J. of Inequal. & Appl., 1999, Vol. 3, pp. 279-284 Reprints available directly from the publisher Photocopying permitted by license only

Powers of *p*-Hyponormal Operators

ARIYADASA ALUTHGE^a and DERMING WANG^{b,*}

^a Department of Mathematics, Marshall University, Huntington, WV 25755-2560, USA; ^b Department of Mathematics, California State University, Long Beach, CA 90840-1001, USA

(Received 20 November 1997; Revised 9 July 1998)

Applying Furuta's and Hansen's inequalities, it is shown that if T is a *p*-hyponormal operator, then T^n is (p/n)-hyponormal. Applications are obtained.

Keywords: p-Hyponormal operator; Furuta's inequality; Hansen's inequality

1991 AMS Subject Classifications: Primary 47B20, 47A30

1 INTRODUCTION

Let *H* be a complex Hilbert space and L(H) be the algebra of bounded linear operators on *H*. An operator $T \in L(H)$ is said to be *p*-hyponormal, p > 0, if $(T^*T)^p \ge (TT^*)^p$. A *p*-hyponormal operator is said to be hyponormal if p = 1; semi-hyponormal if p = 1/2. The well known Löwner-Heinz inequality implies that every *p*-hyponormal operator is *q*-hyponormal for any $0 < q \le p$. Hyponormal operators have been studied by many authors, such as Halmos [7], Stampfli [10,11] and Xia [13]. Semi-hyponormality was introduced by Xia [12]. See [13] for properties of semi-hyponormal operators. For *p*-hyponormal operators, see [1,2].

Throughout this paper we assume 0 and use a capital letterto denote an operator in <math>L(H). In [7, Problem 164], Halmos gave an example of a hyponormal operator A whose square A^2 is not

^{*} Corresponding author.

hyponormal. Here we use Furuta's [5] and Hansen's [6] inequalities to show that if T is p-hyponormal, then T^2 is (p/2)-hyponormal. In fact, we will show that for any positive integer n, the operator T^n is (p/n)-hyponormal. Applications of our result are also obtained.

2 THE RESULT

LEMMA 1 (Furuta's inequality [5]) If $A \ge B \ge 0$, then the inequalities

$$(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$$

and

$$A^{(p+2r)/q} \ge (A^r B^p A^r)^{1/q}$$

hold for $p, r \ge 0, q \ge 1$ with $(1 + 2r)q \ge p + 2r$.

LEMMA 2 (Hansen's inequality [6]) If $A \ge 0$ and $||B|| \le 1$, then

$$(B^*AB)^p \ge B^*A^pB$$

for $0 \le p \le 1$.

THEOREM 1 Let T be a p-hyponormal operator. The inequalities

$$(T^{n^*}T^n)^{p/n} \ge (T^*T)^p \ge (TT^*)^p \ge (T^nT^{n^*})^{p/n}$$

hold for all positive integer n.

Proof Let T = U|T| be the polar decomposition of T. For each positive integer n, let $A_n = (T^{n^*}T^n)^{p/n}$ and $B_n = (T^nT^{n^*})^{p/n}$. We will use induction to establish the inequalities

$$A_n \ge A_1 \ge B_1 \ge B_n. \tag{1}$$

The inequalities (1) clearly hold for n = 1. Assume (1) hold for n = k. The induction hypothesis and the assumption that T is p-hyponormal imply

$$U^*A_kU \ge U^*A_1U \ge A_1.$$

Let $C_k = (U^* A_k^{k/p} U)^{p/k}$. Hansen's inequality implies $C_k \ge U^* A_k U \ge A_1$. Thus

$$A_{k+1} = (T^{*^{k+1}}T^{k+1})^{(p/k+1)}$$

= $(T^{*}(T^{*^{k}}T^{k})T)^{(p/k+1)}$
= $(|T|U^{*}A_{k}^{k/p}U|T|)^{(p/k+1)}$
= $(A_{1}^{1/2p}C_{k}^{k/p}A_{1}^{1/2p})^{(p/k+1)}$
 $\geq A_{1}$

by Furuta's inequality. On the other hand, the induction hypothesis implies

$$B_k \leq B_1 \leq A_1.$$

Thus

$$B_{k+1} = (T^{k+1}T^{*^{k+1}})^{(p/k+1)}$$

= $(T(T^kT^{*^k})T^*)^{(p/k+1)}$
= $(U|T|B_k^{k/p}|T|U^*)^{(p/k+1)}$
= $U(|T|B_k^{k/p}|T|)^{(p/k+1)}U^*$
= $U(A_1^{1/2p}B_k^{k/p}A_1^{1/2p})^{(p/k+1)}U^*$
 $\leq UA_1U^*$
= $B_1,$

where the inequality follows from Furuta's inequality. Therefore,

$$A_{k+1} \ge A_1 \ge B_1 \ge B_{k+1}$$

and hence, by induction, inequalities (1) hold for $n \ge 1$. The proof is complete.

COROLLARY 1 If the operator T is p-hyponormal, then T^n is (p/n)-hyponormal.

Concrete examples of non-hyponormal p-hyponormal operators are hard to come by. In [12], Xia gave an example of a singular integral operator which is semi-hyponormal but not hyponormal. Corollary 1 allows us to give another example of a semi-hyponormal operator which is not hyponormal. Let A be the operator in Halmos' [7, Problem 164]. Thus, A is hyponormal but A^2 is not hyponormal. By Corollary 1, A^2 is semi-hyponormal. Moreover, A^{2n} is (1/2n)-hyponormal.

3 APPLICATIONS

In [10, Theorem 5], Stampfli proved that if T is hyponormal and T^n is normal for some positive integer n, then T is normal. Stampfli's result had been extended by Ando [3] to the case where T is paranormal. Although not as broad as Ando's extension, Theorem 1 can easily be used to extend Stampfli's result to p-hyponormal operators as follows.

COROLLARY 2 Let the operator T be p-hyponormal. If T^n is normal, then T is normal.

Proof By Theorem 1 and the assumption that T^n is normal,

$$(T^{n^*}T^n)^{p/n} = (T^*T)^p = (TT^*)^p = (T^nT^{n^*})^{p/n}.$$

Whence $T^*T = TT^*$. The proof is complete.

In [9, Theorem 7], Putnam proved that if T is hyponormal, and $r \ge 0$ is such that $r^2 \in \sigma(T^*T)$, then there is a $z \in \sigma(T)$ such that |z| = r. Recently, Chō and Itoh [4, Theorem 4] generalized Putnam's result to the case where the operator T is p-hyponormal. Theorem 1 can be utilized to give a generalization of the result of Chō and Itoh as follows.

THEOREM 2. Let T be a p-hyponormal operator and n be a positive integer. If $r \ge 0$ is such that $r^2 \in \sigma(T^{n^*}T^n)$, then there is a $z \in \sigma(T)$ such that $|z|^n = r$.

Proof Theorem 1 implies T^n is (p/n)-hyponormal. Therefore, by [4, Theorem 4], there is a $w \in \sigma(T^n)$ such that |w| = r. Since $\sigma(T^n) = \{z^n : z \in \sigma(T)\}$, there is a $z \in \sigma(T)$ such that $z^n = w$. Clearly $|z|^n = r$ and the proof is complete.

As an extension of the well-known Putnam's area inequality for hyponormal operators [8], Xia [13, Theorem XI.5.1] proved the following Theorem 3 for the case in which T is p-hyponormal with $p \ge 1/2$ and n = 1. In [4, Theorem 5], Chō and Itoh extended Xia's result to p-hyponormal operators with 0 .

282

THEOREM 3 Let T be p-hyponormal. If $\sigma(T) \subseteq \{re^{i\theta}: 0 \le \theta < 2\pi/m\}$ for some positive integer m, then

$$\|(T^{n^*}T^n)^{p/n} - (T^nT^{n^*})^{p/n}\| \le \frac{np}{\pi} \iint_{\sigma(T)} \rho^{2p-1} \, \mathrm{d}\rho \, \mathrm{d}\theta$$

for positive integers $n \leq m$.

Proof By Theorem 1, T^n is (p/n)-hyponormal. It follows from [4, Theorem 5] that

$$\|(T^{n^*}T^n)^{p/n} - (T^nT^{n^*})^{p/n}\| \leq \frac{p}{n\pi} \iint_{\sigma(T^n)} r^{2(p/n)-1} \, \mathrm{d}r \, \mathrm{d}\phi.$$

Since $\sigma(T^n) = \{\rho^n e^{i\theta} : \rho e^{i\theta} \in \sigma(T)\}$, the result follows by the substitutions $r = \rho^n$ and $\phi = n\theta$.

Acknowledgment

This paper was written while the first author, on sabbatical leave from Marshall University, was a visiting adjunct professor at the Department of Mathematics, California State University, Long Beach, Fall, 1997. He wishes to express his deep gratitude to his host for warm hospitality and support.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integr. Equat. Oper. Th., 13 (1990), <math>307-315.
- [2] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integr. Equat. Oper. Th., 24 (1996), 497-501.
- [3] T. Ando, Operators with a norm condition, Acta Sci. Math., 33 (1972), 169-178.
- [4] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc., 123 (1995), 2435-2440.
- [5] T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, *Proc. Amer. Math. Soc.*, **101** (1987), 85-88.
- [6] F. Hansen, An operator inequality, Math. Ann., 246 (1980), 249-250.
- [7] P.R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, New Jersey, 1967.
- [8] C.R. Putnam, An inequality for the area of hyponormal spectra, *Math. Z.*, **116** (1970), 323–330.
- [9] C.R. Putnam, Spectra of polar factors of hyponormal operators, *Trans. Amer. Math. Soc.*, 188 (1974), 419–428.

A. ALUTHGE AND D. WANG

- [10] J.G. Stampfli, Hyponormal operators, *Pacific J. Math.*, 12 (1962), 1453–1458.
 [11] J.G. Stampfli, Hyponormal operators and spectral density, *Trans. Amer. Math. Soc.*, 117 (1965), 469-476.
- [12] D. Xia, On the nonnormal operators-semihyponormal operators, Sci. Sininca, 23 (1980), 700-713.
- [13] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Boston, 1983.