.
To prove (4), let us first riote that it will be enough to show that

for each point 2 ( there exists a metric ball B centered at 2 such
that for any a E (0, 1) we have

IB(x, r) C()IB(x, r) for each ball B(x, r) C - B. (8)

The present result is basically a local result, and hence the segment property follows
from the ArzelS.-Ascoli theorem (see [FGW]). But this property which implies that the
space is a length space in the sense ofGromov still holds in the large. This global property
was kindly pointed out by N. Garofalo.
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Indeed, suppose (8) true, and take a finite family {B1 B,..., Bp
Bp} of balls satisfying (8) such that {1/4Bj, j--1,...,p} is an open
covering of (, and t_Jj.P=Bj Cc f0. Put Ro-min{1/4r(Bj), j= 1,...,p},
C-max{C(2j),j-1,...,p}, and let B(x,r) be a metric ball with
x E f and r < R0. Since x belongs to 1/4Bk for a suitable k E { 1,... ,p},
then B(x, r) C 1/2Bk, and hence by (8)

In(x, crr)l C(2k)crlB(x,r)[ <_ Ccrln(x,r)l (9)

for cr (0, 1).
Now let B,/, B0 be as in (4), i.e.,/ c_ B c_ -B0. If/- B(, ), B-

B(x,r), and ? _< r, then B(,?)c_ B(fc, r) and p(x,c)< r, so that by
doubling ]B] ]B(, r)l. Combining this estimate with (9), if r(Bo) is

sufficiently small we get

I1- IB(, P)I- IB(,-r)l < C-Ig(,r)l < C’-]BI,
r r r

and (4) follows. On the other hand, if F > r, then r since F < 2r, so

that IBI IBI and (4) is immediate.
Thus (4) will be proved by proving (8). Let us now prove (8).

Step 1 The first step will consist of proving that, up to a change of
variable, we can assume that one of the vector fields is the derivative
with respect to one of the variables. We begin by proving the following
result.

For each point 2 (2, there exists a neighborhood bl of the origin and
a Lipschitz continuous map b’Lt n such that

(i) b is 1-1 and b(O) 2;

(ii) V {y ": lY 21 < 6) c_ (/g) for some 5 > 0;
(iii) b and b-are both Lipschitz continuous;
(iv)/f u cl(]2, ), then (O/Oyl)(u o b) (Xu) o b for a suitable

kE {1,...,m).

Proof Since the Carnot-Carath6odory metric can be defined as the
shortest time required to go from a point to another along piecewise
integral curves of the vector fields +/- X1,..., +/-Xm, we can assume that
there exists one of these vector fields, say X1, such that X (2) :/: 0, since
otherwise we would have p(2, x) c for all x. Moreover, without loss
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of generality, we can assume that X1 =(all,...,aln) is such that

all (2) > 0, and that 2 0. For z E f we denote by "Yz(’) the integral
curve of X1 issuing from z at t- 0. If y belongs to a neighborhood b/

of the origin, we set y’= (y2,..., Yn) and define

(y, ).

If we replace the assumption ’X,...,Xm Lipschitz’ by ’X,...,Xm
continuously differentiable’, then the assertion is more or less trivial,
because ofthe local invertibility theorem. Otherwise, a few technicalities
are in order.
Without loss of generality we can assume 0<A<a_<A in

L/ {y E IRn, [y] < 50}. Let us now prove (i)-(iv) in order.

(i) Obviously, (0) 0. Moreover, if (y) (r/) x, then
7x(-Y)- (0,y’) and 7x(-r/1)-(0, r/’). But the first component of
7x(t) is strictly increasing for small t, and hence y- r/, so that y’-r/’
and then y

(ii) By the local boundedness of X, 17x(t)l < Ixl + C[t[ for small t;
choose now 5 such that (2C/A + 1)6 < 60, so that, if Ix[ < 6 and Itl <_ (2/
A)IXl[, then [Tx(t)[ _< [x[ + (2C/A)lXl[ < (2C/A + 1)6 < 60. This implies
that A _< al(7(t)) _< A if It] _< (2/A)lXl], and hence that there exists t(x)
with It(x)l < (2/A)lxl such that the first component of 7x(t(x)) equals
zero. Indeed, suppose x > 0; then the first component of 7x(-2x/A) is

-2x/A

xl + al (7x(S)) ds <_ Xl
J0

so that the existence of t(x) follows by continuity.
Now take y-7x(t(x))- t(x)e. We have

and then assertion (ii) is proved.
(iii) We have

(Y) (r/) {(Y) ((Yl ))] + [((Yl r/t)) (r/)]- I1 +/2.
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Now

so that, by Gronwall’s inequality,

Illl ly’-’l +t

<_ Cly-

On the other hand,

since X is bounded. This proves that is Lipschitz continuous.

Let us now prove that ff- is Lipschitz continuous. Arguing as above,
it is easy to see that the map x ---, %(0 is uniformly Lipschitz continuous
for It[ < 1. Indeed, if > O, then

I")/x(l) (l)l x 1 -t- IX1 (’x(S)) X1 (")/(s)) as

and hence the assertion follows by Gronwall’s inequality. Let us next
show that the map x t(x) is Lipschitz continuous for Ixl < o To this
end, let x, be such that Ix[, I1 < ; without loss of generality we may
suppose that Ix[ _< I1- By definition of t(x),

ft(x) ft()0 x + al (Tx(S)) ds 1 -[- al (’y(s)) ds,
dO
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so that

t(f)

Xl 1 all (")’(S)) ds

all (7 (S)) ds -t-
at(x)

a (’)’x(S) ds

[a (7(s)) all (/x (s))] ds.

Note now that [t()l _< (2/A)Il and It(x)l <_ (2/A)[Xll _< (2/A)ll], so
that, when s lies between t(x) and t(), Ids)l <_ Il / (2c/A)[ll <_
((2C/A) + 1)6 < 30 and hence all(’)’(s)) _>/. Thus we have

lt(x)- t()l _<
t(()

all (’)’. (S)) ds
x)

It(x)l
[Xl 11 -+- lall (’(S)) all (")Ix(S)) ds

f0-< x 1 + L [’7(s) "/x(S)l as <_ L1 Ix

Hence, since we showed above that (I)-I(x)-’x(t(x))-t(x)el, we have

I(I)-I (X) (I)-1 ()[ I’)/x(t(X)) t(x)el 7(/()) + t()ell
< It(x)- t()l / I"/(t(x)) --’(t())l / I/x(t(x)) --’(t(x))l.

Now, the first and the third terms are bounded by const. ]x-] by
what we proved above, whereas the second one equals

_< AIt(x) t()l _< const. Ix- 1,

and the third assertion is completely proved.
(iv) An easy calculation (together with Rademacher’s theorem)

shows that

0(I) ) (VH, X1 ) o (I) (X1 b/) o (I),(. o e) (v.) o e,

so that in the new variables y the vector field X is the vector field O/Oy

This completes the proofs of (i)-(iv).
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To complete Step 1, consider now the vector fields 1,..-,m in
defined by Xj(u o ) (Xju)o . By part (iv) above, we can assume

{21,..., J)m} {O/Oyl,f(2,..., Jm}-In addition, a curve /" [a, b]--,/J
is a sub-unit curve with respect to {))1,..., 2m} if and only if q o 7 is
a sub-unit curve with respect to {X1,..., Xm}, so that, if we denote by

the Carnot-Carath6odory metric associated with {J)l,...,J)m},
then D(Y, r/) P((Y), (r/))- Therefore, if for awhile we denote by B
and Bp the metric balls with respect to t5 and p respectively, then by
shrinking/g if necessary, we get B(y,r) -l(Bp((y),r))) for y
and r sufficiently small. Hence

r)l ] d ] [det ,7(r/)l dr/
p(x,r) J-(Bp(x,r))

I"
/ det J(r/)l dr/ IB(,I,-’ (x), r)l.
JB(-1 (x),r)

Thus, to prove (8) it will be enough to prove the same assertion for
O/Oyl, f(2,..., f(m. To avoid cumbersome notation, from now on we
will assume that {X1,..., Xm} {O/Oyl, f(, f(m}.

Step 2 This step will consist of proving the following technical
result:

If we put

then there exists M>0 such that the metric associated with

{MOl,’2,...,m) is equivalent to the metric associated with
{01, Y2,..., Ym}.

Proof For all E IR we have

(MI) 2
m m

+ (j., )2 M2? + Z(( yj., ajll) 2

j=2 j=2

m

<_ M2? + 2(Yj, )2 + 2m max sup
j=2 J

( m

<_ c + 2

.i-=2
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On the other hand, if a, b E R, then

3 2(a- b) 2 _> a 3b 2

Therefore

m 3 m
2

and then it is enough to choose M2 -34 + C. Hence, if (t) is a sub-unit
curve for one set of vector fields, then there exists 0 < c < oe such that
"y(ct) is sub-unit for the other, and then the related distances are
equivalent.

Step 3 It follows from Steps and 2 that (8) will be proved by
proving it for the vector fields 01, X2,..., Xm when X does not contain
the first derivative for j 2,..., m.

Let B(x, err) be a ball with a E (0, 1) and let

)a(y) (Xl -- (Yl Xl),Y2,...,yn).

We will show that

c_ e(x, r).

If so, then setting r/- (y), we will have

IB(x, crr)l- c/ dr/_< olB(x, r)l,
J(B(x,r))

and the proof of (8) will be achieved.
Thus, let y B(x, err) be given; by definition, there exists a sub-unit

curve ,’[0, T]R such that ,),(0)-x, ,),(T)-y, and T<_crr. In
particular, if we choose -(1,0,..., 0) in the definition of sub-unit

curve, putting --(/1,..., /n), we have

]’h (t)] _< for a.e. t [0, T]
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since (X., ) 0 forj- 2,..., m. Then

T

lYl xll-I r.

Thus

p(,,(y), x) < p(,,(y), y) + p(y, x) < p(,,(y), y) + err.

Since y and (y) differ only in their first components, a sub-unit
curve connecting them is given by y + t, with between 0 and
(1/cr-1)(y-xl). Therefore

p(a(y),y) <_ (--1)ly --Xll _< (1- cr)r.

This proves that p((y), x)< r, and then the assertion is completely
proved.
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