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In this paper we discuss an inequality ofKolmogorov type for the square ofa second-order
formally symmetric difference expression in the limit-point case. A connection between the
existence ofthe inequality and the Hellinger-Nevanlinna m(A) function associated with the
difference expression is established and it is shown that the best constant in the inequality is
determined by the behaviour of the m-function. Analytical and computational results are
obtained for specific classes of problems. Also necessary and sufficient conditions for the
powers of the difference expression to be partially separated are given.
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1. INTRODUCTION

Landau [18] and Hadamard [12] established the inequality

IIf’ll 2 _< 411fll IIf"ll (.1)

in the L[0, oo) setting, and showed that 4 is the best possible constant.
Analogues of (1.1) in L2[0, oo) and L2(-oo, oo) were given by Hardy and
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184 A. DELIL AND W.D. EVANS

Littlewood 13]. Kolmogorov 17] extended (1.1) to inequalities of the
form

IIf<m/ll gn,mllfll(n-m)/nllf(n)llm/n

where Ilfll is the L(-c,) norm and the best possible constants are
given explicitly. Everitt [10] extended the Hardy-Littlewood inequalities
to a general class of inequalities in L2w(a, b) which involve the second-
order formally symmetric differential expression

Nf’- -1 [_ (pf,), + qf], (1.3)
w

namely,

(fab(plfr[2 + qlf]2) dx)
2

_< K Ifl2w dx INfl2w dx; (1.4)

these are generally called the HELP inequalities after Hardy, Everitt,
Littlewood and Polya. In (1.3)p, q and w are real-valued functions on
[a, b) (- < a < b < c) and are assumed to satisfy minimal smoothness
conditions in order for the equation

Nf-af, XeC

to be regular at a and also to satisfy the so-called strong limit-point
condition at the singular end point b. The inequality (1.4) is required to
hold on a domain of functions for which the right-hand side is defined
and finite. Using the calculus of variations, Everitt proved that the
existence of the inequality and the value of the best constant depend
explicitly on the behaviour ofthe Titchmarsh-Weyl m-function for (1.5).
Evans and Zettl [9] gave an alternative proof of Everitt’s result by using
the theory of linear operators in a Hilbert space.
The validity of Kolmogorov type inequalities for norms ofpowers of

linear operators acting in a Hilbert space has been established by Ljubi6
[19]. Also, Ph6ng [21] gives necessary and sufficient conditions for the
validity of the inequalities

IlNmfll c,,,mllfll(n-m)/nl]Nnfllm/n, n > m, n and m integers,

(1.6)
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in which II’ll is the L2w norm over the interval [0, o) and Nf is given
by (1.3). Beynon [4] considers the inequality 1.6) in the special case when
n is even and m--n/2;

IIN"/=TII 2 gnllfll IIN"fll, n 2, 4, 6,..., (1.7)

on the maximal domain for which the right-hand side of (1.7) is finite in
the LZw(a,b) setting. He gives a criterion for a valid inequality in (1.7)
in terms of the Titchmarsh-Weyl m-function, which is suitable for
computational techniques. By using the von Neumann formula for the
maximal operator generated by the differential expression Nf, he reduces
the criterion to the positive definiteness of a certain real and symmetric
2n 2n matrix which involves the m(A) function and the spectral
parameter A in (1.5) with A E C\R. He also gives a numerical method
for computing the value ofthe best constant in the inequality, and applies
it to certain different cases of the coefficients p, q and w for n 2, 4, 6.
The case n--2,

with the LZw[0, ) norm is discussed by Beynon et al. [5].
The discrete analogue ofthe inequality (1.1) in g2(0, cx:) was proved by

2 andCopson [8]" if {x,} is a sequence ofreal numbers such that ,=0 x,
2 2,=0(A x,) are convergent, where Ax,=xn+l-X, and A2 Xn--

A(Ax,), then -,0(Ax,)2 is convergent and the inequality

2 Z(A2Xn)2(/Xn)2 4Z Xn
n=0 n=0 n=0

(1.9)

holds with the constant 4 being best possible. Brown and Evans [6]
extended Copson’s inequality to the discrete HELP inequalities:

2
Wn(pn[AXn[2 -I- qnlx,,I 2) -I--p-1 [A,x_I <_ K Ix.t’w,, IMxnl2

n=0 n=- n=0
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where

MXn { ln [--m(pn-1 mXn-1) + qnXn], n >_ O,

Axn, n 1,

where {pn}_l, {qn} and {Wn}_ are real valued with

(1.11)

Pn 0 and wn > 0 Vn 1,0, 1,... (1.12)

The inequality is required to hold on the domain

D :- x {Xn}_l" x g2
w [Mxnl2Wn <

n=O
(1.13)

and g2
w is the Hilbert space of sequences x= {Xn}_ such that

n=_ [Xn[ZWn < . The criterion they obtain for the validity of (1.10)
has a similar form to that of Everitt for (1.4), with the Titchmarsh-
Weyl m-function now replaced by the Hellinger-Nevanlinna m-
function for the difference equation

Mxn /Xn, n _> 0, A E C (1.14)

introduced simultaneously by Hellinger [14] and Nevanlinna [20]. For
a full discussion of the construction and the properties of Hellinger-
Nevanlinna m-function, Akhiezer [1, Chapter 1] and Atkinson [2,
Chapter 5] may be consulted. Brown et al. [7] examined the inequality
(1.10) when (1.14) is the recurrence relation for the classical
orthogonal polynomials.

It is the discrete analogue of (1.8) that is going to be our main concern
in this paper:

IMxnl2Wn g Ix,,12Wn IM2xnl2Wn
n=0 n=-I n=l

(1.15)

where Mx is defined by (1.11) and x belongs to a domain for which both
right- and left-hand sides of (1.15) are finite. Our objective has been to
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obtain a criterion which explicitly involves the Hellinger-Nevanlinna
m-function for (1.14), and then to use the computational approach of
Beynon et al. [5] for providing estimates ofthe best constant, and to give
asymptotic results, whenever possible, to support the numerical results.
In Section 2 we give the abstract results, while in Section 3 we give
necessary and sufficient conditions for M2 to be partially separated, the
main theorem and the cases ofequality. Finally in Section 4 we give some
examples, including a norm inequality, and give estimates for the best
constants together with the cases of equality.

2. PRELIMINARIES

Let M be defined by (1.11), namely

Mxn ": {

_
Wl[-A(pn-lAxn’ AXn-1) q- qnXn], n>_0,

(2.1)
n=-l,

where Axn= Xn+ Xn, and {P,}-l, {qn} and {w,}_l are real valued
with

Pn 7 0 and Wn > 0 Vn -1, 0, 1,... (2.2)

Also define the expression M2 as

W-- -A(pn-IAMxn-1) + qnMxn], rt >_ 1,

m2xn :-- l0 [-A(p_1AMx_I) + qoMxo], n O, (2.3)

w-__ll AMx_ n -1.

Let g denote the weighted g2 Hilbert space with the inner-product and
norm

(x, y) Z xnPnw,, Ilxll (X, X)1/2. (2.4)
n=-I

We denote by Z the set of all integers and N0 the set of all non-negative
integers. By using the summation by parts formula, for k E N0, m >_ k,
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we have

m m

Z"nMynwn Z(qnYn’n -t- pn’A’ynAXn)
n=k n=k

pmAymSCm+l + Pk-l Ayk-lXk,

m

Z(-nMyn ynMxn)Wn --Pm (ymXm+l ’--mYm+l
n=k

Pk-1 (Yk-l- Xk-lYk). (2.6)

Also,

rn

Z(-nM2yn ynM2xn)Wn
n=k

pm(Xm+lMym Mym+l----m "+" MXm+lYm Ym+lMXm)
Pk-1 (2-Myk-1 My+ MXkYk-1 ykMXk-1 ). (2.7)

The identities (2.6) and (2.7) are the Green’s formulas for M and M
respectively. We denote by Td(M), To(M), T(M) the restriction of M
respectively to the subspaces

DTd(M {X G g2w: X-1 --0 and x -0

for all but a finite number of values of n}, (2.8)
DTo(M) := DTd(M), the closure in gzw, (2.9)

DT(M) X- {Xn}_l G e2w’Z Imx.lZw. < oo (2.10)
n=0

We will also denote by Td(M2), T0(M2), T(M2) the restriction ofM2 to
the subspaces

Drd(M {x g2w: x_ x0 0 and Xn 0

for all but a finite number of values of n}, (2.11)
DT,,(M2 DTd(M2), (2.12)

DT(M) X- (Xn}_ e2w: Z [M2xnl2Wn < O0 (2.13)
n=l
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The expression M will be assumed to be in the limit-point (LP) case, i.e.
for (,) 0, there is a unique 2w (up to constant multiples) solution of

Mxn /Xn n >_ O. (2.14)

Equivalently this means that [15, p. 435]

lim Pm(ymXm+l XmYm+l O, /x, y Dr(M). (2.15)

IfM is not limit-point, then it is said to be limit-circle (LC).

DEFINITION 2.1 We say that M2 is limit-point (LP) if there exist

precisely 2 linearly independent g2
w solutions of

M2xn ,2Xn, n > 1, E C (2.16)

for/2 R.

Similar to (2.15) above, it can be shown that M2 is LP if and only if

lim pm(Xm+lmym Mym+l2--m -t- mxm+lYm Ym+lmxm) O,
m--,c

Vx, y E Dr(). (2.17)

DEFINITION 2.2 We say that M" (n >_ 2) is partially separated (PS) if
x, Mnx g2

w imply Mrx g2
w for all r 1, 2, 3, n 1.

We start by giving necessary and sufficient conditions for M2 to be
partially separated in the following theorem, which is the analogue of
Theorem 3.5 in 16, p. 66] for differential operators and which relates the
deficiency indices of M and M2 with partial separation. Defining our

operators as above gives rise to a problem: the minimal operator does not
have a dense domain, and hence an adjoint cannot be defined. So, we will
define a new expression and new operators:

MlXn I W-- [--pnXn+ + (Pn + Pn-1 nt- qn)Xn Pn-lXn-1],

[-plx2 + (pl +p0 + q )xl],

n>_2,
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where {pn}_l, {qn}, (Wn}-l are real withpn -7= O, wn > O. Note that M, is
defined to be M for n _> with x_ x0- 0 inserted.
We define the Hilbert space

 2w, x- (Xn)L " IXnl2Wn < (2.19)
n=l

with the inner-product and ncvrm

(x, Y)l Z xny--wn, ]]xl] IXn[Zwn (2.20)
n=l n=l

The maximal and the pre-minimal operators generated by M1 are defined
as M1 restricted to

DT(MI) XE2w,1 IMlXnl2Wn < cx
n=l

DTd(M) :-- {X DT(MI )" Xm --0

for all but a finite number of values of m},

respectively. The minimal operator is To(M1)"-rd(Ml) in g2w,
Similarly, the maximal and the pre-minimal operators generated by

M are defined as M21 restricted to

DT(M x g2w, 1" IM2xnl2Wn < oe
n=l

DTd(M) {x DT(M)" Xm --0

for all but a finite number of values of m),

respectively, and the minimal operator is defined to be To(M2)’-
Td(M2) in gZw, Defining our operators in this way, we see that T(M2)
o(M2) and T(M o(M ).
The problem we investigate now is to find under which circumstances

the equality To(M2) [To(ml)]2 holds. First of all, we see that

2To(M1)- [Td(M1)]2. (2.21)

Now, let N1 M1 wl and N2 Ml w2, where wl -w2, w w2 i.
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THEOREM 2.3 M12
2def[To(M)- x/i].

is PS /f, and only if, def[T0(M12) -i]

Proof We have

To(NN2) To[(M w)(M w2)]
To(M) -i. (2.22)

The operators To(N1) and To(N2) are closed, densely defined and have
closed range. Then,

T) N1N2 T) N1) T) N2 C_ To NI To N2

= To(N1N2)

_
To(N1)To(N2)

(2.23)
(2.24)

since To(N1)To(N2) is closed [11, Theorem A, p. 26], and since To(N1N2)
is the minimal closed operator generated by NN2. Now,

M is PS D(T(N1)T(N2)) D_ D(T(N1N2))
= To(N1N2) D To(N)To(N2)

and so

To(N1N2) To(N1) To(N2) (2.25)

by (2.24). By (2.22) and Glazman’s Theorem again, we have

def[To(M2) il def[To(N1) To(N2)]
def[To(N1)] + def[To(N2)]
2def[To (N)] (j- 1,2)
2clef[To(M1) v/] (2.26)

since def[T0(N1)] def[T0(N2)] def[T0(M1) v]. Since Mis real, we
have the same result when we replace by -i. This gives the proof in one
direction. Suppose now that,

def[T0(M) -i] 2def[T0(M1) v/]. (2.27)
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Then

def[To2(M1) i] 2def[To(M1) v/]

def[To(N)] + def[To(N2)]

def[To(N1) To(N2)]

def[To(M1)2 i] (2.28)

by Glazman’s Theorem. Also

To(M,)2 C_ T(M,) i. (2.29)

But, by (2.28), the spaces Range[T02(M1)- i] +/-, Range[T0(M)- i] +/-

have the same (finite) dimension and hence we must have equality in
(2.29), i.e. To(M)- T(M1). On taking adjoints, we get T(M21)C_
T2 (M1) and henceM is partially separated.
The theorem is therefore proved.

As was mentioned earlier, the set DTd(M), (2.11), is not dense in g2
w and

so Td(M2) does not have an adjoint in g2
w. However, its graph

where (x, y} denotes a pair in g2
w x g2w, is a linear subset ofg2w x g2

w, a linear
relation in the terminology ofBennewitz [3]. Hence, an adjoint is defined
as a closed linear relation on g2

w [3, p. 35]: for E c g2
w x g2

w the adjoint
relation E* is defined as

(u,v) ez (U,v)-(v,u) V(u,,) (2.30)

E is called symmetric if E C_ E*.
If Go is the closure of Gd then G (Gd)*. It is readily proved that

M2 (n >_ 1), x E DT(M2)}.GO G {(x,x*) Xn xn (2.31)
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LEMMA 2.4 Let M2 be limit-point. Then Go is a closed, symmetric
relation on g2

w and

(y, y*) Go

Y*n M2yn, n > 1,

Y-1 =Yo --0,

y*_ M2y-1 (PoP-1/wow-1)Yl
y M2yo (pop/wOWl )y2

-(po/wo)[(po + Pl + ql)/w1

+(P-1 + Po + qo)/wo]yl.

(2.32)

Proof Go is closed by its definition, and it is symmetric since

Go Gd c G G;. (2.33)

Note that this also shows that Gd is symmetric, since G; (Gd)*. Now,
for the necessity of (2.32), let (y, y*) Go c G G;. We then have
y, M2yn (n 1, 2, 3,... ). Also le[ (x, x*) G G; where x {Xn}_l
has only a finite number ofnon-zero xn’s but arbitrary, otherwise. Then,
since G; G,

0 (y*,x)- (y,x*)

E(M2yn.2n ynM2xn)Wn
n=l

.2*nt- (Y*12-1 Y-1 _I)W-1 -+- (y;20 yO2.;)Wo

Po(.2oMyl 21Myo + MxoYl MXlYO)

+ y* 2*_12-1 w-1 Y-1 -1 w-1 + YoXoWo yo.2wo

[yl’wo PoPl Po(Po + Pl + ql) Po(P-1 + Po + qo)
.20 --lY2 + Yl +

w1 wo

(P-leO-)( P-leO)+ Y-1 21-- X*_ w-1 +2-1 Y*--l W-I Yl
\ wo wo

 Ow, + Owo
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Now, since the Xn and x, are arbitrary, it follows that

y-1

Y*-I
y0 0,
(POP-1/WoW-1)Yl MZy-1,
(POPl/WOWl)Y2 (p0/w0)[(P0 +Pl + ql)/Wl
+(P- +Po + qo)/wo]Yl M2yo

(2.34)

For the sufficiency, we need to show that the elements (y,y*)E G
satisfying (2.34) are in Go, i.e. in G*. So, take an arbitrary (x, x*) E G and
(y,y*) G satisfying (2.34). Then, since M2 is limit-point by the
hypothesis,

(y*, x) (y, x*

(M2yn,n ynM2xn)Wn
n=l

+ (Y*12-1 Y-12" POP-1-1)W-1 "- (Y-O YO2)Wo ylX-1W-1
WOW-1

+P__9_o P[._. (po+P+ql+P-l+Po+qo)]_wo Y2- Yl xowo
w1 wo

+ Po(2oMy 2lMyo + MXoYl MxlYo)
=0

since Y-1-yo-0, and hence (y, y*) G*-Go. The lemma therefore
follows.

We are now able to give the orthogonal direct sum ofG G in terms
of Go and the deficiency subspaces N(/2) and N(A2) with respect to the
graph inner product

((a,a*), (b,b*))2 (a* ea, b* eb) + /2(a, b), h2 e + it/(7 - 0)
(2.35)

defined on G. In (2.35), (., .) is the g2
w inner product and the norm on G is

the norm produced by the graph inner product. The deficiency subspaces
are defined as

N(A2) { (x, AZx) e O G)
{ (x,/2x) e2w x 2w" m2xn /2Xn, El- 1,2, 3,...},

N(2) { (x, ,2x) g2
w

g2w" MZx,, fk2Xn, El- 1,2, 3,...}.
(2.36)
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We have the following lemma, which establishes the orthogonal
decomposition of the maximal graph with respect to the graph inner-
product defined by (2.35).

LrMMA 2.5 Let A2- e+ir/, (A2) - 0. Then,

G Go G N(A2) @ N(2) (2.37)

where (R) denotes the orthogonalsum with respect to thegraph inner-product
(2.35) defined on G.

Proof Go _1_ N(A2): Let (y, y*) Go and (u, A2 u) N(2), then

((y,y*), (u, A2u)),2 (y* ey, A2u eu) + 2(y,u)
-ir/(y*, u) + ier/(y, u) + /2 (y, u)
-ir/(y, A2u) + ie(y, u) + r/ (y, u)

=0

since (u, Au) G G. Hence Go and N(A2) are orthogonal; similarly
for Go and N(2). For N(A) and N(e) let (u, A2u)N(A2) and
(v, v) N(2), then

((u, A2u}, (v, 2v})2 Or/u,-it/v) + r/2(u, v)
--0.

The proof is therefore complete.

As another preliminary, we have the following lemma which
establishes a basis for the solution spaces ofM2 2andM2 2.
LEMMA 2.6 Let M and M2 be LP. Also, let m(.) be the Hellinger-
Nevanlinnafunction associated with M. For , A2 I, let 0() and() be
the solutions ofMxn AXn (n >_ O) defined by the initial conditions

0_1 1, 00-0, q5_1-0, p-l f$0- (2.38)

and set b,,(A) O,,(A) + m(A)qSn(A for n >_ 1. Then b(A), b(-A) are

linearly independent solutions of

M2xn k2xn, n > (2.39)
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and satisfy

-1 (+/-/) 1, p-l0(zk,) m(+A). (2.40)

Hence,

and

{ ((), 2()), ((_), 2(_)) }
are basesfor N(/2) andN(2) respectively.

Proof We see that (2.40) easily follows from (2.38). So we need only to
specify the bases of the deficiency subspaces. But, since M2 is LP, and
(U, ,2 U) E N(A2) implies M2

U ,2 Un (n 1), it follows that u is a linear
combination of (A) and (-A). Similarly for N(2). The lemma is
therefore proved.

LEMMA 2.7 IfM is LP, (A) : 0 and (A) : 0 then

II(+A)]I2 .[m(-A)] + w-1 (2.41).(+)

and

(b(A) (-A)) m(A) m(-A) -- W_I.
2(A) (2.42)

Proof We insert xn yn ,(A) in the Green’s formula related to M.
Since M is LP, we get

n--0

P-1 [-1 (A)o(A) o(A)-1 (A)] II(a)ll 2 -+-W_



KOLMOGOROV TYPE INEQUALITIES 197

and similarly taking (-A) instead of (A) we obtain (2.41). Also, by
inserting Xn Cn(A) and Yn n(--A) in the Green’s formula related to M
we obtain (2.42), which completes the proof.

Note that, in order to prove our inequality, it is sufficient to consider
only real sequences x E Dr(t2 C_ Dr(t.
LEMMA 2.8 Let (x, x*) G be real. Then, 3(y, y*) Go and A l, A2 C,
such that

2

(x, x*) (y, y*) + 2 Ail3(i) ,/22/3(i)) /2 ]1, (2.43)
i=1

where (1 is (A) and 2(2) is

Proof Using

G Go N(A2) N(.2), (A) 0

for all (x, x*) E G, there exists Ai, BiE C,i- 1,2,and (y, y*) E G0suchthat

2 2

(x,x*) (y, y*) + Z Ai((i), ,2)(i)) -- Z Bi()(i), /2)(i)). (2.44)
i=1 i=1

Now, since (x, x*) is real, (2.44) gives

2 2

(x,x*) (y,y*)+ Z//(3(i),/2D(i)) qt_ Z/t.(3(i), ,2/3(i))" (2.45)
i= i=

Hence, uniqueness in the orthogonal decomposition gives that (y, y*)
must be real and Ai Bi, i-- 1, 2. This completes the proof.

LEMMA 2.9
have

For real (x, x*) G, satisfying (2.43), and/2__ + i7 we

ii<x, x,>l12 y. 2

+ 4r/2 ZZAi--((i)’ ())
i=1 k=l

A2 R. (2.46)
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Proof By Lemma 2.8,

2 2

(x,x*) (y, y*) + Z Ai(3(i)’ )23(i)) AV Z //(3(i)’ ’23(i))’
i=1 i=1

and on using the graph norm,

2

A2

Now,

and (2.46) follows. Therefore the lemma is proved.

LEMMA 2.10 Let k pexp(i0) (0 E (0, 7r/4), p E 1R {0}), ,2 e+ir; let
(x, x*) G be real, M LP andM2 PS, and define

Q,x2 [x] "-II<x,x*>[l2 + 2e[xowo(x; MZxo)
+ X_l (p_lMxo + x*_lW-1) --p-lxomx-1]. (2.47)

Then thefollowing are equivalent:

(a) 2f. Zn=o(Mxn)2Wn <_ Itx*[I 2 + 121211xll 2, (2.48)

(b) Q2[x] >_ 0. (2.49)

Furthermore, there is equality in (a) ifand only if there is equality in (b).
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Proof By using the graph norm II,ll=, for real (x, x*) E G,

II<x,x*)ll= -Ilx*ll 2 2e(x*,x) + 121211xll 2

and

(X*. X) X*_IX_IW_ -b XXoW0 -b ZxnM2xnWn
n=l

X* X_ W_ -b X;XoWo XOM2xOWO + ZxnM2xnWn
n--0

X*_lX-1W-1 -b XXoWo xoM2xowo + (Mxn)2Wn
n=O

+ p-l(X-Mxo xoMx-1)

IIx*ll 2 / p4[lxl[2 2 (Mxn)2Wn Q2[x].
n=0

The proof follows from this fact.

Now, by using (2.40) and setting n(A)- m(-A)for arg(A)E (0, -/4),
we have the following for real {x, x*} G:

x_ 2N(A + A2),
m(A) n(A))-+-A2xo 2N A1
P- P- ,/

(m(A)Mx_ 2. A
W-1
-bP-1 -bA2 --b

W_l

Mxo- gyo -b 2(A1A m(A--)p-1 A2Ar/(A)’,-1]
x* y*_ (A /2-1= +2N +A2A2),
,_, (A2m(A) n(A)Xo Yo + 2 A -b A2A2

P- P- }

M2x M2y + 2{A [A2m(A) +p---L A
wo WOW-1 k. P-1

I p2 (-bAg .2 n(.) P-1/ -b
n(A)

p- wo wow_ \P-1
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Combining these, we get from (2.47) that

O,2[x]- II<x, x*>ll = 8e{Alm(,k)+ A2n(A)J[AI(-A)+ A2A]
q- 8(A1 q- A2)}{A1 JAm(A) + AZw_l]
+

This implies, by using (2.46) and (2.42) with the notation A1 := and
A2 :-- -), and m(A1) m(A) and m(,2) n(A),

Q,2[x] II(y,y*)ll
2 2

[m(Ai)_r(Ak) ]4’2Z Aik + W_,
i=1 k=l i- k

+ 8e[Alm(A) + Azn(A)][A1 (-A) + AzA]
+ 8(A1 + A2){AI[m() + 2W_l] + A2[-() + 2w-1]}

(2.50)

Now, set A a + ibm, A2- a2 q- ib2, m(A) m + im2, n(A) nl + in2,
A #+iu and

f(A) Am(A) + A2w_I --f, + if2,

g(A) -An(A) + A2W_l g + ig2.

Then

Q2[x]- II(y,y*)ll2 ATpA (2.51)

where AT- (al, a2, bl, b2) and P is a real and symmetric matrix of size
4 x 4 with the following entries:

ml nl \
+#)
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(m24-n2P23 4\ ---l J + 8 + nl u m2#l
2 J

P24 8e( g2 nlu + n2)2 2

P33 4r/2 (- + w_) + 8e(-m2u),

ml nlP34 4r/ 2+w_)+8e(m2-n )2
u

P44- 4r/2 (_n2u 4- W-l) 4- 8e(n2t)).

We see that, by defining D[x]" "Mx ,2
---2-n--0, n) Wn, we have the

equivalence of the following:

(i) IIx*ll 2 + p41lx[I 2 2p2 cos(20)D[x] > 0 V real(x,x*) E G, (2.52)

(ii) P(p, 0) >_ 0, i.e. P is non-negative definite, (2.53)

(iii) Zn=l (m2xn)2Wn 4- p41lxll 2 2p2 cos(2O)D[x] >_ O,

V real x E DT-(M2). (2.54)

3. MAIN RESULTS

LEMMA 3.1 For any non-trivial, real xDT-(M) and K-2k-, the
following are equivalent:

(i) D[x] <_ Kllxll(,o= (MZxn)Zwn) /2,
(ii) Jp2,k[X] ’n=l (m2xn)2Wn 4- p4I]Xll 2 p2kD[x] >_ 0 gp \ {0}.

Furthermore, there is equality in (ii) for p2__ 1/2kD[x]/llx[i ifand only if
there is equality in (i).
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Proof We see that

+
Ilx]l 2

lixl[2 Z(M2Xn)2Wnn=I --7 (D[x])2 (3.1)

and

>_ o vp {o} O[xl <_ 2k-111xll (m2xn)2Wn

(3.2)

Therefore the lemma is proved.

Now, let X(P, O) denote the least eigenvalue of the real, symmetric
matrix P(p, 0) with A p exp(i0) (0 E (0, 7r/4), p E N\{0}), and define

00:=inf 0:0 0, X(P,O)>_O VpR\{O} (3.3)

The main theorem is as follows.

THEOREM 3.2 Suppose M is LP and M2 is PS. Let )--pexp(i0) with
0 (0, 7r/4), p R\{0}. Then,

(A) 0o-inf 0:0E 0, X(P,C)>OVd? 0,- VpR\{O}

(3.4)

(B) there exists a constant K (1, oe) such that (1.15) is valid ifandonly if
0 < Oo < 7r/4, in which case, the best constant is K-- sec(200).

Proof (A) Following (2.39)-(2.41) and Lemma 3.1, with p exp(i0)
the validity of(1.15) is equivalent to non-negativeness ofP(p, 0), i.e. non-
negativeness ofthe least eigenvalue X(P, O) ofthe matrix P(p, 0). Suppose
that X(P, 0) >_ 0 Vp R\{0} and for some 0 E (0, 7r/4). Hence,

Qa2 Ix] _> 0, ) p exp(i0).
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Since for b E (0, 7r/4) we have cos(2b)< cos(20), it follows from (2.41)
that, as 2e/p2= 2cos(20),

2cos(24)D[x] _< 2cos(20)D[x] (strict if D[x] O)

Z(m2xn)2Wn Vp-< p211xl12
n=l

The second inequality above, i.e.

2cos(20)D[x] <_ p2[lxll 2
oo

)2-+- yZ(M2xn Wn Vp \{0) (3.5)
n--1

remains strict if D[x]=0 and x0. Hence, from (2.39)-(2.41) and
Lemma 3.1, X(P, ok) > 0 Vp ]R\{0} and therefore (3.4) is established.

(B) If (1.15) is satisfied for some K (1, oo), then on setting

0=cos 6 0,
7r

we see that (3.5) is satisfied. So, (2.40) and (2.41) now yield that when, p exp(i0)

x(p, 0) _> 0 Vp

In particular, 0o < 7r/4 and 0o-COS-(1/K) where K is the least con-
stant in (1.15). Conversely, if 0o < 7r/4 then with ,k pexp(i0), for any
0 (0o, 7r/4),

QA2[x] >_ 0 Vp \{0} and V real x DT(M),

and use of Lemma 3.1 again yields (1.15) with the constant sec(20) and
this implies that

K sec(200).

The proof is therefore complete.

THEOREM 3.3 Suppose that the hypothesis of Theorem 3.2 holds and

Oo < 7r/4 so that K= sec(20o) is the best constant. Then the sequences
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x--{Xn}% E DT(M) which give equality in (1.15) satisfy one of the
following distinct conditions:

(a) x 0,
(b) x : 0, Mxn 0 (n 0, 1,2,... in which case, both sides of(1.15) are 0,
(c) x O, MZxn Ofor n 1, 2, 3,... and

E {p: p E IR\{0}, X(P, 00) 0} : 0

in which case the equalising sequences {Xn}_1 are given by

2

x 2ZAi)(i) (/i)’ (3.6)
i=1

where Ai ai + ibi andAT (a, a2, b, b2) satisfies

P(p, Oo)A o (p e).

Proof Cases (a) and (b) are obvious. As for (c), suppose Jp2, k[X]- 0
with p2 1/2kO[x]/llxll 2. Then, if there is equality in (1.15), i.e.

O[x] sec(200)llxll ]M2xnl2Wn
n=l

we have, with A p exp(i0o) and e (/2) p2 cos(20o),

2e p2 2

p--S D[x] -Z IM2xnl2Wn + Ilxll
n=l

Hence, by Lemma 2.10, Q2[x] 0. However, from

Q2[x] I[(y,y*)l[2 ATp(P, Oo)A >- O, (3.7)

it follows that y y* 0 and P(p, 0o)AT 0. Then, p E and, following
(2.30), x is given by

2

x 2 Ai3(i) (/i).
i=1
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Conversely, suppose that p E E and x is given by (3.6). Then x 0,
x DT(M2), T(MZ)x 2{A2 2=1Aib(i)(Ai)}, and with y-y*-0 in
(3.7) we get Q2[x]- 0 in which -pexp(i00). It follows from Lemma
2.10 that

i p2cos(ZOo)D[x] --pZ IM2xn Wn + Ilxll 2.
n--1

(3.8)

When p2 (2nl IM2x.lwn)l/2/llxll the right-hand side of(3.8) attains
its minimum, and hence

)
1/2

cos(2Oo)D[x] >_ ImZxnlZwn
n=l

_> cos(Z0o)D[x].

Following the last argument there is therefore equality, and the theorem
is proved.

THEOREM 3.4 There & no valid inequality in (1.15) when m(A) has an
isolatedpole at the origin.

Proof Following Theorem 3.2, ifthere exists a constantKE (1, ) such
that (1.15) is valid, then for some 0 (0, 7r/4) the least eigenvalue X(P, O) of
P(p, O) must be non-negative for all p (0, ). We shall show that under
the conditions of the theorem, i.e when

B
m(A)-+O(1), BR, (3.9)

this is not possible. On setting A-pexp(i0) (0 E (0, 7r/4), p (0, )),
we have

m(A)-ml +im2- [cos0 + O(1)] +i[--Bsin0+O(1)p
cos0+O(1) +i sin0+O(1)

P
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Substituting these values into the entries of (2.51), we get the real and
symmetric matrix

sin2 0

P(p, O) 8pZB
3 COS2 0 0 0

sin2 0 0 0
sin2 0 sin2 0 + O(p3)"

sin2 0

Thus, for small enough p and 0 E (0, 7r/4), the least eigenvalue ofP(p, O) is
either X(p, 0) 16Bp2 COS20 (B > 0), or X(P, O) 16Bp2 cos(20) (B < 0).
In both cases the least eigenvalue X(p, 0) of P(p, O) remains negative.
Hence, there is no valid inequality in (1.15) and the theorem is proved.

4. EXAMPLES

In the following two examples we give information on 00 (hence the best
constant K) and E (hence the equalising sequences). The difficulty in
handling the least eigenvalue of P(p, O) forces us to use a computational
approach. The numerical algorithm we use is the same as that in [5]:
in order to estimate K we solve numerically the equation X(p, 0)=0
(0 E (0, 7r/4)) and plot the graph of 0 against p for p less than some

empirically determined R. Since, from (3.4),

O0-sup 0:0 0, ,(p,O)-Oforsomep(O,) (4.1)

the value of 00 is the maximum of this graph and K sec(200). We recall
from Theorem 3.2 that the condition for a valid inequality requires the
least eigenvalue X(p, 0) of P(p, O) to be non-negative for some 0 (0, 7r/4)
and all p (0, ).

(i) The case where p w and q---7- (-)

In this case

Mxn -A2Xn-1 7-Xn (n >_ O) (4.2)
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and the recurrence relation is given by

_A2Xn_l (/ .qt_ T)Xn (l’l 0), / E C\]1, 7- ]t.

The inequality to be established is

(4.3)

The expression M2 is partially separated since the mapping
{xn}l {Mx,}l is bounded. Also M is limit-point following the
limit-point criterion of Hinton and Lewis [15, p. 435], which is that
o[(WnW+)/Z/]p,I]- oo. The Hellinger-Nevanlinna m(A) func-
tions, which we now denote by m-(,) and n-(,) to indicate their
dependence on 7-, are

m-(A) := m(A + r)

=1
)+r

2 - v/(A + r)( + r- 4), k C+,

n(/) := m(-A +
_-A+r+ V/(-/ + r)(-A + -- 4), / C+

(see [5]). First of all, with &--pexp(i0), we present an analytical result
proving that for large values ofp, 0 0 in the graph {(p, 0): X(P, 0) 0} for
any r IR: as p + oo the Hellinger-Nevanlinna m-functions satisfy

m-(A)-T+O

which are independent of the choice of r. On inserting these values in
P(p, 0), we find that the least eigenvalue of the leading matrix is 0 for
0 (0, rr/4). Hence, in the graph {(p, 0): X(P, 0) 0}, 0 0 for all r E IR and
large enough values ofp. This also can be seen from the numerical results
presented in Figs. and 2.
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FIGURE The graph {(p, 0): X(p,O)=O}, qn=--, -E[0,2].

FIGURE 2 The graph {(p, 0): X(p,0)=0}, qn=--, -E[2,4].

So, in the investigation of the value of 00, we need to examine the
case p 0. In the case -E \[0, 4], the Hellinger-Nevanlinna m-func-
tions are m() -/2 + 1/2 V/-( 4) + O(p) and n(),) -/2-
V/-( 4) + O(p), and inserting these values in the entries ofP(p, 0) we

see that the least eigenvalue of the leading matrix remains strictly
negative. We conclude that there is no valid inequality in (4.3). In the case

-= 0, 4, we do not have analytical results but numerical results show
that the graph {(p, 0): X(p, 0)=0} starts at 0=00 in the interval

(0.72896067,0.72896068) when p-0 and decreases monotonically.
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Hence we predict that the value of the best constant satisfies
8.878200 < K< 8.878201 and E- , i.e. there are no non-trivial equalis-
ing sequences. Note that, the case 7-- 0 gives the norm inequality

IIz2xll 2 g[Ixllll/Naxll, (4.4)

where the norm is the 2 norm with the set E- and the best possible
constant K satisfying 8.878200 < K< 8.878201. The interval for K is the
same as in the analogous problem in [5]. An interesting point is that when
7--0, 4 the leading term in the asymptotic value of P(p, O) becomes
zero, and one has to examine the next term. This accounts for the
discontinuous behaviour of the graphs at p- 0 in Figs. and 2.

Finally in the case 7- E (0, 4), asp Owe havem() 7-/2 + (i/2)
V/7-(4 7-) + O(p)and n() 7-/2 (i/2) v/7-(4 7-)+ O(p). With
,=pexp(i0), the least eigenvalue of P(p,O) is X(p,O) =4p
V/7-(4 7-)[sin0-cos(20)] and it remains non-negative for 0_>7r/6
which proves that as p 0, 0 tends to 7r/6 (see also Figs. and 2 and
Table I). We see from Figs. and 2 that the graph {(p, 0): X(P, 0)-0}
always starts from 7r/6 and either decreases monotonically or increases to
a value (0o, p0) and decreases again. In the first case, the best constant in

TABLE qn -, - E [0,4]

0o K E {Po}

0.000000 0.72896068 8.8782005
0.001000 0.71436994 7.0631870 {0.01330}
0.010000 0.69459334 5.5367007 {0.05913}
0.067500 0.65427425 3.8572481 {0.19380}
0.125000 0.63115740 3.2936753 {0.27880}
0.250000 0.59459489 2.6851985 {0.40915}
0.500000 0.54178273 2.1359270 {0.54807}
0.610962 0.52359888 2.0000007 {0.51756}
1.000000 /6 2.0000000 0
2.000000 /6 2.0000000 0
3.000000 /6 2.0000000 0
3.389038 0.52359888 2.0000007 {0.51756}
3.500000 0.54178273 2.1359270 {0.54807}
3.750000 0.59459489 2.6851985 {0.40916}
3.875000 0.63115740 3.2936753 {0.27880}
3.932500 0.65427425 3.8572481 {0.19380}
0.990000 0.69459334 5.5367007 {0.05913}
3.999000 0.71436994 7.0631870 {0.01330}
4.000000 0.72896068 8.8782005 0
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the inequality is K 2 and the unique equalising sequence from Dr(t2) is
the null sequence. The second case occurs for 0<7-<7-o and
4 7-o < 7- < 4, say, where 7-o E (0.610962, 0.610963). In the second case
the best constant is K sec(20o), for some 0o > 7r/6, and Eis a singleton set
E {Po}. Table I gives a summary of what we have discussed.

(ii) Legendre problem with -- shift (7 )

The Legendre polynomials Pn(A), n >_ 1, satisfy the recurrence relation

(n+2)Pn+l+(n+l)Pn_ =,(2n+3)Pn, n>_O (4.5)

with

P_ 1, Po- A. (4.6)

In our notation the difference expression we are dealing with is defined by

mxn

{ w- [--pnXn+l + (Pn-1 + Pn + qn)Xn Pn-Xn-1] Axn,

(xo X_l
W-1

n_>0,

(4.7)

in which p, (n + 2), qn Wn 2n + 3 and p,.,_ + P,, + qn O. Note
that the Legendre problem now becomes: to solve the equation

Mx, Ax,, n > O, A e C\ (4.8)

with the initial conditions x_- 1, Xo-A (see [7]). The Hellinger-
Nevanlinna functions for (4.8) are

m(A)
jk4(A)

A, n(A) Jvtt’,,_,--------T + A, A E C+,

where A/I(A)- 1/21og[(A- 1)/(A+I)], A e C + (see [71).



KOLMOGOROV TYPE INEQUALITIES 211

The shifted Legendre problem is the case where pn=-(n + 2),
wn 2n + 3 and q 2n + 3 - (- E R) in (4.7), i.e.

Mx,, 2n + 3
[(n + 2)X,+l TXn + (tl -Jc 1)Xn-1] /Xn, tl )_ O,

(xo x_)
n

W-1

(4.9)

The inequality to be established is

2

Z 2n -t- 3 [(n + 2)Xn+l -x + (n + 1)x_] (2n + 3)
n=O

< K Ix, lZ(2n + 3)

x [(n + 2)MX,+l TMxn -[- ( @ l)mxn-1]
,= 2n+3

2 ))
1/2

(2n+ 3

(4.10)

mr(A) 3- + 0 n-(A) - + 0 / C+.

In this case the least eigenvalue of the leading matrix of P(p, O) is zero
for 0 (0, 7r/6) as p . Hence, 0 0 in the graph {(p, 0): X(P, 0) 0}
for all large enough p, and for all - R. So, to obtain the value of 00,
we will have to examine the asymptotics as p 0. We present these
results according as - It\[- 1, 1], - + 1, - (- 1, 1) below.

In the first case, we have no analytical results but numerical estimates
show that the graph {(p, 0): X(P, 0)=0}, as presented in Figs. 4 and 3,

where Mx is defined by (4.9).
Using the criterion ofHinton and Lewis 15], we see thatMsatisfies the

required LP condition. Also M2 satisfies the PS condition since, given
x, MZx g2w, it is easy to show that Mx g2

w. The m.(A) and n(A)
functions related to this problem are now given by the formulas
m(A)=m(A+-) and n(A)=m(-A+-). We first prove that for large
enough values of p, 0 0 in the graph {(p, 0): X(P, 0) 0}: as p ---, oe the
m-functions are
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starts from 7r/4 and decreases monotonically. This gives no valid
inequality in (4.10). In the case 7--- + 1, the graph starts from a 00,
0.71552 <.0o < 0.71553, with p near 0 and decreases monotonically. This
means that the best constant satisfies KE (7.1786, 7.1787) and E-- . For
the case 7- E (- 1, 1), we have the following asymptotic results as p 0: for
(A) > 0 and A pexp(i0), the m-functions are

-2
mr(A) -log((1 7-)/(1 -+- 7-)) -+-

-2
n(A) -log((1 7-)/(1 + 7-)) 76

Then, the least eigenvalue ofthe leading matrix ofP(p, O) is asymptotic to

X(P, 0)
16p37r

lo82((1 -7-)/(1 + 7-))+ 7r2
[sin0 cos(Z0)],

giving 0o inf{0 E (0, 7r/4): X(P, 0) >_ 0} 7r/6. Hence, 0i 7r/6 for all
7- (- 1, 1) as p 0. These are in agreement with the numerical results:
when 7-E(-1,1)\(-7-o, 7-o), 0.66118628_<7-o<0.66118629, the graph
{(p, 0)" X(p, 0)-0} starts from 7r/6 and increases to a point (po, Oo)
(0o < 0.7155203), giving the best constant K= sec(20o) < 7.178688 and a
singleton set E- {Po}. When 7- (-7-o, 7-o), the graph {(p, 0): X(P, 0) -0}
starts from 7r/6 with p near 0 and decreases monotonically, giving the best
constant K= 2 and E (. These results are presented in Figs. 3 and 4.
See also Table II for summarised information. Note that similar to the
example (i) above, when 7-- + in the leading matrix, the leading term
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0 0.5 1.5 2 2.5

FIGURE 3 The graph {(p, 0): X(P, 0) 0}, shifted Legendre problem, - E [- 1,0].
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FIGURE 4 The graph {(p, 0)" X(p,O)=O}, shifted Legendre problem, 7-E[0, 1].

TABLE II Shifted Legendre problem, qn=2n+3--, -E[-1,1]

00 K E {P0}

-1.00000 0.7155203 7.178688
-0.99900 0.7021850 6.036489 {0.013327}
-0.93250 0.6280650 3.230251 {0.155717}
-0.87500 0.5977690 2.728417 {0.216576}
-0.75000 0.5494347 2.199719 {0.293944)
-0.66119 0.5235988 2.00000003 {0.276030}
-0.50000 /6 2.000000
0.000000 /6 2.000000
0.500000 /6 2.000000
0.661186 0.5235988 2.00000003 {0.276030}
0.750000 0.5494347 2.199719 {0.293944}
0.875000 0.5977690 2.728417 {0.216576}
0.932500 0.6280650 3.230251 {0.155717}
0.999000 0.7021850 6.036489 {0.013327}
1.000000 0.7155203 7.178688

becomes zero, and so, one has to examine the next term. This again is
caused by the discontinuous behaviour of the graphs at p 0.
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