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1. INTRODUCTION

Let R and C represent the real and complex number fields; let (a, b) and
[c, ] be open and compact intervals of 11 respectively; we identify
R ( c, o) and the extended real field R* oe, c].
The symbol ’(x E K)’ is to be read as ’for all x in the set K’.
We use the notations o(1) and 0(1) to indicate terms that tend to zero

or are bounded, respectively, for some indicated limit process;
see [11, p. 1].

* Corresponding author.
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For the interval (a, b), a weight function w:(a, b)I is Lebesgue
measurable and satisfies w(x) > 0 for x E (a, b).
The index p satisfies p E [1, cx); when p E (1, ) the index q (1, c)

and conjugate to p is determined by p-1 + q-1 1.
For Lebesgue integration we use the standard notations and write

fab faf(x)dx f. (1.1)

Let L denote Lebesgue integration; forp _> and a weight function w
the symbol LP((a, b)" w) denotes both the classical integration space and
the Banach space of equivalence classes of functions; the norm off is
written Ilfllp. For conjugate indices p, q the spaces LP((a, b)’w) and
Lq((a, b)’w) are first conjugate spaces of each other; define

b

(f, g)p,q:-- wfg (f LP((a, b) w) and g Lq((a, b) w)). (1.2)

The norm of a bounded, linear operator A defined on LP((a, b)’w) is
denoted by IIAII,

In the self-conjugate space p q 2 the symbol L2((a, b)" w) denotes
the Hilbert function space with inner-product

b

(f,g)2 := wfg (f,g L2((a,b) w)). (1.3)

The use of’loc’ in respect ofthe interval (a, b) restricts a property to all
compact sub-intervals [a,/3] c (a,b); thus Lfoc((a,b):w is the set of
functionsf: (a, b) C such thatf LP([a,/3]:w) for all [a,/3] c (a, b).

Let f LP((a, b) w) and g Lq((a, b) w); then the H61der integral
inequality [7, Section 6.9] implies that wfg Ll((a,b):w); since w-
wlip x w1/q and then

b

wfg
b b 1/P{fab<--’a wl/Plflwl/q[gl <--(fa wlflP} wlglq (1.4)

We are now in a position to state the general results of this paper:

THEOREM Suppose given the open interval, bounded or unbounded,
(a, b) ofI, the conjugate indices p, q (1, ), and the weightfunction w.
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Let the pair offunctions q, b (a, b) C satisfy the three conditions:

E Loc((a, b)’w) and b Loc((a,b)’w

2. For some c (a, b) (and thenfor all c (a, b))

LP((a, c]: w) and b zq([, b): w). (1.6)

3. For all [a, /3] C (a, b)

wlqolP> o and wl[q> 0. (1.7)

Define the linear operators A and B on LP((a, b):w) and Lq((a, b):w)
respectively by

b

(Af)(x) := (x) wbf (x (a,b) andf LP((a,b) w))

X

(Bg)(x) b(x) w99g (x (a,b) and g Lq((a,b) w)); (1.9)

then

A: LP((a,b) w)- Loc((a,b) w), (1.10)

B. Lq((a,b) w) Loc((a,b) w). (1.11)

Define K(. ): (a, b) (0, ) by

g(x) "-{a’Xwl[p} 1/p{jfb W[31q (X (a,b)) (1.12)

and the number K (0, ]

K := sup{K(x) x (a, b)}. (1.13)

Then a necessary and sufficient condition that A, respectively B, is a
boundedlinear operator on LP((a, b) w), respectively on Lq((a, b) w), into
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LP((a,b) w), respectively &to Lq((a,b) w), is that the number K is

finite, i.e.

K E (0, ). (1.14)

Proof See Sections 2 and 3 below.

COROLLARY Let all the conditions ofTheorem holdandsuppose that
(1.14) is satisfied, so that the linear operators A and B are bounded in the
spaces LP((a, b):w) and Lq((a, b):w) respectively, then the following
inequalities hold

IIAfllp p/Pq/qgllfllp (f E LP((a,b) w)), (1.15)

IIBgllq pl/pql/qgllgllq (g Lq((a,b) w)), (1.16)

where the number K is defined by (1.13) and (1.14).
In general,for all self-conjugate indices p and q, the numberpl/p ql/q K

given in (1.15) and (1.16) is best possiblefor these inequalities to hold.

Proof See Section 3 below.

COROLLARY 2 The bounded operator B, respectively A, is the conjugate
operator of A, respectively B, between the first conjugate spaces
Lq((a, b) w) and LP((a, b) w) respectively, i.e.

(Af g)p,q-- (f Bg)p,q (f E LP((a,b) w) and g Lq((a,b) w)).
(1.17)

The operators A and B have the same norm, i.e.

IIAIIp-IIBllq. (1.18)

Proof See Section 4 below.

COROLLARY 3 Let the self-conjugate case p=q=2 hold; let the
bounding condition (1.14) be satisfied; let the set {, b) be restricted by

qa, : (a,b) -, II. (1.19)
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Then the linear operators A andB are both bounded in the Hilbert space
L2((a, b): w) and are the adjoints ofeach other, i.e.

A* B and B* A. (1.20)

Proof See Section 4 below.

Remark 1 The original motivation for these results came from the work
of Titchmarsh; see the definition of the resolvent function (b in [12,
Chapter II], and the remarks in [1, Section 1].

The first proof of these results seems to have been given by Chisholm
and Everitt [1]; this paper was followed by the application of Stuart [10]
to the measure of non-compactness of integral operators. Extensions
of these results may be found in the books of Maz’ja [9], and Edmunds
and Evans [2].

There is an interesting connection in the recent paper of Toland and
Williams [13].

There are many recent applications to the theory of orthogonal
polynomials; see the papers by Everitt and Littlejohn [3], and Everitt and
Mari6 [5]; also the doctoral theses of Loveland [8] and Wellman [14].
A suitable choice ofthe interval (a, b) and the set {, p} leads to many

interesting integral inequalities. In particular the integral inequality of
Hardy [6], see also [7, Section 9.8], is a special case ofthe inequality (1.16).
We discuss some of these applications and inequalities in Sections 5

and 6 below.

Remark 2 The condition (1.7) is to avoid the case when one or both of
the functions and b are null in some neighbourhood of a+ and b-,
respectively.

Remark 3 In this paper we give, in the spirit of [7, Section 1.7],
elementary proofs of these results. We give a new improved form of
the proofs first given in [1], and discuss additional examples and
applications.

In Section 2 we give an essential lemma; the proofs ofTheorem and
Corollary are given in Section 3; the proofofCorollaries 2 and 3 appear
in Section 4; some critical examples are given in Section 5; an application



250 R.S. CHISHOLM et al.

ofTheorem to a property ofthe Legendre differential operator is given
in Section 6.

2. A LEMMA

We require

LEMMA Suppose given the interval (a, b), conjugate indices p, q, and a
weight w; letf LP((a, b) w) andg Loc((a, b w);for some c (a, b) let
g

_
Lq([c, b)" w); then

foX{rex

lim wig. wig[q O. (2.1)

There is a similar result at a+ ifg Lq((a, c] w).

Proof Let e > 0 be given; choose dclose to b- so that {f wlflp }l/p
then for x > d, using the H61der inequality (1.4),

Xwfg

x 1-1/qwig]q < dwfg

-1/q

On letting x b- and using limxb- Jcx wig[q--- -k-cx:, we obtain

lim sup ’Xwfg l c.X )-l/qwig[q <_

and the result follows.

3. PROOF OF THEOREM 1 AND COROLLARY 1

It is clear from the conditions (1.5) and (1.6) and then the definitions (1.8)
and (1.9) that if we impose further the conditions that and b satisfy

q E LP([c,b) w) and b Lq((a,c] w), (3.1)

then it follows that the required boundedness of the operators A and B
is satisfied. Note also that in this case the condition (1.14) follows
from (3.1).
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The most difficult case for the proof ofTheorem is when both ofthe
conditions (3.1) are not satisfied, i.e.

q_LP([c,b) w) and _Lq((a,c] w). (3.2)

We give the proof when (3.2) holds; when only one of the conditions in
(3.2) is satisfied the proof follows similar lines.
The results (1.10) and (1.11) follow from the given conditions and the

definitions of the operators A and B.
We begin with the sufficiency of the condition (1.14) to prove the

boundedness of the operators A and B, i.e. we assume that

sup[IfaXWlqolPll/Plfxbwl.31ql 1/q

K < +cx: (x E (a,b)).

x E (a, b)]
(3.3)

To prove the required result for A take monotonic sequences {an "n 1%} and {bn : n N0} such that

a < an+l < an < bn < bn+l < b (n Io)

and

lim an a and lim bn b.
n--+cx n---cx

From a standard property of the Lebesgue integral

b

from this inequality and on integration by parts we obtain

wlAflp <_ w(x) l,(x)lp wlfl dx

x

willp. wlfl
an

w(x) l(x)f(x) ldx.

(3.4)
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From (3.3) the first part ofthe first term on the right-hand side of (3.4) is
dominated by

b lP b -P/q

(gfb w[f[ "{fbn wl2/3lq)
and this is seen to be o(1) for large n on using the H61der inequality (1.4)
and the given conditions on the functions b andf. The second part ofthe
first term is dominated by

b IP b -P/q

{gJi w,yf, "{fan wl/3’q}
and this is seen to be o(1) for large n on using the H61der inequality, the
condition (3.2) and the result of Lemma 1.

Thus, on using again (3.3),

bn bn{fxb )-P/qfa. wlAflP <- (1) + PKP fa. wllq

wlfl w(x) I(x)f(x)ldx

o(1) + pKPIn (say) (3.5)

asn.
On integration by parts, again as n ,

b }P. b -P/ql
bn

in_p_1 [_lfx WI2[3fl lfx WI2/31ql
an

bn b

W P b -(p/q)-I

+q-lfao{J I fl
j {fxW’ 3’q}

=o(1) + q-Jn (say)

w(x) [(x)Iq dx

(3.6)

where the o(1) term is obtained on using the same arguments as for (3.5).
Now from the definition of Jn in (3.6) it follows that

Jn+l Jn 0 (nZ);
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then, without loss ofgenerality, we can assume that either Jn 0 (n E No)
or, for some 6 > O,

Jn>5>O (nEN0). (3.7)

In the first case, on letting n + in (3.5) and (3.6) we obtain

i.e. Af LP((a, b) w).
Assume then that (3.7) holds. Since (3.6) is an equality, and not an

inequality, we can rewrite this result to give

Jn o(1) + qln (n +x). (3.8)

From the definition (3.5) of In and an application of the H61der
inequality (1.4) we obtain, using q(p- 1)=p,

In<_ { ff"wlflp } l/Pl[6" b
q{Ix )

< Ilfl[pjln/q (n No).

_p }
1/q

w(x)l(x)lqdx

(3.9)

Hence from (3.7)-(3.9) we obtain

Jn <_ O(1) -+- qllfllpjln/q (n +)

and then

Jln/P < 0(1)6-1/q + qllfllp
< o(1) + qllfllp (n +cx).

Thus from (3.5) and (3.6)

a
]/I2[Aflp o(l) + pKPln

_< o(1) +pKP(o(1) + q-lJn)
_< o(1)+pq-aKPJn (n --->
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Hence from (3.10)

w[Aflp _< o(1)+ (p/q)l/pK,.nJ1/p

_< o(1)+ (p/q)l/PqK[[f[[p
and this yields, on letting n ,

(n +cx)

IIAfllp q(P/q)i/PKIIf[[p

and sincefis arbitrary this last result holds for allfE LP((a, b) w).
Finally then, since q(p/q)l/p _pl/p ql/q, we obtain

IIAfllp P/Pq/qgllfllp

A similar argument shows that

(f E LP((a,b) w)). (3.11)

[[Bgllq p/Pq/qg[lgllq (g Lq((a,b) w)). (3.12)

These last two results show that the condition (1.14) is sufficient to
establish the required boundedness properties of the operators A and B
ofTheorem 1, and the inequalities (1.15) and (1.16) of Corollary 1.
To show that the condition (1.14) is necessary for the boundedness

result ofTheorem define, for all a (a, b), the functionf (a, b) C by

f(x) {0(x)l(x)lq-2

then it may be seen thatf 6 LP((a, b) w).
Now suppose that the operator A is bounded on LP((a, b):w), say

[[Af[lp <_ k[lf[[p for all/ LP((a, b): w); then

ab

w(x)lAfa(x)lPdx

b [P a b bIra W’’q’ fa W’’P-[- W(X)’(x)’P(Jf W’]q)dx
<_ wlfl- will (a (a,b)).
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This result gives

W[3[q W[[P kp wlblq

and hence

(a E (a, b))

b lP
-1

thus

(faa }liP{labwillp wlplq < k (aE(a,b)). (3.13)

Thus the condition (1.14) is seen to be necessary if the operator is
bounded in LP((a, b) w).

There is a similar proofof (3.13) if it is assumed that the operator B is
bounded on Lq((a, b) w).
The Hardy integral inequality [6], see also [7, Section 9.8], shows that,

in general, the numberplip ql/q Kis best possible for the inequalities (1.15)
and (1.16) to hold; this example, and other examples are discussed in
Section 5 below.

4. PROOF OF COROLLARIES 2 AND 3

Proof of Corollary 2 From the definitions given in Section and on
integration by parts

(Af, g}p,q fab w(x)(x){ fxb wf}g(x)dx
Ia’Xwqogfxt’Wflba+ fab{faXwg}w(x)b(x)f(x)dx
j[a’b w(x)f(x)b(x) { j[’aX wg}dx
(f, Bg)p,q (f6 LP((a,b)’w) and g Lq((a,b)’w))

since the integrated term [...] is seen to be zero on using the methods
given in Section 3. This gives the proof of (1.17).
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The proof of (1.18) follows from standard procedures in functional
analysis.

Proof of Corollary 3 Suppose that the functions and " (a, b) N;
then with (., )2 as the inner-product for L2((a, b)" w), and integrating by
parts,

(Af, g)2 fab w(x)qo(X){ fxb wbf}(X) dx

IfaXWfxbw)fbaq-fablfaXW,lW(X)(x)f(x) dX

=a’b{faXwp,}W(X)2(x)f(x)dx
(f,g) (f,g e z((a,b)’w))

since the integrated term [...]6a is seen to be zero on using the methods
given in Section 3. This gives the proof of (1.20).

5. EXAMPLES

Example 1 Let a=0 and b=+, with (x)=l, (x)=l/x and
w(x) for all x E (0, +oe); then

K(x) (x E (0, ec)) and Kpl/pq1/q p
q

(q_ 1)l/q q-

(5.1)

an&from the definitions ofthe operatorsA andB, we obtain the inequalities

IIAfllp pl[fllp

[IBgllq < q [Igll-q q

(f E LP(O, +c)),

(g cq(o, +)).

Equivalently these inequalities may be written in theform

fx+f(t)dtlPdx <_pP fo+lf(x)[Pdx (f LP(O, +cx))



AN INTEGRAL OPERATOR INEQUALITY 257

and - g(t) dt < q
]g(x)[q dx (g E Lq(O, +)).

q-1

(.)

In all these inequalities the bounds shown are bestpossible, and the only
case ofequality is whenf(x) g(x) Ofor almost all x (0, ).

Proof A computation shows that the results given in (5.1) are valid and
the inequalities then follow from Theorem and Corollary 1.

The inequality (5.2) is Hardy’s integral inequality; see [7, Section 9.8,
Theorem 327].
The proofthat the bounds are best possible and that the null function is

the only case of equality, follows the analysis given in [7, Section 9.8]. It
is of interest to note that the very general form of the inequalities in
Theorem and Corollary precludes the possibility of determining, in
the general case, the best possible bounds and the cases ofequality; such
detail has to be left for analysis in individual and special cases; Hardy’s
integral inequality is an example of this procedure.

Example 2 Let a=- and b=+, with 9(x)=exp(x),(x)=
exp(-x) and w(x) for all x (-c, +); then

K(x) p-1/pq-1/q (x (-cx, q-a)) and Kpl/pq1/q (5.3)

and,from the definitions ofthe operatorsA andB, we obtain the inequalities

f LP +
(g Zq (-oQ, -+- oQ)).

Equivalently these inequalities may be written in theform

+c fx+X ]Pexp(px) exp(-t)f(t) dt dx

<_ If(x)lp dx (f LP(-, +))
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and

+o jx
q

exp(-qx) exp(t)g(t) dt dx

< Ig(x)lqdx (g E tq(-o, +0(3)).

In all these inequalities the bound is best possible and the only case of
equality is the nullfunction.

Proof A computation shows that the results given in (5.3) are valid and
the inequalities then follow from Theorem and Corollary 1.

To prove that the bound is best possible substitute in the first integral
inequalityf=fxwhere

fx(x) (x [-X, X])

andfx is zero elsewhere on (-, ). A computation then shows that

=1

if

x
lim (2X) -1 [1 exp(-(X- X))]p dx 1. (5.4)

X-+oo X

TO prove this result let ’(0, +oe) (0, c) be defined by

(X) := (2X)- [1 exp(-(X- x))]e dx (X (0,

Then

x
(X) _< (2X) -1 dx-

x
(x (o, +

so that

lim sup I, (X) _< 1.
x---q-o
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Now let E (0, 1); then

(X) _> (2X)- [1 exp(-(X- x))]e dx

>_ (2X)- [1 exp(-(X- X))] dx

[1 exp(-X(1 ))]e(2J() -1 dx

and from this last result it follows that

lim inf(X) >_ ;

thus

(Jr e (o,

lim inf (X) >_ (5.6)
x-t-

The required result (5.4) now follows from (5.5) and (5.6).
There is a similar proofconcerning the best bound of for the second

integral inequality of this Example 2.
The proofthat the only case ofequality is the null function follows the

lines of the corresponding proof for Example 3 below and is omitted.

Example 3 Leta= -1 andb= 1, with(x)=(1 x)-l,(x) (1 / x)-1

and w(x) for all x (- 1,1); thenfor all x (- 1,1)

K(x)=
I { 2p-I (1- x)p-1}

lip

{2(p- 1)} 1/p {2(q- 1)} 1/q -]-X

{2q-l--(l+X)q-1}
Thefollowing results hold:

1. For p 2, i.e. q 2, the function K(. ) is continuous on [-1,1] with
K(- 1) K(1) O, and the bounding condition (1.14) is satisfied; thus
the operator and integral inequalities are valid.

2. Forp=q-2

K(x) 2-1 (x [-1, 1])



260 R.S. CHISHOLM et al.

and the bounding constantp1/p ql/q K= 1; the integral inequalities take
theform

-+- f(t) dt 2dx _< If(x) dx (fE L2(-1, 1))

and

1(1 +X)2 g(t) dt dx <- llg(x)l 2 dx (g E L2(-1, 1)).

The bound in these two inequalities is bestpossible and the only case of
equality is the nullfunction.

Proof These results follow from a computation for the function K(. ) as
defined in (1.12), and then on a calculation with the explicit form ofK(. ).

In Case 2 to prove that the bound is best possible in the first ofthe two
inequalities, substitute, with e E (0,1/2), the functionf defined by

(1 -+-x)e-l/2L(x) :=
0

(x E (-1,0]),
(x G (0, 1));

thenJ L2( 1,1). Then the right-side of the inequality gives

0

(1 + x)l-2
ax (1 + o()) ( --, o+).

The left-hand side reduces, after a calculation, to

4 /0( 2) (1 x)2 ( + x)-2
dx + O(I)

f0
(1 -2e)2 ]-1(1 + x)-2

dx

42e)2 fo x)2-t-(1 1(3 x)(1 -t- dx -t- 0(1)

(1 2e)2 2-- (1 + O(e)) (e 0+).
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Thus the quotient (left-hand side)/(right-hand side) tends to the limit
as 0+, and the bound is best-possible for the inequality.

There is a similar argument for the second of the two inequalities.
To prove that the only case of equality is the null function start by

noting that a consequence of the first inequality of Case 2 is that

(1 x)2 + f(t) dt
2

_1 {jl }2dx <
(1 x)2 /

If(t) dt dx

< If(x) dx (5.7)

sincefE L2(-1,1) if and only if Ifl E L2(-1,1) Thus it is sufficient to
argue with the case of equality when

f(x) >_ 0 (x (-1, 1)). (5.8)

Thus, on integration by parts,

(5.9)

From the formula for K(. above with p q 2

x xl(1-t)at (l+t)at= (x(-1,1). (5.10)

Thus the integrated term in (5.9) becomes

[(fxl )-1(xl )2](1 + t)- dt
+ f(t) dt

-1

and this expression is seen to be zero by the methods of Section 3.



262 R.S. CHISHOLM et al.

Hence (5.9) becomes, noting that
{2(1 + x)}-1 (x (-1, 1)),

fxl(1 -+- t) 2 dt (1 x)

(1 x)2 + f(t) dt dx

/_l {/ ll }(1 x) f(x) + f(t) at dx.

At this stage it is important to note that this last result is an equality to
which the Cauchy-Schwarz inequality is applied to give

(1 --x)2 +t

(flllf(x)lZdx}l/2

I 2

/
f(t) dt dx

}
/

f(t) dt} dx

(5.11)

unless, for some a E I,

a fxf(x)=
l_x + f(t)dt (almost all x E (-1, 1)). (5.12)

From (5.8) it follows that a _> 0; if a =0 then f is null on (-1, 1), so
suppose that a > 0.
Now since t(1 + t)f(t) Loc(-1,1 it follows from (5.12) that

fE C(-1, 1), and then that fE C1)(-1, 1). Differentiating (5.12) then
gives

((1 x)f(x))’= (1 x)f’(x) -f(x) a(1 + x)-lf(x) (x (-1, 1))

i.eo

f’(x) (1 + x a)
-x2 f(x) (x (-1,1)). (5.13)

This last result is a first-order, linear differential equation forf that is
regular on (-1,1) but is singular at +1. Since f> 0 on (-1,1) and
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fE C(-1,1) eitherfis null on (-1,1), or for some point x0 E (-1,1) it is
the case that f(xo)> 0. In the second case apply standard methods of
solution to (5.13) to give

f(x)=f(xolv/l_xexp (1-) t2dt (x

(5.14)

If a (0,1] then (5.14) implies that, for k > 0, near 1-

f(x)2 >_ k(1- x2) -1

and this result givesf L2( 1,1); if a (1, c) then, similarly, near /

the same result holds and againf L2( 1,1). This contradiction on the
hypothesisfE L2( 1,1) implies thatfis null on (- 1,1).

Returning now to (5.11) we have eitherfis null on (- 1,1) orfis not null
and

tf(t)d dxfl (1 --X)2 f l+ >0
1/2

in which case we can cancel this factor from both sides and then, on
squaring the result, obtain, noting again (5.7),

t)dt 2dx < If(x) dx (f L(-1, 1))-x):

unlessfis null on (-1,1).
There is a similar prooffor the case ofequality in the second inequality

of Case 2.
This result completes the proof for Example 3.
In Case it is not known if there is an explicit formula for the upper

bound ofK(. ) on the interval [- 1,1], in terms ofthe parametersp and q,
nor if there are any cases of equality other than the null function.

6. AN APPLICATION

There is an important connection between orthogonal polynomials,
defined on the real line and generated as solutions ofordinary differential
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equations with a spectral parameter, and the spectral theory of self-
adjoint operators in Hilbert function spaces; for a survey of the main
results, up to 1990, see [4]. The operator and integral inequalities of[l]
and the results in this paper have played a significant r61e in the
determination of the domains of the unbounded self-adjoint operators
in this connection; see the results in [8, 14]. For an example the case of
the Legendre differential operator is considered as an application of
Theorem 1.
The Legendre differential expression M: D(M) C L2( 1,1)

L2( 1,1) is defined by

M[f] :=-((1- x2)f’(x)) (x (-1, 1) andf D(M))

where

D(M) := (f: (-1, 1) C: (i)f,f ACoc(-1, 1),
(ii) f,M[f] L2(-1, 1)}.

In general the elements ofD(M) have singular behaviour near the end-
points + 1. For example the function l(x) := In((1 + x)/(1 x))
(x E (-1, 1)) is a member of D(M) but has logarithmic singularities
near 4-1, and l’(x) 2/(1 x2) so that l’ LI(- 1,1).
The self-adjoint operator S in L2( 1,1) associated with the Legendre

polynomials is defined by, see [3, 4],

D(S) {f E D(M) xli_,ml(1 xZ)f’(x) 0}

and

Sf := M[f] (f e D(S)).

The elements of this domain D(S), in comparison with D(M), enjoy
remarkably smooth properties; from the results in [5]:

COROLLARY 4 Letf D(S) then:

(i) f AC[-1,1]
(ii) f’ L2(-1,1).
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Proof The idea for this proof is taken, in part, from the forthcoming
paper [5]; see also [3, pp. 58,59].

Let fE D(S); then M[f] E L2[0,1) so that M[f] E Ll[0,1); hence for

0<x<<l

M[f](t) dt (1 2)f’() (1 x2)f(x).

In this result let 1- to obtain, from the definition of D(S),

M[f](t)dt -(1 x2)f’(x) (x [0, 1)),

i.e.

f’(x) x2 M[f](t) dt (x [0, 1)).

To this last result apply Theorem with p q 2, a 0, b and
(x) (1 x2)-1, (x)= for all x (0,1). In this case

K(x)2 fo (1 t2) 2
dt 12dt (xE(0,1))

and it may be seen that K(. ) is bounded on (0, 1).
Hence an application of Theorem gives

f’ =_ Af E L2(O, 1) (f E D(S)).

A similar argument shows thatf’ L2(- 1, 0); thusf’ L2(- 1, 1).
Since f’ E L2( 1,1) implies that f’GLI(-1,1) it follows that

fAC[-1,1].
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