J. of Inequal. & Appl., 1999, Vol. 3, pp. 127–135 Reprints available directly from the publisher Photocopying permitted by license only

A Remark Over the Converse of Hölder Inequality*

HÉCTOR H. CUENYA[†] and FABIÁN E. LEVIS

Departamento de Matemática, Fac. de Ciencias Ex. F. Q. y N, Universidad Nacional de Río Cuarto, 5800-Río Cuarto, Argentina

(Received 28 October 1997; Revised 16 February 1998)

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and \mathcal{L} be the set of measurable nonnegative real functions defined on Ω . Let $F: \mathcal{L} \to [0, \infty]$ be a positive homogenous functional. Suppose that there are two sets $A, B \in \mathcal{A}$ such that $0 < F(\chi_A) < 1 < F(\chi_B) < \infty$ and let ϕ and ψ be continuous bijective functions of $[0, \infty)$ onto $[0, \infty)$. We prove that if there is no positive real number d such that $\{F(\chi_C): C \in \mathcal{A}, F(\chi_C) > 0\} \subset \{d^k: k \in Z\}$ and

$$F(xy) \le \phi^{-1}(F(\phi \circ x))\psi^{-1}(F(\psi \circ y))$$

for all $x, y \in \{\alpha \chi_C \in \mathcal{L}: F(\chi_C) < \infty, \alpha \in R\}$, then ϕ and ψ must be conjugate power functions.

In addition, we prove that if there exists a real number d > 0 such that $\{F(\chi_C): C \in \mathcal{A}, F(\chi_C) > 0\} \subset \{d^k: k \in \mathbb{Z}\}$ then there are nonpower continuous bijective functions ϕ and ψ which the above inequality. Also we give an example which shows that the condition that ϕ and ψ are continuous functions is essential.

Keywords: Measure space; Positive homogenous functional; Hölder inequality; Conjugate functions

1991 Mathematics Subject Classification: Primary 46E30, 26D15; Secondary 39C05

1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. We denote by $\mathcal{L} = \mathcal{L}(\Omega, \mathcal{A}, \mu)$ the set of measurable nonnegative real functions Ω . Let $F: \mathcal{L} \to [0, \infty]$ be a

^{*}Partially supported by CONICOR and Universidad Nacional de Río Cuarto, Argentina.

[†]Corresponding author. E-mail: hcuenya@exa.unrc.edu.ar.

positive homogenous functional, i.e., $F(\lambda x) = \lambda F(x)$, for all $\lambda \ge 0$, $x \in \mathcal{L}$. Suppose that \mathcal{A} has two sets A, B such that $0 < F(\chi_A) < 1 < F(\chi_B) < \infty$ and let ϕ and ψ be bijective functions of $[0, \infty)$ onto $[0, \infty)$ such that $\phi(0) = 0$ and $\psi(0) = 0$. In [1] Matkowski proved that if $F(x) := \int_{\Omega} x \, d\mu$ for $x \in \mathcal{L}$ and

$$F(xy) \le \phi^{-1}(F(\phi \circ x))\psi^{-1}(F(\psi \circ y)) \tag{1}$$

for all μ -integrable nonnegative step functions x, y, then ϕ and ψ must be conjugate power functions.

Suppose now that ϕ, ψ are continuous bijective functions of $[0, \infty)$ onto $[0, \infty)$. We will prove that if the following property holds :

(A) There is no real number d > 0 such that

$$\{F(\chi_C): C \in \mathcal{A}, F(\chi_C) > 0\} \subset \{d^k: k \in \mathbb{Z}\},\tag{2}$$

and (1) is satisfied for all function $x = \alpha \chi_C$, $\alpha > 0$, $C \in A$, $F(\chi_C) < \infty$, then ϕ and ψ are conjugate power functions.

We want to emphasize that in this paper, we work with a class of functions smaller than those considered in [1] and we do not use the additive property of the integral. Also we will show that the hypotheses:

(i) the property (A) is true, and

(ii) ϕ and ψ are continuous functions

are essential.

Remark It is easy to see that the Hölder inequality holds, with the same proof (cf. [2, p. 95]), when we have a monotone positive homogenous functional $F: \mathcal{L} \to [0, \infty]$. More precisely, if F is a positive homogenous functional which satisfies $F(x) \le F(y)$ for all $x, y \in \mathcal{L}$, $x \le y$, and p, q are positive real numbers with $p^{-1} + q^{-1} = 1$ then

$$F(xy) \le (F(x^p))^{1/p} (F(y^q))^{1/q} \quad \text{for all } x, y \in \mathcal{L}.$$
(3)

Note that when $\phi(t) = t^p$ and $\psi(t) = t^q$, (1) gives (3).

2. THE MAIN RESULT

We begin with an auxiliary lemma.

LEMMA 1 Let S be a subset of the positive real numbers such that:

- (i) there exist $a, b \in S$ with a < 1 < b,
- (ii) $st \in S$, for all $s, t \in S$.

Then $S \subset \{d^k : k \in \mathbb{Z}\}$ for some $d, 0 < d \in \mathbb{R}$ or S is dense in $(0, \infty)$.

Proof Consider the following sets $U := \{t \in S: t > 1\}$ and $V := \{t \in S: t < 1\}$. Clearly, both of them are nonempty sets. Suppose that the set U has a minimum, say d, and let $v \in V$. By definition of d, we have $vd \le 1$. Note that there exists a $k \in \mathbb{Z}$ such that $vd^k = 1$, otherwise we obtain $vd^k < 1$ for all $k \in \mathbb{N}$, which is a contradiction since $d^k \to \infty$, for $k \to \infty$. Thus we have $V \subset \{d^{-k}: k \in \mathbb{N}\}$. Let $d_1 := \max V$. By definition of d_1 we have $d_1d \ge 1$. On the other hand $d_1d \le 1$. It follows that $d_1 = d^{-1}$.

Let $u \in U$ and let $k \in \mathbb{N}$ be such that $d^k \le u < d^{k+1}$. Since $d^{-k}u \in S$ and $1 \le d^{-k}u < d$ we get $u = d^k$. Therefore

$$S \subset \{d^k \colon k \in \mathbb{Z}\}.$$

If we assume that there exists a maximum element in V, we obtain analogously that $S \subset \{d^k : k \in \mathbb{Z}\}$ for some positive real number d.

Suppose that neither there is a minimum element in U nor a maximum element in V. Let $a_1 := \sup V$ and $b_1 := \inf U$. We will prove that $a_1 = b_1 = 1$. First we observe that $a_1b_1 = 1$. Otherwise if $a_1b_1 > 1$ we can find two numbers $u \in U$, $v \in V$ such that $1 < uv < a_1b_1 \le b_1$, which is a contradiction. Analogously, the case $a_1b_1 < 1$ gives us a contradiction. Next we see that $b_1 = 1$. Suppose that $1 < b_1$. Once again we can find two numbers $u \in U$, $v \in V$ such that $a_1 < uv < a_1b_1 = 1$, which is a contradiction. So, $a_1 = b_1 = 1$.

Finally we will show that S is dense in $(0, \infty)$. Let $w \in (0, \infty)$ and define

$$q := \sup \{t \in S : t < w\}$$
 and $p := \inf \{t \in S : t > w\}.$

Clearly $q \le p$. Suppose that q < p. As $a_1 = b_1 = 1$, there exist $u \in U$ and $v \in V$ such that $u < (pq^{-1})^{1/2}$ and $v > (pq^{-1})^{-1/2}$. By definition of q and p

it follows that there are $r, s \in S$ such that r < w < s, ru > q and sv < p. Since $s \ge p$, $r \le q$ we have $sr^{-1} \ge pq^{-1} > uv^{-1}$. Therefore we obtain p > sv > ru > q, which is a contradiction. So q = p = w. Thus S is dense in $(0, \infty)$. This completes the proof.

The following lemma is interesting in itself.

LEMMA 2 Let $F: \mathcal{L} \to [0, \infty]$ be a positive homogenous functional and ϕ, ψ be continuous bijective functions of $[0, \infty)$ onto $[0, \infty)$. Suppose that the property (A) holds. If (1) is true for all function $x = \beta \chi_C$, $C \in \mathcal{A}$, $F(\chi_C) < \infty$, $\beta = \phi^{-1}(r)$ or $\beta = \psi^{-1}(r)$, then there exists a constant c such that

$$\phi^{-1}(t)\psi^{-1}(t) = ct$$
, for all $t \ge 0$.

Proof Let $C \in \mathcal{A}$ be such that $F(\chi_C) < \infty$. Let $x = \phi^{-1}(r)\chi_C$ and $y = \psi^{-1}(r)\chi_C$. Since $\phi^{-1}(r\chi_C) = \phi^{-1}(r)\chi_C$, $\psi^{-1}(r\chi_C) = \psi^{-1}(r)\chi_C$, and F is a positive homogenous functional, it follows from (1) that

$$\phi^{-1}(r)\psi^{-1}(r)F(\chi_C) \le \phi^{-1}(rF(\chi_C))\psi^{-1}(rF(\chi_C)).$$
(4)

Define the function $f:[0,\infty) \to [0,\infty)$ by $f(t) := \phi^{-1}(t)\psi^{-1}(t)$.

By (4) we have

$$F(\chi_C)f(r) \le f(rF(\chi_C)).$$
(5)

Consider the following set:

$$S := \{ t \in (0, \infty) : \ tf(r) \le f(rt) \text{ for all } r > 0 \}.$$
(6)

If $t, s \in S$ then $tsf(1) \le tf(s) \le f(ts)$. Hence, $ts \in S$. Further, it follows from (5) that $F(\chi_C) \in S$, for all $C \in A$ with $F(\chi_C) < \infty$. Since we have assumed there are sets $A, B \in A$ which satisfy $0 < F(\chi_A) < 1 < F(\chi_B) < \infty$, we observe that the set S satisfies the hypotheses (a) and (b) of Lemma 1. In consequence under our hypothesis S is dense in $(0, \infty)$.

Since ϕ and ψ are continuous functions we find that f is also a continuous function. So, S is an algebraic group. In fact, let $t \in S$ and (a_n) be a sequence in S such that (a_n) converges to 1/t. We have $f(a_n r) \ge a_n f(r)$. Since the left member in the last inequality converges to

130

f(r/t) and the right member converges to (1/t)f(r), we obtain $f(r/t) \ge (1/t)f(r)$. So $1/t \in S$.

If $t \in S$, then

$$f(r) \le \frac{1}{t}f(rt) \le f(\frac{r}{t}t) = f(r).$$

Therefore, f(rt) = tf(r) for all $t \in S$ and since f is continuous, we have f(rt) = tf(r) for all $t \ge 0$. This concludes the proof with $c = \phi^{-1}(1)\psi^{-1}(1)$.

THEOREM 3 Suppose that the hypothesis of Lemma 2 except that the inequality (1) holds for all functions of the form $x = \alpha \chi_C$, $\alpha > 0$, $C \in A$, $F(\chi_C) < \infty$. Then ϕ and ψ are conjugate power functions.

Proof By Lemma 2 we have for some c > 0

$$\phi^{-1}(t)\psi^{-1}(t) = ct, \text{ for all } t \ge 0.$$
 (7)

For $\alpha > 0$, $\beta > 0$ and $C \in \mathcal{A}$ with $F(\chi_C) < \infty$, let $x = \phi^{-1}(\alpha)\chi_C$ and $y = \psi^{-1}(\beta)\chi_C$. From (1) we get

$$\phi^{-1}(\alpha)\psi^{-1}(\beta)F(\chi_C) \le \phi^{-1}(\alpha F(\chi_C))\psi^{-1}(\beta F(\chi_C)).$$
(8)

Consider the following set:

$$S := \{ t \in (0, \infty) : t\phi^{-1}(\alpha)\psi^{-1}(\beta) \le \phi^{-1}(\alpha t)\psi^{-1}(\beta t),$$

for all $\alpha > 0, \beta > 0 \}.$

As in the proof of Lemma 2 it is easy to see that $S = (0, \infty)$ and

$$t\phi^{-1}(\alpha)\psi^{-1}(\beta) = \phi^{-1}(\alpha t)\psi^{-1}(\beta t), \text{ for all } \alpha > 0, \ \beta > 0, \ t > 0.$$
 (9)

From (7) and (9) we get

$$\phi^{-1}(t\alpha)\phi^{-1}(1) = \phi^{-1}(t)\phi^{-1}(\alpha).$$

In this case, it is well known that $\phi(t) = \lambda t^p$ for some $\lambda > 0$ and p > 0. Thus (7) implies that $\psi(t) = \eta t^q$, for some $\eta > 0$, q > 0 with 1/p + 1/q = 1.

COROLLARY 4 Let $\phi; \psi$ be continuous bijective functions of $[0, \infty)$ onto $[0, \infty)$. Suppose that there is a real number a > 1 such that for all $t \in (0, a]$,

$$t\alpha\beta \le \phi^{-1}(t\phi(\alpha))\psi^{-1}(t\psi(\beta)) \tag{10}$$

for arbitrary nonnegative α, β . Then ϕ and ψ are conjugate power functions.

Proof Take 0 < s < 1 such that $\log_a s$ is not a rational number. We observe that there does not exists d > 0 satisfying $\{s, a\} \subset \{d^k: k \in \mathbb{Z}\}$. Otherwise, we have $s = d^k$, $a = d^j$, for some d > 0; $j, k \in \mathbb{Z}$. So, $\log_a s = k/j$, which is a contradiction.

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space where $\mathcal{A} = \{\emptyset, \mathcal{A}, \Omega\}$ with $\mathcal{A} \subset \Omega$, $\mu(\mathcal{A}) = s, \mu(\Omega) = a$. Clearly, (10) implies (1) with $F(x) = \int_{\Omega} x \, d\mu$ for $x \in \mathcal{L}$. By Theorem 3 we find that ϕ and ψ are conjugate power functions.

Remark Hardy *et al.* [3, p. 82, Theorem 101] proved the following theorem:

Let f and g be functions of $[0, \infty)$ onto $[0, \infty)$. Suppose that f is a continuous and strictly increasing function which vanishes at x = 0 and has a second derivative continuous for x > 0, and that g is its inverse function. Suppose further that ϕ and ψ are defined by

$$\phi(t) = tf(t), \qquad \psi(t) = tg(t)$$

or

$$\phi(t) = \int_0^t f(s) \,\mathrm{d}s, \qquad \psi(t) = \int_0^t g(s) \,\mathrm{d}s;$$

and that for every $n \in \mathbb{N}$ and for all positive real numbers r_1, \ldots, r_n such that $r_1 + \cdots + r_n = 1$,

$$r_1\alpha_1\beta_1 + \dots + r_n\alpha_n\beta_n \leq \phi^{-1}(r_1\phi(\alpha_1) + \dots + r_n\phi(\alpha_n))\psi^{-1}(r_1\psi(\beta_1) + \dots + r_n\psi(\beta_n))$$
(11)

for all nonnegative real number $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$. Then f is a power function.

As a special case of Corollary 4, we obtain the following result, which is a variation of this theorem:

Let f, g be continuous and strictly increasing functions of $[0, \infty)$ onto $[0, \infty)$ which vanishes at x = 0. Let ϕ and ψ be defined as above. Suppose

132

that there exists a real number a > 1 such that (11) holds for n = 2 and for all positive real number r_1, r_2 with $r_1 + r_2 = a$. Then f is a power function.

3. TWO EXAMPLES

In this section we will give examples which show that the conditions:

- (i) the property (A) is true, and
- (ii) ϕ and ψ are continuous functions

are essential in Theorem 3.

Example 1 Let $(\Omega, \mathcal{A}, \mu)$, $\Omega \neq \emptyset$ be a measure space. Let $F: \mathcal{L} \to [0, \infty]$ be a monotone positive homogenous functional which satisfies (2) for some d > 1. Let f be a strictly increasing function on $[1, d^{1/2}]$ such that f(1) = 1, $f(d^{1/2}) = d$. Define a one to one continuous function of $[0, \infty)$ onto $[0, \infty)$ by $\phi(t) = d^k f(d^{-k/2}t)$, if $d^{k/2} \leq t \leq d^{(k+1)/2}$, $k \in \mathbb{Z}$ and $\phi(0) = 0$. Let $\psi = \phi$. We will prove that (1) holds. For this, let $C, D \in \mathcal{A}$ be such that $F(\chi_C) < \infty$, $F(\chi_D) < \infty$ and let $\alpha > 0$, $\beta > 0$. Consider the functions $x := \alpha \chi_C$ and $y := \beta \chi_D$. If $F(\chi_C) = 0$ or $F(\chi_D) = 0$, both members in (1) are equal to zero. Clearly if $F(\chi_{C \cap D}) = 0$, (1) holds. Suppose that $F(\chi_C) > 0$, $F(\chi_D) > 0$ and $F(\chi_{C \cap D}) > 0$. Then there are integers k, t such that

$$F(\chi_C) = d^k, \qquad F(\chi_D) = d^t.$$

Let $m, n \in \mathbb{Z}$ be such that

$$d^{m/2} \le \alpha < d^{(m+1)/2}$$
 and $d^{n/2} \le \beta < d^{(n+1)/2}$.

Since $d^{(m+k)/2} \le \alpha d^{k/2} < d^{(m+k+1)/2}$ and $d^{(n+t)/2} \le \beta d^{t/2} < d^{(n+t+1)/2}$, we have

$$F(xy) = \alpha\beta F(\chi_{C\cap D}) \tag{12}$$

and

$$\phi^{-1}(F(\phi \circ x))\psi^{-1}(F(\psi \circ y)) = \phi^{-1}(\phi(\alpha)d^k)\psi^{-1}(\psi(\beta)d^t)$$
$$= \alpha d^{k/2}\beta d^{t/2} = \alpha \beta F(\chi_C)^{1/2}F(\chi_D)^{1/2}.$$
(13)

As F is monotone, from (12) and (13) it follows that

$$F(\chi_{C\cap D})^2 \le F(\chi_C)F(\chi_D). \tag{14}$$

Next, we give an example which shows that we cannot omit the hypothesis of continuity of the functions ϕ and ψ .

Example 2 Once again we consider a measure space and a functional F as in the beginning of this section. Suppose further that

$$\{F(\chi_C) \colon C \in \mathcal{A}, F(\chi_C) > 0\} \subset \mathbb{Q}_+$$
 ,

Let ϕ and ψ be a couple of bijective functions of $[0,\infty)$ onto $[0,\infty)$ defined by

$$\phi(x) = \begin{cases} x^2 & \text{if } x^2 \in \mathbb{Q}_+, \\ x^2/2 & \text{if } x^2 \notin \mathbb{Q}_+, \end{cases}$$

and $\psi(x) = x^2$ for $x \ge 0$.

Note that (1) is satisfied. Let $x := \alpha \chi_C$ and $y := \beta \chi_D$ be as in Example 1. Clearly (12) is satisfied. On the other hand, we have

$$\psi^{-1}(F(\psi(y)) = \psi^{-1}(\psi(\beta)F(\chi_D)) = \psi^{-1}(\beta^2 F(\chi_D)) = \beta(F(\chi_D))^{1/2}.$$

If $\alpha^2 \in \mathbb{Q}_+$ then

$$\phi^{-1}(F(\phi(x)) = \phi^{-1}(\phi(\alpha)F(\chi_C)) = \phi^{-1}(\alpha^2 F(\chi_C)) = \alpha(F(\chi_C))^{1/2}.$$

If $\alpha^2 \notin \mathbb{Q}_+$ then

$$\phi^{-1}(F(\phi(x))) = \phi^{-1}(\phi(\alpha)F(\chi_C)) = \phi^{-1}\left(\frac{\alpha^2}{2}F(\chi_C)\right) = \alpha(F(\chi_C))^{1/2}.$$

In either case, we get

$$\phi^{-1}(F(\phi \circ x))\psi^{-1}(F(\psi \circ y)) = \alpha\beta F(\chi_C)^{1/2}F(\chi_D)^{1/2}.$$

Thus (1) follows from the inequality (14).

Acknowledgments

The authors thank Professor S. Favier for his suggestions.

References

- J. Matkowski, The converse of the Hölder inequality and its generalizations, *Studia Mathematica* 109 (1994), 171–182.
- [2] H.L. Royden, Real Analysis, The Macmillan Company, Toronto, 1968
- [3] G.H. Hardy, J.E. Littlewood and G. Polya, *Inequalities*, Cambridge University Press, Cambridge, 1967.
- [4] R. Cooper, Note on the Cauchy-Hölder inequality, J.L.M.S. 3 (1928), 8-9.
- [5] W. Wnuk, Orlicz spaces cannot be normed analogously to L^p spaces, Indag. Math. 87 (1984), 357–359.