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In this paper, we prove the maximal inequality P(sup, >_ 0(f, + Ignl) ) (Q(1) + 2)llflll,
> o, between a non-negative submartingale f, g is strongly subordinate to f and

2fn-1 Q(1) < 0 ,where Q is real valued function such that 0 < Q(s) < s for each s > 0,
Q(0) 0. This inequality improves Burkholder’s inequality in which Q(1) 1.

Keywords: Maximal inequality; Submartingale; Strongly subordinate; Inner product

1991 Mathematics Subject Classification: Primary 60G42; Secondary 60G46

1. A MAXIMAL INEQUALITY

Suppose that f= (fn),,>o and g (g,,),,_>o are adapted to a filtration
()Vn)n >_ 0 of a probability space (f, .T’,P). Herefis a non-negative sub-
martingale and g is R-valued, where u is positive integer. With fn
do +... + d. and g, e0 +... + e (n >_ 0). Consider the two conditions;

lenl < Idnl for n > 0, (1.1)

IE(en lgrn_l)l < IW.(4 ]grn-1)l for n _> 1. (1.2)

The process g is called differentially subordinate to f if (1.1) holds.
If (1.2) is satisfied, then g is conditionally differentially subordinate tof
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If both of the conditions (1.1) and (1.2) are satisfied, then g is strongly
differentially subordinate to f, or more simply, g is strongly subordinate
to f. Of course, if f and g are martingales, then both sides of (1.2)
vanish and (1.2) is trivially satisfied. It will be convenient to allow g to
have its values in a space of possibly more than one dimension. So we
assume throughout this paper that the Euclidean norm of y E is
denoted by lYl and the inner product of y and k E I by y. k. We set
[[f[[1 supn>_o[[fn[[1, the maximal function of g is defined by
g* supn _> o [g, and the function Q is real valued function such that
0 < Q(s) <_ s for each s > O, Q(O) O.

THEOREM 1.1 If f is a non-negative submartingale, g is strongly
subordinate tofand 2fn-1 Q(1) < o, then,for all A > O,

AP(sup(fn>_0 %- Ign[) -- ’) -- (Q(1)-1- 2)l[fll

COROLLARY 1.2 Iff is a non-negative submartingale, g is strongly
subordinate tofand 2f,_ Q(1) _< 0, then, for all A > O,

AP(supg*_>n>_O A) _< (Q(1)+ 2)[If[[ 1.

COROLLARY 1.3 (D.L. Burkholder [2]) Iff is a non-negative sub-
martingale andg is strongly subordinate tof, then,for all A > O,

AP( sup(f -+- [gnl) ") -< 3[IfIll"

Remark 1.1 In [2] Burkholder proved the inequality in Theorem
when Q(1) 1.

2. TECHNICAL LEMMAS

Put S {(x, y): x > 0 and y E with [y[ > 0}. Define two functions U
and V on S by

f [lyl- (Q(1) 4- 1)x](x + lyl) 1/(o(1)+l)u(x,y)
(Q(1) + 2)x

ifx+lyl< 1,
if x + lyl ->
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and

-(Q(1) + 2)xV(x,y) 1-(Q(1)+2)x
if x + [yl < 1,
if x + lyl 1.

Observe that U is continuous on S.

LFMMA 2.1 (a) V <_ U on S. (b) U(x, y) <_ 0 ifx >_ lyl.

Proof For (a) we may assume x + lyl < 1. Write x + lYl R()+. Since
0 < R < 1, we have

V(x,y) U(x,y) -RQ()+2 -(1 R)(Q(1)+ 2)x < 0.

In order to prove (b) assume x> [y[. If x+lyl < 1, then ly[-
(a(1) + 1)x _< lyl x <_ 0. Hence U(x, y) < O. Ifx + lyl >- , then U(x, y)

(a(1) + 2)x <_ x + [y[- (O(1) + 2)x lyl- (Q(1) + 1)x <_ o.

LEMMA 2.2
[Uy(x, Y)I < 0.

If x / lyl < and 2x Q(1) < 0, then Ux(x, y) +

Proof If x + ]y] < 1, then differentiation gives

Ux(x,y) -(Q(1) + 1)(Q(1) + 2)x + Q(1)(Q(1) + 2)ly

y(X,y)

(Q(1) + 1)(x + ly[)
(Q(1) + 2)y

(Q(1) + 1)(x + lyl) Q(’)/(Q()+I)"

On the other hand, since

-(Q(1) + 1)(Q(1) + 2)x- Q(1)(Q(1) + 2)lyl + (Q(1) + 2)lyl
[Q(1) + 2][-(Q(1) + 1)x + (1 Q(1))ly[]

< [a(1) + 2][1 2x- O(1)],

hence Ux(x, y) + Uy(x, Y)I < 0 by the assumption and above inequality.

LEMMA 2.3 If (X, y) E S, h IR, x + h > O, k IR’, Ihl >_ Ikl and
[y + kt > Ofor all IR, then

U(x + h, y + k) <_ U(x, y) + Ux(x, y)h + Uy(x, y) k. (2.1)
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Proof Put I= { E N: x + th > O, [y + tk[ > 0} and observe that 0 E I
and I is an open set. Define a function G on I by

G(t) U(x + ht, y + kt).

From the chain rule we have

G’(t) Ux(x + th, y + tk)h + Uy(x + th, y + tk) k.

Thus it suffices to show G(1)N G(0)+ G’(0). For this we define more
functions r, N and m on I by r(t) m(t) + N(t), m(t)=x+ht and
N(t) lY + ktl we will write m for re(t), etc. Therefore, put I1 {t :
re(t) > 0, N(t) > 0 and r(t) < } and 12 {t : re(t) > 0, N(t) > 0 and
r(t) > }. On I1, we have

G(t) r(Q(1)+2)/(Q(1)+I) (Q(1) + 2)mr1/(Q(1)+I).

Differentiating G, we get

aG" (t) r"r2 + (r’)2r 2hrr’ mrr" +Q(1) +
Q(I) m(r,)2

Q(1) +
where

Q(1) + r(2Q(1)+I)/(Q(1)+I
Q(1) +2

Rearranging terms and inserting (/)2 r- r(r’)2, we have

aG"(t) (r"r mr" 2hr’ + (r’)2)r
) )2+ -r + Q(1) +-------r + Q(1) +m (r’

(Ik[ 2 h2)r- Q(1) N(r,)2 < (ikl2_ hZ)r"Q(1) +

Here we used the observation that m’ h, N’ r’ h, NN’ k (y + tk)
and Nr"= NN" [kl2- (N’)2. On 12 we have

G(t) (Q(1) + 2)(x + ht).
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Differentiating G, we get G"(t)=0. Therefore, on each component of

I1 LI I2, the derivative G" is non-positive and G’ is non-increasing. So, by
Mean Value Theorem we have

G(1) G(0) G’(-) (0 < - < 1).

Hence G(1) G(0) < G’(0). The case x + lYl follows by replacing x by
x + 2j in the inequality (2.1) and then taking the limit of both sides as
j cx. This proves the lemma.

3. PROOF OF THE INEQUALITY IN THEOREM 1.1

We can assume that Ilfl]l is finite. A stopping time argument leads to a
further reduction: it is enough to prove that if n > 0, then

e(f + Ignl >- 1) <_ (a(1) + 2)Efn. (3.1)

We may further assume that

fn-1 > 0 and Ign-1 + tenl > 0 for all E N and n > 1. (3.2)

Indeed, for each 0 < e < 1, the processesf and g’, wheref fn + e and
g (g,, e), satisfy (3.2) and all the assumptions in Section 1. Here g’ is a
process in IR+1. Now, the inequality

P(f + Igl -> 1) _< (Q(1) + 2)Efn

yields, as e+0, the inequality (3.1) because P(fn+lgl>_
P(fn + e + I(gn, e)l > 1) and Ef, < Efn + e.

Let the functions U and Vbe as in the previous section. Observe, from
the assumption (3.2), that (fn-l,gn-1) ES. The inequality (3.1) is
equivalent to

EV(fn,gn) < O.

According to (a) of Lemma 2.1 it suffices to prove

U(fn,gn) <_ O.
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Also, (b) of Lemma 2.1 and the Assumption (1.1) imply U(f0, go) _< 0.
Hence the proof is complete if we can show

EU(fn, gn) <_ EU(fn-1, gn-1),

which holds for all n _> 1. By Lemma 2.3 we have, with x =fn-1, h- dn,
Y gn-1 and k en,

U(fn, gn) U(fn-1, gn-) <_ Ux(fn-1, gn-1)dn + Uy(fn-1, gn-1) en
(3.3)

where all the random variables are integrable. The integrability follows
from the boundedness offn-1 and gn-1 although, of course, g need not
be uniformly bounded. Also observe that U(fn-l,gn-1), Ux(fn-l,g,,-1)
and Uy(fn-l,gn-a) are ’n- measurable. Thus conditioning on 9c,_
we get

E(U(fn, gn)-U(fn-l,gn-1) l.T’n-1)--E(U(fn, gn) l.T’n-)-U(fn-l,gn_O,
E(Ux(fn-l,gn-1)dn l.T’n-)- Ux(fn-,gn-1)E(dn f’n-)

and

(Uy(fn-l,gn-1) en n-,) Uy(fn-l,gn-1) E(en

From (3.3) we get

E(U(fn,gn) l.T’n-) U(fn-l,gn-1)

< Ux(f-,gn-)E(dn l.T’n-) + Uy(fn-l,gn-1) (en I.T’n_).

Sincefis a submartingale,

Using the Cauchy-Schwarz inequality and the assumption (1.2) we have

Uy(fn-l,gn-1)" ](en n-1) IUy(fn-,gn-1)II (en n-1)l

< Uy(fn-, gn-1)I E(dn .T’n-1).
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Hence

I(U(fn, gn) ’n-1) U(fn-1, gn-1
(Ux(fn-1, gn-1) + ]Uy(fn-1, gn-1)]) ((dn I.]:n-1)) 0

or

E(U(fn,gn) In-1) U(fn-l,gn-1). (3.4)

In the above we used Lemma 2.2. But from the definition ofconditional
expectation we have

(](U(fn, gn) f’n-1)) U(fn, gn).

Thus taking expectation in (3.4), we get

EU(fn, gn) <_ EU(fn-1, gn-1).

This completes the proof of the inequality in Theorem 1.1.
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