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theory are discussed to understand possible ramifications.
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1. INTRODUCTION

In the investigation of initial value problems of differential equations,
we have been partial to initial time all along in the sense that we only
perturb or change the dependent variable or the space variable and
keep the initial time unchanged [1,2]. However, it appears important to
vary the initial time as well because it is impossible not to make errors in
the starting time [3]. For example, the solutions of the unperturbed
differential system may start at some initial time and the solutions
of perturbed differential system may have to be started at a different
initial time. Moreover, in considering the solution of a given system, it
may be impossible, in real situations, to keep the initial time the same
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and only perturb the space variable as we have been continuously doing.
If we do change the initial time for each solution, then we are faced
with the problem of comparing any two solutions which differ in the
initial starting time. There may be several ways of comparing and to
each choice of measuring the difference, we may end up with a different
result.

In this paper, we initiate the investigation in this direction and make
an attempt to study some preliminary results to understand the possible
ramifications.

2. COMPARISON RESULTS

We begin with the basic result in the theory of differential inequalities
parallel to the well known results [1].

THEOREM 2.1 Assume that

(i) a,/3 E CI[R+, R], fE C[R+ R, R] and a’ < f(t, a), a(to) < Xo,

to >_ O,/’ >_ f(t, fl),/3(7-0) >_ Xo, 7"0 >_ 0;
(ii) f(t, x) -f(t, y) < L(x-y), x >_ y, L > 0;
(iii) 7-0 > to andf(t, x) is nondecreasing in for each x.

Then (a) a(t) < (t + rl), >_ to and (b) a(t rl) </3(0, >_ 70, where

7"0 to.

Proof Define/30(0 =/3(t + r/) so that 3o(to) --/3(to + 7) --/3(7"0) > Xo >
a(to). Also,

(t) fl’(t + 1) >_ f(t + r/, flo(t)), >_ to.

Let o (t) o (t) / ee2Lt for some e > 0 small. Then

/0(t) >_/30(t) and /0(t0) >/30(t0) >_ a(to). (2.1)

We shall show that a(t) </30(t0) for _> to. If this is not true, because of
(2.1), there would exist a > to such that

o(tl)--/0(tl) and o(t) </0(t), to <t < t. (2.2)
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We get from (2.2), the relation at(h) >_/(tl) which implies in view
of (ii),

f(tl,a(tl)) > a’(tl) >/(tl) =/3(tl) + 2Lee2Ltl

>_ f(tl + r/,/3o (t)) + 2Lee2Ltl

Using (ii) and (2.1), we then get

f(tl,O(tl)) >_ f(tl + r/,/O(tl)) Lee2Lq + 2Lee2Ltl

> f(t + r/,/0(t)).
Since o > to, condition (iii) now leads to the contradiction because of
(2.2), namely,

f(tl,C(tl)) > f(tl,O(tl)),

which proves a(t)</30(t), t_> to. Making e0, we conclude that
c(t) _</3(t + ), >_ to which proves (a).
To prove (b), we set Co(t)=cfft-), t>_ -0 and note that Co0-0)=

c(7.0 7) c(to) <_/3(70). Then letting go (t) co (t) ee2t for small
e > 0 and proceeding similarly, we derive the estimate c(t- r/)_</3(0,
>_ 70. The proof is therefore complete.

In case to > 7"0, to prove the conclusion of Theorem 2.1, assumption
(iii) needs to be replaced by

(iii*) to > 7"0 and f(t, x) is nonincreasing in for each x.

Then the dual result is valid.

THEOREM 2.2 Assume that conditions (i), (ii) and (iii*) hold. Then the
conclusion of Theorem 2.1 is valid.

We can immediately deduce the following comparison result.

THEOREM 2.3 Assume that

(a) m e C[R+, R+], g e C[R+, R] and D_m(t) < g(t, m(t)), m(to) < Wo,

to >_ O, where

D_m(t) lih_nf [m(t + h)- m(t)];
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(b) the maximal solution r(t) r(t, 7-0, Wo) ofw’ g(t, w), w(7-0) Wo > O,
7"0 > O, existsfor >_ 7"0;

(c) g(t, w) is nondecreasing in for each w and 7"0 > to.

Then m(t) < r( / rl), >_ to and m(t- 7) <_ r(t), > 7"0.

Proof It is well known [1] that if w(t, e) is any solution of

w’ g(t, w) + e, w(7"o) wo + e,

for e >0 sufficiently small, then lim,__,o w(t,e)=r(t, 7"0, Wo) on every
compact subset [7"o, 7"o + T]. Hence setting Wo(t, ) w(t + 7, ), we have
Wo(to, ) W(to + rl, ) w(7"o, ) Wo + > Wo > m(to), and

w(t, ) g(t + 7, wo(t, )) + > g(t + rl, wo(t, )), > to.

By Theorem 2.1, we then get m(t) < Wo(t, e), >_ 7"0 and hence it follows
that m(t) <_ r(t + rl, 7"0, wo), >_ to.
To prove the second part of the conclusion, we set too(t) m(t rl) so

that m0(0)= m(to) <_ Wo and note that

D_mo(t) < g(t- ,mo(t)), > 7"0.

We now prove, following the earlier arguments, that mo(t)< w(t, e),
_> 7"o and the conclusion follows taking the limit as e 0. The proof of

theorem is complete.

One can have a dual of Theorem 2.3 on the basis of Theorem 2.2.
We merely state such a result.

THEOREM 2.4 Assume that conditions (a) and (b) hold. Supposefurther
that condition (c) is replaced by

(c*) g(t, w) is nonincreasing in for each w and to > 7"0.

Then the conclusion of Theorem 2.3 remains valid.

In this framework, Gronwall Lemma takes the following form.

GRONWALL’S LEMMA 2.5 Let m, A C[R+, R+] and

m(t) < m(to) + A(s)m(s) ds, to >_ O.
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If A(t)/s nondecreasing in and -o > to, then

Eltom(t) < m(to)exp A(s + r/) d > to, r/= ’0 to,

and

m(t rl) < m(to) exp A(s) ds
to

>_’o.

If A(t)/s nonincreasing in and to > o, then

m(t 7) < m(to) exp A(s r/) ds _> -o,

and

m(t) < m(to) exp A(s) ds
"r0

t>_to.

Remark 2.1 Let us note that if the functionsfand g in the foregoing
discussions are autonomous, the monotone assumptions imposed in
the results are automatically satisfied.

3. METHOD OF VARIATION OF PARAMETERS

Consider the two differential systems

y’ F(t,y), y(to) Yo, to >_ O, (3.1)
x =f(t,x), x(’ro)= xo, o > O, (3.2)

where F,fE C[R+ Rn, Rn]. Assume that OF(t,y)/Oy exists and is
continuous on R+ x Rn, then we know [1] that the solution y(t, to, Yo)
is unique for each (to, Yo), Oy(t, to, yo)/Oto and Oy(t, to, yo)/Oyo are the
solutions of the variational system

z’ Fy(t, y(t, to, Yo))z (3.3)
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satisfying the initial conditions

Oy
(to, to, Yo) -F(to, Yo)

Oy
Oto Oyo (to, to, Yo I, (Identity matrix)

(3.4)

and the identity

Oy
t, to, Yo + Oy

t, to Yo F(to, Yo =- O,
Oto (3.5)

holds for to < < x.
Let y(t, to, Xo) be the solution of (3.1) through (to, Xo) and let (t)

x(t + rl,7-o, xo), where x(t, 7-o, Xo) is any solution of (3.2) existing for
t_> 7-0 and r/=7-o-to. Set p(s)= y(t,s, Yc(s)) for to < s< t. Note that
(to) x(to + r/, 70, xo) xo. Then we see that

dp(s) Oy
(t,s, Yc(s)) +

Oy
(t,s, Yc(s))f(s + rl, Yc(s))d Ot---

=f(s, (s); r/), say. (3.6)

Integrating (3.6) from to to t, we get

2(0 y(t, to, xo) + (s, 2(s); r) as; _> to. (3.7)

Now let q(s) y(t, to, or(s)) where (s) xos + (1 s)yo, 0 _< s <_ 1, so
that we have

dq(s____) Oy
(t, to, cr(s))(xo YO).ds Oyo

Integrating from 0 to 1, we arrive at

(t, to r(s))ds(xo Yo)
Oy

y(t, to, xo) y(t, to, YO) + YO (3.8)

Combining (3.7) and (3.8) yields

x(t + rl, 7"o, xo) y(t, to,Yo) + -yo(t, to, cr(s))ds(xo -Yo)

+ f(s, x(s + 7, 7"o, xo); r/)ds, t> to, (3.9)
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which gives the relation between the solution of (3.1) and (3.2) starting
at different initial data in time and space.

If f(t + rl, x) F(t, x) + R(t + 7, x), then it follows in view of (3.5),
(3.6) and (3.9) that

x(t + rl,’ro, xo) y(t, to,Yo) + -yo(t, to, cr(s))ds(xo -Yo)

’(t, x(s+,0 , , x0+ , ,x0))(+ x(+ 0, ))

(3.0)

for t to.
This is the nonlinear variation of parameters formula connecting

the solutions of perturbed and unperturbed differential systems.
IfFin (3.1) is linear and autonomous, namely, F(t, y) Ay where A is

n x n constant matrix and f in (3.2) is taken as fit, x)= Ax + R(t,x),
then (3.10) reduces to

x(t + , T0, X0) eA(t-t)yo + eA(t-t)(Xo YO)

+ e(t-SlR(s+,x(s+,o, xo))ds. (3.11)

The relation (3.9) which offers an expression for the difference of two
solutions x(t + , ro, xo) and y(t, to, Yo) can be obtained in a different
form as follows.

Let w(t) x(t + , o, xo) y(t, to, Yo) 2(t) y(t). Then w(to)
xo Yo and

’( f( + v, () + ()) e(,() (t, (0; v).

Setting p(s) y(t, s, w(s)), we find

ds
Oy

(t,s, w()) +
Oy

(t,, w())/-/(, w(). v)

B(t,s, w(s);

Integrating from to to t, we have

( =y(,0,0-y0)+ /(,,w();/d, t>_to,
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or equivalently, for > to,

x(t+7,7"o, xo) y(t, to,Yo) y(t, to, xo-Yo) / (t,s,w(s);7)ds.

(3.9*)
One can also obtain the expression (3.9*) for >_ o. For this purpose,

we need to set w(t) x(t, o, xo) y(t rl, to, yo) x(t) p(t) so that
W&o) Xo yo and

w’(t) f(t, w(t) + (t)) F(t- ,fi(t)) H(t, w(t); r/).

Proceeding as above, we arrive at

x( t, 7-0, xo y( 7, to, Yo Y( t, to, xo Yo + (t, s, w(s), rl) ds

(3.9**)

for t_> 7-o.
Let us next consider another differential system

z’ G(t,z), z(’o) zo, (3.12)

where G E C[R+ x Rn, Rn]. Define

v(t) z(t + 7, 7-0, zo) x(t, to, xo) for _> to, (3.13)

where z(t,-o, Zo) and x(t, to, Xo) are the solutions of (3.12) and (3.2)
through (7o, Zo) and (to, Xo) respectively. Then V(to) Zo Xo and

v’(t) G(t + 7, z(t + 7, ’0, zo)) f(t,x(t, to, xo))
G(t + ri, v(t) + x(t, to, xo)) -f(t,x(t, to, xo))
fo(t, v(t);7), say. (3.14)

We set p(s)=y(t,s, v(s)) where y(t, to, Yo) is the solution of (3.1) so that

dp(s) Oy
ds Oto

Oy
fo(s,(t,s, v(s)) +-yo (t,s,

=- G(t,s, v(s); r/), say. (3.15)
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Integrating from to to t, we get

v(t) y(t, to, z xo) + r(t,s, v(s); r/)ds, > to, (3.16)

which implies for > to,

z(t + 7, 7"o, zo) x(t, to, xo) y(t, to, zo xo) / G(t,s, v(s); /) ds.

(3.17)

This relation connects the solutions ofthree differential equations and is
the nonlinear variation of parameters formula as well.

Let us consider some special cases of (3.17).

(a) Suppose that F(t,y)=O so that y(t, to, Yo)=_yo. Then (3.17) yields

z(t+rl, 7o, zo)-x(t, to, xo) =zo-xo / fo(s,v(s);rl)ds, t>_to.

(3.18)

(b) Suppose that G(t,x)=f(t,x). Then (3.17) reduces to

x(t / 7, 7"o, zo) x(t, to, xo) y(t, to, zo xo) r(t,s, v(s); 7)ds,

(3.19)

where

Oy
v())O(t,, v(); ) b-g0 (t, ,

Oy
v(s))[f(t + rl, x(t) + v(t)) f(t,x(t))]+ yo (t,,

(c) If F(t, y)= 0 and G(t, x)= f(t, x), we get from (3.17) the relation

x(t + , o, zo) x(t, to, xo)

zo xo + [f(s + r,x(s) + v(s)) -f(s,x(s))] ds. (3.20)
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(d) If F(t, y) =_ 0 and G(t, x) =f(t, x) + R(t, x), then (3.17) reduces to

z(t+rl, 7"o, zo)-x(t, to, xo):zo-xo+ fo(s,v(s);rl)ds, (3.21)

where

fo(t, v(t); r/) f(t + rl, v(t) + x(t)) f(t,x(t)) + R(t + ,z(t + 7)).

Other possibilities exist and we omit, to avoid monotony.

4. STABILITY CRITERIA

Consider the differential system

x’ =f(t,x), (4.1)

wherefE C[R+ x Rn, Rn]. Let x(t, 7-0, Xo) and x(t, to, Yo) be the solutions
of (4.1) through (7-0, Xo) and (to, yo), to, 7-0 > 0, 7-0 to > 0.

In order to discuss stability of the difference of these two solutions,
the notion of practical stability is more convenient which we define
below in a suitable way.

DEFINITION The system (4.1) is said to be

(1) practically stable, if given (A,A) with (A <A), there exists a
cr cr(,k, A) > 0 such that

Ixo Yol </k, I1 < Ix(t + , -0, xo) x(t, to, yo)l < A

for >_ to;
(2) strongly practically stable if (1) holds and given (,, B, T) > 0 there

exists a ro o(3, B, T) such that

Ix0- y01 < , I1 < 0 Ix(t + , -o, xo)- x(t, t0,y0)l < B

for t> to+ T.

Now we can prove the following typical result concerning practical
stability of (4.1) relative to the two solutions starting at different
initial data.
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THEOREM 4.1 Suppose that

lim inf
hO- - [Iv + h f(t, v, rl)l Ivl] < -clvl / (4.2)

a,/3>0, where ](t,v, rl)=f(t+rl, x(t)+ v)-f(t,x(t)) and x(t)=
x(t, to, Yo). Then the system (4.1) is strongly practically stable.

Proof Set v(t) x(t + rl, 70, Xo) x(t, to, Yo) Yc(t) x(t) for >_ to,
so that V(to) Xo Yo and

v’(t) f(t + rl, x(t) + v(t)) f(t, x(t)) =_ )7(t, v; r/). (4.3)

It is now easy to get the linear differential inequality

D_m(t) <_ -cm(t) +/11, to, (4.4)

where m(t) Iv(t)[-- [x(t + rl, 7"0, Xo) x(t, to, Yo)l, using (4.2). We then
get from (4.4) the estimate

m(t) < m(to)e-a(t-t) + [r/I --fl > to. (4.5)

If 0 < A < A are given, then choosing r=(A- A)(c//3), we see that
(4.5) yields

Ix0-y01 <A, Ir/I < cr Ix(t+r,’o, xo)-x(t, to,yo)l <A

for > to, proving practical stability.
Now let (A,B,T)>0 be given. Choose or0- min(r,7) where
(B- Ae-r)(c//3).

Then it follows from (4.5) that whenever Ixo- yol < A and Ir/I < ro,
we have

Ix(t + rl, 7-o, xo) x(t, to,Yo)l < B, >_ to + T.

This proves that the system (4.1) is strongly practically stable and
the proof is complete.

Remark 4.1 One can also formulate the foregoing considerations
to hold for _> 7-0 by defining v(t) Ix(t, 7-0, Xo) x(t ri, to, yo)l and
proceeding as before.
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For more stability results in the present framework via nonlinear
variation of parameters see [4].
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